
1

A Symbolic Computer Language For Multibody Systems
Michael W. Sayers*

The University of Michigan Transportation Research Institute

Abstract
Methods are developed for describing and manipulating symbolic data “objects” that are

useful for analyzing the kinematics and dynamics of multibody systems. These symbolic objects
include: (1) vector/dyadic algebraic expressions, (2) physical components in a multibody system,
and (3) program structures needed in a numerical simulation code. A computer algebra language
based on these methods encourages the automation of multibody analyses that are versatile and
simple, because much of the “work” involved in describing the system mathematically is handled
by the algebra system, rather than the analysis formalism. It also handles much of the process of
converting symbolic equations into efficient computer code for numerical analysis. The
language permits a dynamicist to describe forces, moments, constraints, and output variables
using expressions involving arbitrary combinations of unit-vectors from different moving
reference frames. Kinematics and dynamics analysis algorithms have been programmed that
employ these capabilities to analyze complex multibody systems and formulate highly efficient
computer source code used for subsequent numerical analysis. A companion paper describes the
basic multibody formalism that has been programmed.

Introduction
The manual derivation of the equations of motion for even a modestly complex multibody

system is a tedious undertaking that involves considerable algebra and a nagging uncertainty of
the correctness of the equations. Further, a considerable programming and debugging effort may
be needed to write those equations in a form suitable for numerical solution. Computer algebra
has offered a means to reduce the effort and avoid simple algebraic errors, thereby allowing the
dynamicist to concentrate on the analysis rather than the algebra. Most of the work reported to
date has been done with the MACSYMA language,1–4 possibly because it has been available on
mainframe computers for over fifteen years. Other generic symbolic languages that have been
used are FORMAC5 and REDUCE.6 Newer languages with similar capabilities are MAPLE,7

MuMath,8 and Mathematica.9

Even though these mathematical languages are very powerful and have many applications,
they are not ideal tools for dynamicists. Because these languages are generic (that is, they are
intended for a wide range of scientific applications), they do not automatically associate
algebraic expressions with elements in a multibody system. As a result, common kinematic
operations cannot be automated unless the analyst engages in an extensive programming effort.

* Associate Research Scientist, Engineering Research Division, The University of Michigan Transportation

Research Institute, 2901 Baxter Rd., Ann Arbor, Michigan 48109-2150

Published in the American Institute of Aeronautics and Astronautics Journal of Guidance, Control, and
Dynamics, Vol. 14, No. 6, Nov/Dec 1991, 1153-1163. (Note: the page breaks and formatting in this copy of the
paper do not match the original AIAA publication. However, the content is identical.)

Symbolic Computer Language 2

Another problem is that the software packages are large and require substantial computing power
to be effective.10 For example, the language MACSYMA consists of about 3000 compiled Lisp
functions, accounting for over 300,000 lines of Lisp source code.4

At least one symbolic computation language has been developed specifically for interactive
use by a dynamics expert.11 With this language, called AUTOLEV, the dynamicist analyzes the
mechanical system using the methodology advocated by Kane and Levinson,12 and the computer
acts as an assistant that performs most of the algebra. When the analysis is complete, the
equations of motion are written into a Fortran program that is ready to compile and run. Because
it is specialized for dynamics and kinematics analysis, the software is reported to be simpler to
use for this application than other symbolic mathematics computer languages. Another
advantage is that it runs on inexpensive personal computers. However, the correctness of the
equations is strongly dependent on the skill and thoroughness of the dynamicist, who must attend
to many mundane details of the analysis (e.g., using kinematical relations to derive velocities)
using AUTOLEV commands.

Further automation has been achieved by computer programs that formulate equations of
motion based only on a description of the geometry of the multibody system (e.g., NEWEUL,13

SD/FAST,14 MESA VERDE,15 etc.). These programs generate subroutines that can be merged
into a simulation program. The automation does not come without a price, however. With most
of these programs, the dynamicist must describe the system using coordinate systems dictated by
the software. Active forces and torques (those doing work) are not included directly, forcing the
dynamicist to develop subroutines or equations by hand that are linked with the automatically
generated equations. Inclusion of arbitrary constraints (nonholonomic, specified motions, etc.)
can require considerable expertise. Simplifications that are made by a human analyst, such as
lumping bodies together, or making small-angle approximations, are not done automatically, and
may not be possible at all. Consequently, the equations can be overly complicated.

Computer programs that automatically form equations of motion of multibody systems,
either numerically or symbolically, incorporate a formal analysis process called a multibody
formalism. In developing formalisms, most dynamicists have taken it upon themselves to
specify the analysis method in such complete detail that it can be programmed numerically in
existing computer languages,16,17 or symbolically using rudimentary computer algebra.13-15

Rather than developing a complicated method that can be programmed in existing languages,
an alternative approach is to (1) design a new computer language that includes symbolic
operations relevant to the analysis of multibody systems, and then (2) devise simpler and more
versatile multibody formalisms that can be programmed in the new language.

This paper describes the design of such a language. In this language, three aspects of the
system are represented in symbolic form as computer data objects:

1. vector and dyadic algebra expressions,
2. components of the multibody system (bodies, forces, etc.), and
3. pieces of computer code that go into a numerical simulation code.
The methods described in this paper have been programmed in Lisp, and are part of a

software package called AUTOSIM, developed at The University of Michigan to automatically
generate simulation codes for multibody systems. Although the software was developed on an
Apple Macintosh, it runs on any machine that supports the Common Lisp language.18 The
multibody formalism presently used in AUTOSIM is based on tree-topology systems. The
basics of the formalism are described in a companion paper,19 and extensions that allow

Symbolic Computer Language 3

AUTOSIM to handle nonholonomic constraints and kinematical closed loops are described in a
Ph.D dissertation.20

Notational Conventions
Bodies in the multibody system are designated by plain capital letters, e.g., body A, body B.

The inertial reference is called N. Points are designated by capital letters that often have
subscripts. Origins of coordinate systems are always written with a subscript zero (e.g., B0).
When discussing bodies in the system, the current (generic) body under consideration is called B.
Its movements are defined with reference to another body in the system, called the parent of B,
and designated A. (The parent, A, can be either another body or N.) The configuration of the
multibody system when all generalized coordinates are zero is called the nominal configuration.

Vectors are written with bold type. Unit-vectors that are parallel with axes in coordinate
systems are written with a lower-case letter that is the same as the body in which the unit-vector
is fixed, and subscripted with an index of 1, 2, or 3. For example, the three directions of the
coordinate system of B are the unit-vectors b1, b2, and b3. Other unit-vectors, used to define
directions of interest, are written with the letter d . Position vectors are written with the letter r ,
superscripted with the names of the end-points of the vector. For example, a vector connecting
the origin of B (B0) to its mass center (B*) is rB0B*. A similar convention is used for velocity,
except (1) the letter v is used, and (2) only one point is contained in the superscript, e.g., vB0.

Names of computer data types are written in the Courier typeface, e.g., indexed-sym.
Formal arguments to computer procedures, and names of “slots” in structures (defined later) are
shown in italics.

Symbolic Computation
Symbolic computation is used to derive expressions when the values needed for numerical

computation are not known. Arithmetic operations are not performed on the symbolic
expressions, but are used to build new expressions that can be applied later. That is, the
arithmetic operations are deferred. For example, given an equation “A = 2*(B + C) - D” where
B, C, and D are unknown, the expression “2*(B + C) - D” is stored and associated with the
symbol A. Later, when values are supplied for symbols B, C, and D, a value for A is calculated.

An example of a symbolic computation program is a compiler. Translating procedures from
a high-level language such as Fortran to a low-level language such as machine code involves
symbol manipulation and the generation of instructions to perform operations. One way to view
a symbolic multibody analysis program is as a compiler: the high-level language is the input
from the dynamicist, and the low-level language is a target language such as Fortran.

The reason that symbolic computation can be very useful for developing efficient equations
of motion is that knowledge about some of the terms can be used to simplify equations. For
example, the equation: “A = 0*(B + C) - D,” can be simplified once and for all to “A = –D”. In
addition to pure algebraic manipulation, equations can be simplified based on engineering
judgements if certain terms are known to be numerically negligible. For example, if the symbol
X is known to apply to a variable that is very small, the expression “1 - X2” can be simplified to
unity, and the expression “sin X” can be simplified to “X.”

Symbolic Computer Language 4

Basis-Free Vectors and Dyadics
Generic computer algebra languages are unable to automatically manipulate vector and

dyadic expressions that involve unit-vectors from a variety of moving reference frames. For
example, consider a spring between two points PA, fixed in body A, and point PB, fixed in body
B, as shown in Figure 1. The vector connecting points PA and PB can be written simply as

rPAPB = L2 b1 – L1 a1 (1)

L1
a1

L2 b1

A

B

A

B

P

P

a
a

1

2

b

b1

2

Figure 1. Use of unit-vectors to describe spring.

Let the distance between the points be designated x, where

x = rPAPB = rPAPB • rPAPB 1/2 = L1
2 + L1

2 -2 L1 L2 a1•b1
1/2

(2)

An expression for the dot-product “a1•b1” can be formulated if information is available
concerning how the bodies associated with these unit-vectors are related kinematically. From the
figure, we can deduce that the dot product is the sine of the angle between the two bodies.
However, if such information is not available, all that can be done symbolically is to generate an
expression such as “a1•b1.”

In most existing computer algebra languages, vectors are handled as 3-element arrays in a
prescribed coordinate system. If the unit-vectors a1 and b1 are represented by such arrays, then
the dot product is the inner product of the two arrays. Two problems with choosing a coordinate
system for each vector expression are (1) the analysis is made more complicated, because the
coordinate systems must be monitored, and (2) it is not always clear right away which is the
“best” coordinate system to choose. To represent the vector expression of Eq. 1, a dynamicist
would probably choose either the coordinate system of A or B. Either way, dot products are
likely to be needed between the vector rPAPB and vectors described in the “other” coordinate
system. Coordinates that were first transformed to the chosen coordinate system are later
transformed back. The process of transforming coordinates back and forth can add to the
complexity of the resulting equations. However, if the vector rPAPB is stored as written in Eq.
(1), a minimal transformation is needed to convert to any coordinate system.

Symbolic Computer Language 5

Numerical Efficiency
A simulation code is a computer program that simulates a physical system by numerically

integrating differential equations of motion. The integration is performed by using a numerical
approximation to integrate the equations over a very small increment of time. The state variables
are computed in a simulation run for discrete times that are “stepped” from a start time to a stop
time. Numerical efficiency can be estimated by the number of arithmetic operations needed to
compute derivatives of the state variables of the multibody system at each time step. This
efficiency derives from several factors. The method used to derive the equations of motion is, of
course, a primary factor. The merits of various methods (Newton-Euler, Lagrange, Kane’s
equations, etc.) have been covered extensively in the literature and will not be repeated here.
However, within the scope of a given method, there are several techniques that can be taken by
the analyst to simplify the equations, and also techniques that can be taken when coding the
equations into a computer program. These techniques include the following:

1. Terms which are zero for the specific system (but which could be non-zero for a more
general formulation) are omitted from the equations.

2. Equations are written in “factored form,” involving products and ratios of sums of terms.
For example, the expression (A + B + C)2 requires two additions and one integer power;
the expanded form (A2 + 2AB + B2 + 2AC + 2BC + C2) requires five additions, six
multiplications, and three integer powers.

3. Terms involving products or powers of quantities known to be “small” are dropped if
they are of order 2 or higher. Trigonometric functions of small quantities are replaced
with truncated Taylor series expansions.

4. Complicated expressions that occur in several places are replaced with intermediate
variables. This technique is particularly important for multibody systems because the
equations of motion are inherently redundant, even when highly recursive dynamics
analysis methods are used.

5. Expressions involving only constants are identified and “precomputed” as part of the
program initialization, to avoid the repeating of identical computations at each time step.

6. Unnecessary equations are removed. For example, a term might be introduced which is
later multiplied by zero. Equations that compute the term can be safely eliminated.

All of these techniques are independent of the method used to form the equations of motion,
and can therefore be made a part of the computer algebra language.

Representing Symbolic Data
The methods required to manipulate symbolic expressions are derived from the design of the

computer data types that are used to represent algebraic expressions and other entities. Given
that the AUTOSIM implementation was written in Lisp, Lisp terminology is used in the
following descriptions. However, the basic concepts could be applied in other languages.

Lisp includes over 40 types of data objects. In addition, new types are included by the use of
structures. Figure 2 shows a hierarchy of data types used in AUTOSIM, as they relate to data
types already in Lisp. Each type of data object “inherits” from the type to its immediate left in
the figure. For example, an object of type cos is also of types trig, func, and expression.
Characteristics of the types trig, func, and expression are “inherited” by objects of type
cos, and most Lisp functions developed to work with objects of type trig, func, or
expression work without modification with objects of type cos.

Symbolic Computer Language 6

structure

expression

eqs

outvar

declaration

number

Computer Algebra

body

point

forcem
force

moment

Multibody System

sum

prod

power

dyad

func

sym

uv

trig

asin

atan

cos

sin

indexed-sym

Numerical Simulation
Program

complex

rational

float

integer

ratio

array vector simple-vector

stringsimple-array

sequence list

symbol

call

Figure 2. Hierarchy of AUTOSIM and Lisp data objects.

The data objects in the figure are shown in four groups, related to (1) computer algebra, (2)
the multibody system, (3) the numerical simulation program, and (4) additional native Lisp
objects. Native Lisp forms are shown in italics, and those used extensively in AUTOSIM are
shown in bold italics. Each type of data object is associated with a specialized function used to
print that type of object. When the object represents an algebraic expression, it is printed
according to the conventions of the target language. The present version of AUTOSIM prints
outputs in one of three target languages: Fortran, ADSIM (a simulation language used for real-

Symbolic Computer Language 7

time simulation with computers made by Applied Dynamics International, inc.), and RTF (rich
text format, used in the “Microsoft Word” word processor for the Apple Macintosh and the IBM
PC. For example, an indexed-sym object that is printed as “Z10” when the target language is
RTF is printed as “Z(10)” when the target language is Fortran.

Computer Algebra
Expressions in AUTOSIM can represent scalars, vectors, or dyadics. They are composed of

numbers and expression structures, whose characteristics are listed in Table 1. The examples
show how they are printed in this paper (or when the target language is RTF). Three of the
expressions defined in the table are elementary types from which compound types are built. The
elementary types are the number, the sym (and a sub-type, the indexed-sym), and the uv.
The Lisp structure object contains a number of variables, called slots, that are defined within the
structure. Each slot has a name and can be assigned a value. The number of slots and the
associated names are defined for each data type. The meta-type expression defines a
repertoire of qualities associated with all expression types. For example, the type slot tells
whether an expression is a scalar, vector, or dyadic. The const-or-var slot tells whether an
expression is a constant or a variable. The small-order slot defines an “order of smallness” for
the expression. Nested expressions are implicit in the design of the compound expression types.
For example, the expressions in the list of factors of a prod can be sums, powers, funcs, etc.
There are no limits to the level of nesting (other than computer memory). Vectors and dyadics
are simply expressions that involve unit-vectors (uv objects).

Multibody System
A multibody system is composed of bodies influenced by forces and moments and connected

to each other by joints. Each element is represented by a corresponding Lisp structure.
A data structure called a body is used to represent each body in the system. Table 2 lists a

few of the major slots in a body. Other slots used to support mathematical operations are listed
later in other tables. Mass and inertias can be expressions involving variables, to account for
dynamically varying mass properties. Massless bodies can be used to introduce intermediate
reference frames. Also, bodies with zero degrees of freedom can be used to add (or subtract)
mass or inertia to an existing body. As will be seen later, some of the slots in a body are set
directly by the analyst, such as the symbol and the parent. Others, such as the slots abs-w and
abs-v0, are set by analyses performed automatically as the body is defined.

A structure called a point is used to define a location of interest in a body, such as the
origin of the coordinate system, the mass center, an attachment point, etc. Points are defined
as needed by the analyst to identify attachment points for forces, as points of interest for output
variables, or as center of mass locations for bodies and “composite bodies” introduced in a
dynamics analysis. Table 3 defines the major slots used to define a point. The coordinates of
a point can include expressions involving variables, to facilitate simple descriptions of forces
that act on moving points.

Symbolic Computer Language 8

Table 1. Summary of AUTOSIM expression types.
Type Primary Slots Definition Examples
number number 2, 1/3, –.3333
expression type, small-order, sort-code,

dxdt, const-or-var
meta-type for all expression
objects

sym symbol, default, hide, exp symbol for a scalar
parameter or variable

M, MC

indexed-sym i indexed symbol for a scalar
parameter or variable (this is
a sub-type of sym)

q2

uv symbol, body,
dot-products,
cross-products

unit-vector a1

dyad uv1, uv2 dyad (a1 b2)

power base, exponent base expression raised to
power

(L1 + L2)2

prod coef, factors product of numerical
coefficient and list of
expressions

2 M sin(q2)

sum terms sum of expressions I + M*L2

func function, args function that will be written
into numerical program

TIRE(FZ, A)

trig symbol sin or cos
cos cos cos(q2)

sin sin sin(q2)

asin arc-sine sin–1(q2)

atan arc-tangent ATAN2(X, Y)

Table 2. Some of the slots in a body.
Slot Name Definition
symbol symbol for user to reference the body.
name descriptive name of body.
parent parent body in tree topology.
level level of the body in tree.
children list of bodies that have this body as their parent.
cm-point location of mass center.
mass mass associated with body.
inertia inertia dyadic (with respect to the mass center)
abs-w absolute rotational velocity of the body
abs-v0 absolute velocity of the origin of the body

Symbolic Computer Language 9

Table 3. Some of the slots in a point.
Slot Name Definition

symbol symbol used to identify the point.
name descriptive name of the point.
body body structure in which this point is fixed.

coordinates array of 3 coordinates in the coordinate system of body.

Force-producing elements are represented by objects called forces, and moment-producing
elements are represented by moments. Both types, which inherit from the meta-type forcem,
are summarized in Table 4. The point1 and point2 slots in a force are used to obtain
expressions for the moment applied to a body about its mass center. That is, the moment is
defined as

T = rB*P × f (3)

where rB*P is the position vector going from the center of mass, B*, to the point P on the body
through which the force passes, and f is the force vector (i.e., the product of the expressions in
the direction and magnitude slots of the force object).

Table 4. Some of the slots in a forcem.
Slot Name Definition

symbol symbol used to identify the forcem.
name descriptive name of the forcem.

direction vector expression that gives direction of forcem.
magnitude scalar expression that gives magnitude of forcem.

body1 body on which forcem acts with +magnitude
body2 body on which forcem acts with –magnitude
point1 point on line of action of force on body 1 (force only).
point2 point on line of action of force on body 2 (force only).

Numerical Simulation Program
In addition to expressions and the multibody system, the numerical simulation program

produced as output by AUTOSIM is represented with objects. A sequence of assignment
statements is represented by an object called an eqs. Some of the sequences that are generated
and manipulated are the kinematical equations, the dynamical equations, the trigonometric
functions used in other equations, and the output variables. Each equation in an eqs is a sym (or
indexed-sym) whose exp slot is assigned to an expression. As with other types of objects, the
eqs prints in a form appropriate to the target language. Each sym is printed in a form similar to
the following: symbol = exp. Information about a variable that will be produced as output by the
simulation code is represented by the outvar object. It includes a short name, a long name, a
generic name, an expression, and units. Before the simulation code is written, the list of
outvars is processed to ensure that statements are generated to compute all dependent variables
specified by the dynamicist. A list of all variables of a certain type (REAL, INTEGER, etc.) that

Symbolic Computer Language 10

must be declared in a specific subroutine module of the simulation code is represented in a
declaration object.

Many real-world multibody systems cannot be fully described using only differential and
algebraic equations. The behavior of certain components may require semi-empirical models
that involve table-lookups, convoluted numerical algorithms, and even hardware-in-the-loop.
Variables defined in these ways are included in the equations of motion through the use of
external subroutines. Procedures that return a single variable as a function of one or more
arguments are represented with the func structure (see Table 1 and Figure 2). Procedures that
return several variables at once are also used. In Fortran, a procedure of this sort is called a
subroutine, and is invoked with a CALL statement. When code is written, it is essential that (1)
values needed as inputs to a subroutine are computed before the subroutine is called, and (2) all
references to values computed by the subroutine appear after the subroutine is called. External
subroutines are represented in AUTOSIM with a type of structure called a call. Each call
has slots that indicate (1) where the subroutine appears in the simulation code, (2) the name of
the subroutine, and (3) its arguments.

Manipulating Symbolic Data
The manipulation of symbolic data to generate efficient numerical analysis algorithms for

multibody systems involves algebraic operations, interactions with the multibody system, and
automated programming.

Making Expression Objects
Algebraic operations are implicitly performed when a compound expression object is created.

For example, a prod represents the multiplication of expressions. The functions that make
objects check their arguments and create simpler objects when possible. In fact, significant
algebraic simplifications are performed in these operations. Table 5 summarizes simplifications
that are performed by creator functions.

Most of the “small” quantity simplifications occur when a sum is created. The term with the
minimum order of “smallness” is used as a reference and all other terms are compared to it.
Terms whose order of smallness is more than the reference by some threshold are dropped.
Normally, the threshold for dropping small terms is 2. However, this value can be modified if
needed to perform alternate analyses that require higher-order terms. For example, AUTOSIM
has been used to generate equations needed for a bifurcation stability analysis in which all state
variables are “small” and terms are kept up to the fifth order.21 “Small” simplifications can also
occur when a trigonometric object is created, in which case a truncated Taylor series is used.

Care has been taken to ensure that equivalent occurrences of a compound expression always
are created the same way. Sums nested within sums and prods within prods are removed. For
example, the sum “(A + B) + C” yields “(A + B + C),” rather than “((A + B) + C).” Terms and
factors are sorted when creating prod or sum structures. For example, the product of B and
A*C is A*B*C rather than B*A*C. A sign convention for sums is used that results in a
repeatable formulation for a given sum. For example, the expression (–A – B – C) would never
be generated: instead, that result is always represented as -(A + B + C).

Symbolic Computer Language 11

Table 5. Simplifications performed by creator functions.
Function Simplifications

asin, cos, sin • simplify if argument is the inverse function (e.g. sin(sin-1x) → x).
• if argument is a number, evaluate.
• if small-order > 0, return truncated Taylor expansion.

atan • same simplifications as for asin.
• if there are two arguments, divide both by greatest common factor.
 [e.g., tan-1(ax, ay) → tan-1(x, y)]

power • if base is a power, change exponent.
• if base is number, evaluate.
• if base includes small terms, drop if possible.

prod • if the coefficient is 0, return 0.
• if the coefficient is 1 and there is one factor, return the factor.
•• if any numbers are included as factors, remove them from the list of
 factors and multiply them with the coefficient.
•• if any factors are prods, multiply coefficients and combine lists of
 factors (i.e., expand nested prods).
•• if any factors can be combined into a power, make the substitution.
• else, sort factors and create prod object.

sum •• compare “small-order” values of terms and remove those which are
 negligible.
•• check for trig identities: sin2x + cos2x → 1; 1 – sin2x → cos2x; etc.
•• if any terms are sums, remove them and append terms from nested sums
 to existing list (i.e., expand nested sums).
•• if sym-value of sum would be negative, negate all terms and return
 negative sum (prod with coefficient of –1).
• else, sort terms and create sum object.

•• simplifications marked with •• mean that after the simplification is performed, the creator
function is called recursively, using updated arguments.

Algebra Operations
Conventional scalar operations such as multiplication and addition are performed by

applying simple rules to create new data objects from data in the arguments. Table 6
summarizes the algebra operations. Most of the scalar operators in the table work as would be
expected. One unusual operator is the constant-part function, which returns zero unless (1)
the expression is a constant, or (2) it is a sum with at least one constant term. It is used when
symbolically solving for dependent variables to avoid expressions that are likely to become
singular. That is, when division is necessary, an expressions is preferred that involves a divisor
whose constant-part is not zero. (This capability is important when dealing with
constraints that occur in systems that do not follow a tree topology.20)

Symbolic Computer Language 12

Table 6. Summary of primitive mathematics operations.
Operation Argument(s) Description

add x, y gcf(x, y) [x / gcf(x, y) + y / gcf(x, y)]
angle v1, v2, {v3} angle between v1 and v2, with sign determined

by optional v3, as illustrated in Figure 3

const-or-var x is x constant or variable?
constant-part x constant part of expression

convert-
coordinates

coordinates,
oldbody, newbody

convert coordinates from coordinate system of
oldbody to the coordinates system of newbody.

cross v1, v2 v1 × v 2

dir v direction of vector, i.e., v v .

div x, y x / y (y must be scalar)
dot v1, v2 v1 • v2

dot-plane v1, v2 project v1 onto plane normal to v2, i.e.,

dot-plane (v1, v2) =

v1 -

v1 • v2 v2

v2 • v2

dxdt x dx
dt

gcf x, y symbolic greatest common factor.
inv x 1/x (x must be scalar)
mag v scalar magnitude of vector, v → v • v .
mul x, y x y (either x or y must be a scalar)
neg x –x

nominal exp set all generalized coordinates in exp to zero.
partial y, x ∂y ∂x (x is scalar)

sub x, y x – y

θ

v3

θ follows right-hand convention
for v 3

v2

v1

Figure 3. Angle convention.

Operations that involve unit-vectors involve novel interactions between the computer-algebra
part of the software and the representation of the multibody system.

Symbolic Computer Language 13

The dot product operation is valid for two vectors, a vector and a dyad, or two dyads. The
operation is applied by recursively expanding expressions into multiplications and additions of
subexpressions, until an expression is obtained that involving operations defined for scalar
algebra, together with dot products between unit-vectors. Thus, the primitive dot-product
operation is defined for two uv arguments. Recall that the uv contains a slot called dot-
products. This contains a table with all pairs of uvs whose dot product is known. Initially, each
table contains three entries for the three uvs in the body in which the uv is defined. (The values
are 1 for the dot product of the uv with itself and 0 for the other two uvs of the trio.) If the table
in the first uv contains the answer, it is used. If not, the table in the second uv is checked.
Again, if the answer is in the table, it is used. If not, the following analysis is performed.

The uv whose body is furthest “down” the topology tree is identified by comparing the
values from the level slots of the bodies. That uv is transformed into an expression involving the
three uvs of its parent body by using the direction cosine matrix (from the cos-matrix slot), as
will be described shortly. The dot product is then taken between the new expression and the uv
that was “up” the tree. This method is recursive—the dot operator is defined in terms of itself. It
works, because with each recursion, the expressions being considered are simpler, and/or the uvs
are from bodies that are closer in the tree. Eventually, the process stops when both arguments
are uvs associated with the same body. (In the most complicated case possible, both uvs would
be transformed to the inertial reference.) The results of the process are stored in the table of dot-
products for one of the uvs, so that the “tree-climbing” and matrix multiplications are not
required the next time the dot product is needed. This method of “tree climbing” ensures that the
minimum number of direction transformations is performed for each dot product operation.

The cross product operation is performed using the same recursive approach as described
above for the dot product. A uv crossed with a uv is obtained from the table of values in the
cross-product slot of either uv if available (with a multiplication by –1 if the table of the second
uv is used). Otherwise, the cross-product is formulated using the expansion:

a i × b j → [(a i • b1) b1 + (a i • b2) b2 + (a i • b3) b3] × b j (4)

where ai is the first uv, b j is the second, and b 1, b2, and b3 are the unit-vectors for the body
containing b j.

The derivative of an arbitrary expression is determined using elementary rules of calculus to
recursively expand the expression into products and sums of simpler expressions and their
derivatives. The expansion stops when a sym, number, or uv is reached. The time derivative
of a sym is zero if the expression is a constant, otherwise it is obtained from the dxdt slot.
(When sym structures are created to represent state variables, the dxdt slots are assigned to the
appropriate sym for the derivative.)

The time derivative of a uv (u) is defined as

u → wB × u (5)

where wB is the absolute rotational velocity of the body containing u . Note that Eq. (5) is
always valid, even if simplifications have been made involving small angles and small speeds.

Example Multibody System
Figure 4 shows an example multibody system that will be used to illustrate the multibody

operations and the general use of AUTOSIM. The system is a satellite with a main body B

Symbolic Computer Language 14

(called the bus), a flexible boom F, and a camera, D, mounted on a clock, C. Dimensions and
locations of significant points are shown in Figure 5. The bus has six degrees of freedom
relative to the inertial reference. The clock is a shaft that rotates relative to the bus, the camera is
a body attached to the clock with a hinge joint, and the flexible boom is modelled as a rigid body
attached to the bus with a two-degree-of-freedom hinge at a point Fo, with torsional stiffness KB
and torsional damping rate DB in the directions 1 and 3. Movements of the clock and camera are
controlled. The controller is modeled as a torque applied to the clock through a massless
element with torsional stiffness KC and torsional damping rate DC. The torque applied to the
camera is also through a massless element with the same stiffness and damping properties.

3

2

1

Bus

Camera

Boom

Clock

Figure 4. Satellite multibody system.

L2

L1

L7L8

L6

L5

L3

B

C

D

F

Do

2

3

Hinge,
Fo

Figure 5. Dimensions of satellite.

Symbolic Computer Language 15

 (reset)

(add-body B :translate (1 2 3) :body-rotation-axes (1 2 3)
 :small-angles (t t t) :small-translations (t t t))

(add-body c :parent b :inertia-matrix (ic ic 0)
 :body-rotation-axes 3 :cm-coordinates (0 0 -L2))

(add-body d :parent c :joint-coordinates (0 L3 -L1)
 :cm-coordinates (0 -L5 -L6) :body-rotation-axes 1)

(add-body e :parent b :Joint-coordinates (0 -L7 0)
 :small-angles t
 :inertia-matrix 0 :mass 0 :body-rotation-axes 3)

(add-body f :parent e :inertia-matrix (if1 if2 if1)
 :small-angles t
 :cm-coordinates (0 -L8 0) :body-rotation-axes 1)

;;; Moments due to flexing of the boom

(add-moment bt1 :direction [e3] :body1 f :body2 b
 :magnitude "-kb*q(9) - db*u(9)")

(add-moment bt2 :direction [f1] :body1 f :body2 b
 :magnitude "-kb*q(10) - db*u(10)")

;;; add moments from clock and camera motors

(add-variables difeqn real clkcmd camcmd)
(add-subroutine difeqn cmd (t clkcmd camcmd))

(add-moment clockt :direction [c3] :body1 c :body2 b
 :magnitude "kc*(-q(7) + clkcmd) - dc*u(7)")

(add-moment camt :direction [d1] :body1 d :body2 c
 :magnitude "kc*(-q(8) + camcmd) - dc*u(8)")

;;; add moments from thrusters

(add-moment tt1 :direction [b1] :body1 b
 :magnitude "ltt1*thrust(t, 1, (g*u(4) + q(4)))")

(add-moment tt2 :direction [b2] :body1 b
 :magnitude "ltt2*thrust(t, 2, (g*u(5) + q(5)))")

(add-moment tt3 :direction [b3] :body1 b
 :magnitude "ltt3*thrust(t, 3, (g*u(6) + q(6)))")

;;; set labels and default values of parameters

(mks)

(dynamics)

Figure 6. AUTOSIM inputs to describe spacecraft example

Symbolic Computer Language 16

The complete description of this system is listed in Figure 6. Although space limitations
prevent a thorough discussion of Figure 6, the following “hints” may prove helpful for
understanding the inputs. AUTOSIM commands are lists enclosed by parentheses. Items in a
list are separated by white space or by appearing on different lines. Regardless of how many
lines are covered, the list ends when the closing parenthesis “)” is encountered. The first
“symbol” in the list (a name, possibly hyphenated) is the name of a procedure—a Lisp macro or
function. Other items in the list are arguments for that procedure. The AUTOSIM macros add-
body and add-moment have numerous arguments that are optional. If optional arguments are
not provided, default conditions are assumed. Symbols beginning with a colon “:” are keywords
that identify optional arguments. For example, the keyword :translate indicates that the
next argument, the list “(1 2 3),” defines directions of translation. The add-body macros at
the top of Figure 6 provide a complete description of the system topology, needed to support the
symbolic multibody operations. Note that the bus is represented as “body B.” This should not
be confused with the generic body B that is used to signify “the current body of interest.”

Multibody Operations
In order for the dot-product operation to work, a direction cosine matrix is required for each

body. A few other pieces of data are also needed, in order to define vector speeds and positions.
The direction cosine matrix and several useful expressions are formed automatically when the
dynamicist uses the macro add-body. The kinematical relationship between a generic body, B,
and its parent, A, is defined by the dynamicist using quantities listed in Table 7. In the table,
optional items are enclosed in curly brackets. Figure 7 illustrates the geometry of a joint having
one degree of freedom for rotation and one for translation. Table 8 shows the cosine matrices,
unit-vector triads, and other values of slots of the body objects for three of the components of
the example spacecraft. Table 9 lists and defines slots that contain information needed to
establish the orientation of B.

Table 7. Parameters and degrees of freedom of a body/joint.
Parameter Description

rA0BJ position of joint point of B relative to origin of parent.
({d Bt1, {d Bt2, {d Bt3}}}) list of 0, 1, 2, or 3 directions for translational degrees of freedom

of B, fixed in the coordinate system of the parent.
({i1, {i2, i3}}) list of 0, 1, or 3 axis indices in B for sequential rotations.

dBrot orientation of first rotation axis of B (fixed in the coordinate
system of the parent).

dBref reference direction for first rotation of B (fixed in the coordinate
system of the parent).

({d Br1, {d Br2, dBr3}}) list of 0, 1, or 3 directions of rotations for B. This list is derived
from the above parameters.

Symbolic Computer Language 17

Parent body A

Body B

A* (c.m.) B* (c.m.)

b
3

b1

a3
2a

Position of
 for zero rotation
(ref. axis,)

b1

A , origin for body A
(joint connecting to its
parent)

q i+1
rA B

iq TdB

rot. axis
(=)

b2

B , origin for body B0

0

r

rA*B0

A A*0

B B*0r

b 3rotdB

refdB

0 J

B , Joint Point
fixed in A

J

a1

Figure 7. Geometry of body relative to its parent.

Table 8. Values in body structures of satellite example.
slot Bus clock camera

symbol B C D
name Bus Clock Camera
parent N B c
level 1 2 3

children C D
translation-coordinates q1, q2, q3

translation-directions n1, n2, n3

uvs b1, b2, b3 c1, c2, b3 c1, d2, d3

basis b1 b1 + b 2 b2 + b 3
b3

c1 c1 + c2 c2 + b 3 b3 c1 c1 + d 2 d2+ d 3 d3

rotation-coordinates q4, q5, q6 q7 q8

rotation-directions n1, (c6 b2 + s6 b1), b3 b3 c1

cos-matrix c5c6, (c4s6 + c6s5s4),
(s4s6 -c4c6s5)

-c5s6, (c4c6 -s5s4s6),
(c6s4 + c4s5s6)
s5, -c5s4, c4c5

c7, s7, 0
-s7, c7, 0
 0, 0, 1

1, 0, 0
0, c8, s8
0, -s8, c8

abs-w u4 b1 + u5 b2 + u6 b3 u4 b1 + u5 b2 + (u6 +
u7) b3

u4 b1 + u5 b2 + (u6 +
u7) b3 + u8 c1

abs-v0 u3 b3 + (P1 u5 + u1) b1
-(P1 u4 -u2) b2

-((P1 u4 -u2) b2 -(P1 u5
+ u1) b1 -u3 b3)

(-(L1 -P1) u5 + u1) b1
+ ((L1 -P1) u4 + u2) b2
-L3 (u6 + u7) c1 + (u3 +
L3 (u4 C7 + u5 S7)) b3

Symbolic Computer Language 18

Table 9. Slots in a body that establish its orientation.
Slot Name Definition

uvs 3 unit-vectors that define the 1-2-3 axis directions in B.
basis a dyadic that transforms an arbitrary vector expression into the basis of

this body, e.g., B = b 1 b1 + b 2 b2 + b 3 b3.
rotation-directions directions associated with each joint rotational degree-of-freedom.

rotation-coordinates generalized coordinates introduced for each joint rotational d.o.f.
cos-matrix direction cosine matrix between B and A.

The unit-vectors of B are related to those of A by the direction cosine matrix B C A, defined as:

b1

b2

b3

 =

C11 C12 C13

C21 C22 C23

C31 C32 C33

a1

a2

a3
 (6)

Or,

Cij = b i • aj (7)

If generic body B has zero rotational degrees of freedom, then its direction cosine matrix is a
3-by-3 identity matrix. The contents of the basis and uvs slots are simply copied from A to B.

If B can rotate with respect to A, the first rotation is about an axis whose direction, dBrot, is
fixed in A. In the nominal configuration, the three orthogonal unit-vectors that establish the
coordinate system of B are defined in terms of the inputs from the dynamicist as follows:

bk = d Brot b j = b k × d Bref b i = b j × b k (8)

The set of unit-vectors introduced for B are nominally designated b 1, b2, and b3, and are
identical to the unit-vectors b i, b j, and bk, where the definitions of the indices i, j, and k are
obtained from Table 10. In the table, the “first index” is the first axis of rotation specified by the
dynamicist. (In Figure 6, the first index for the add-body inputs for the bus is 1.) A direction
cosine matrix is defined as follows. Calling the rotation angle θ, two terms, s and c, are

introduced as the sine and cosine of θ to account for the rotation. (The creator functions for a
sin and cos make small angle approximations appropriately.) The elements of the direction
cosine matrix are defined for each row using the same i, j, and k indices obtained from Table 10.

Table 10. Indices for three possible rotation axes.
First Index i j k

i1 = 1 2 3 1
i1 = 2 3 1 2
i1 = 3 1 2 3

Cri = c (ar • b i) + s (ar • b j) (r = 1, 2, 3)

Crj= –s (ar • b i) + c (ar • b j) (r = 1, 2, 3)

Symbolic Computer Language 19

Crk = a r • bk (r = 1, 2, 3) (9)

If the rotation axis is parallel to one of the unit-vectors of A, then the corresponding unit-
vector is also used for B. In the satellite example, the rotation axis of body C is b3. Thus, the
unit-vectors of the clock are c1, c2, and b3.

A body with three rotational degrees of freedom is subject to three consecutive rotations.
Starting with the nominal orientation, after each of the three rotations, the orientation coincides
with: (1) a reference frame B", (2) a reference frame B' and (3) body B. The method described
above to obtain a direction cosine matrix for a body with one rotational degree of freedom is
applied three times, to obtain cosine matrices relating B to B', B' to B", and B" to the parent:

B C A = B C B' B' C B" B" C A (10)

Slots that contain information needed to locate the origin of B are listed and defined in Table
11. The origin is a point object created automatically for the body with coordinates (0, 0, 0),
and assigned to the 0-point slot of the new body object. The coordinates of the joint-point are
provided by the dynamicist and define the vector rA0BJ. The list of translation-directions is also
provided by the analyst. The generalized coordinates for translation are indexed-sym
structures, created automatically, and put in a list assigned to the translation-coordinates slot.
For the satellite example (Table 8), the bus has three translational degrees of freedom. The
translation directions are parallel to axes in the inertial reference frame, and are indicated by
numerical indices in the input. If a direction is not aligned with an axis, a list of coordinates is
provided to the add-body macro instead of an index.

Table 11. Slots in a body that locate its origin.
Slot Name Definition

0-point origin of coordinate system and joint attachment point in this body.
joint-point joint attachment in parent body.

translation-coordinates generalized coordinates introduced for joint translational d.o.f.
translation-directions directions associated with joint translational degrees-of-freedom.

Table 12. Summary of operations for bodies and points.
Operation Argument(s) Description

pos P1, P2 rP2P1 = rP1 – rP2

rot B wB

vel P1, P2 vP1 – vP2

Table 12 lists three operations that provide vector expressions for the multibody system. The
pos operation derives a position vector between any two points. If the two points are in the
same body, their coordinates are subtracted and the results are multiplied by the appropriate unit-
vectors to yield a vector expression. Otherwise, offset vectors that define the position of the
origin of a body relative to the origin of its parent are added and subtracted as needed to handle
displacements across bodies. The rotational velocity of B is directly available from a slot called
abs-w. The velocity of B0 is available from the slot abs-v0. The absolute velocity of a point P
fixed in B is derived using the relationship:

Symbolic Computer Language 20

vP = vB0 + w B × rB0P + BvP (11)

where BvP is the relative velocity of P within the reference frame of B. (This term is zero when
the point is fixed in B.) The vel operation applies Eq. (11) to the two specified points and
subtracts the results. Note that the expressions for wB and vB0 generally involve unit-vectors
from several bodies, to maintain the native form (i.e., without trigonometric functions).

Operations on Program code
Programming simplifications are easiest to implement after the simulation code has been

generated and can be inspected. This means that equations are not written as they are derived,
but are kept in computer memory as eqs objects.

The simulation code generated by AUTOSIM includes two sets of intermediate symbols used
to replace expressions. One set is for constant expressions and the other is for variables. (Both
are called intermediate variables below, since that is how they are implemented in a Fortran
program.) A function called intro-var-if-new is used to process expressions and introduce
new variables as needed, and is indicated in this paper by enclosing the expression with the
symbols “«” and “»”. The replacements are indexed-sym objects, designated pi for constants
and zi for variables. A simplified version of the algorithm used to process an expression « x » is
described below, with examples. In the example expressions, the symbols A, B, and C are
constants; the symbols X and Y are variables, and symbols shown in bold type are unit-vectors.

1. If x is a number, an indexed-sym, a sym, a uv, or a dyad, return x. For example,

«3» → 3 «A» → A «a1» → a1 (12)

2. Else, if x is a vector or dyadic, collect terms so that each unit-vector or dyad appears only
once, and then apply the function recursively to the scalar expressions. For example,

«A a1 + B b1 – C a1» → «A – C» a1 + «B» b1 (13)

3. Else, if the expression is in a table of existing intermediate variables, return the
corresponding indexed-sym.

4. Else, if the expression is a constant,
a. make a new indexed-sym pi, where the index i is incremented from the highest

index used previously for that eqs
b. put pi at the end of the list in the eqs object for intermediate constants
c. put x and pi into the table of intermediate variables so that the next time

expression x is encountered the symbol pi will be found in step 3.
d. if an option to expand constants is enabled, recursively expand any intermediate

variables in the expression assigned to pi. (This is done to formulate constants
that are more easily interpreted by a human, and to permit possible cancellations.)
If the option is disabled, this step is skipped.

e. return pi as the result of the procedure.
For example,

«A (2.3 B – C2)» → p10 (14)

5. Else, if any constant expressions can be factored out, do so. Apply intro-var-if-
new to the constant part, the variable part, and the product. For example,

Symbolic Computer Language 21

«A (2 B X + B2 Y» → ««A B» «2 X + B Y»» (15)

6. Else, x is a compound expression that is not a constant.
a. If x is a prod, with more than two factors, process the scalar factors two at a

time. For a prod with coefficient c and five factors, the processing sequence is

«c f1 f2 f3 f4 f5 » → «c ««««f1 f2»f3 » f4 » f5» » (16)

b. If x is a prod with just two factors, or a single factor and a numerical coefficient
that is not ±1, then a new indexed-sym is introduced:

i. make a new indexed-sym zi, where the index i is incremented from the
highest index used previously for that eqs

ii. put zi at the end of the list in the eqs object for intermediate variables
iii. put x and zi into the table of intermediate variables so that the next time

expression x is encountered the symbol zi will be found in step 3.
iv. return zi as the result of the procedure.

c. If x is a sum of terms t1, t2, ... tn, the processing sequence is

«t1 + t2 + ... + tn » → « «t1» + «t2» + ... + «tn» » (17)

after the terms are processed, a new intermediate variable is introduced for the
entire sum using the process in 6b.

d. If x is a power, the base is first processed and then the power is replaced with a
new variable using the procedure from 6b.

«bp» → « «b» p» (18)

e. If x is a function with arguments a1, a2, ... an, the arguments are first processed,
and then the function is replaced using the procedure from 6b.

«f (a1, a2, ... an)» → « f («a1», «a2», ... «an») » (19)

This algorithm is recursive, and results in a number of intermediate expressions being
introduced for a single compound expression. Consider the example

« A sin(B X + C Y)2/cos(3 A) » → z6 (20)

where

p1 = A/cos(3 A)

z1 = B X z2 = C Y z3 = (z1 + z2)

z4 = sin(z3) z5 = z42 z6 = p1 z5 (21)

The original expression in Eq. (20) required 4 multiply operations, 1 divide, 1 integer power,
2 function evaluations, and 1 add. By factoring out the constant A/cos(3 A), the operations
needed after the constants are reduced to 3 multiplies, 1 integer power, 1 function, and 1 add.
Also, further processing might involve one or more of the intermediate variables. For example,
consider a expression with some of the same terms:

«5 cos(3 A)/sin(B X + C Y)» → z7 (22)

Symbolic Computer Language 22

where

p2 = 5 cos(3 A) z7 = p2/z4 (23)

In this case, evaluating the expression in Eq. (22) involves just a single additional divide
operation, after handling the constant.

Before the equations are written as output in the target language, they are inspected for
intermediate variables that are not needed. Recall (or see Table 1) that one of the slots in the
sym object is called hide. The hide slot is used to keep count of how many times the sym
actually appears in the equations. To count occurrences, the hide slots in all intermediate
variables in an eqs are set to zero, and then equations used to compute derivatives and output
variables are processed with a function that operates recursively to “validate” syms. An
important part of the design of AUTOSIM is that the two symbolic elements—the sym and the
uv—are stored in memory such that there are no copies (e.g., the object printed as “z2” exists in
only one place, even though it appears in more than one expression). Lisp uses pointers to
reference such objects. When an elementary object such as a sym is changed, all expressions
“containing” that element are updated, since their pointers continue to point at the changed
object. The eqs object only prints equations involving syms whose hide slots are no longer set
to zero. For example, if an eqs structure contains 100 equations, but only 10 involve syms with
hide counts greater than zero, then only 10 equations are printed. The other 90 equations are still
in memory, but are hidden.

There are some reasons not to introduce a new intermediate variable if that variable will only
be used once. First, the equations become almost unreadable by humans. The equations of
motion for multibody systems are usually complicated to begin with, and introducing
intermediate variables that only appear once compounds the difficulty. Further, some compilers
optimize machine instructions for large expressions, putting temporary intermediate results in
machine locations that exploit the design of the specific hardware. If an intermediate variable is
defined in the source code, the compiler is obliged to save its value, possibly at the expense of
computational efficiency. After the hide values have been established for all indexed-syms
that appear on the left-hand side of an equation, a second pass is made in which all intermediate
variables that are used only once (hide = 1) are expanded back into the original expressions.

Discussion
Automated modeling of multibody systems has typically offered great convenience for the

dynamicist who is willing to sacrifice certain capabilities. In the case of generalized numerical
codes, computation inefficiency is sacrificed and some types of sub-component models are
difficult or impossible to include in the programmed system description. In the case of symbolic
multibody programs, a programmer must write external functions and subroutines, which are
often quite complex, and then manually edit those routine into the computer-generated code.
One step in remedying these limitations is to develop a computer language that can perform the
same symbolic procedures as a human analyst armed with pencil, paper, and persistence. This
paper described the design of such a language. Consider once again the example spacecraft
system. We will finish the example by considering the treatment of moments acting on the rigid
bodies, and also the inclusion of external procedures.

Suppose the object of the simulation is to simulate a “slew maneuver” in which the clock and
camera are moved from initial values of (4 – π) and -0.5 radians, respectively, to final values of
(3.75 – π) and -0.4 radians, over a ten-second interval. The orientation of the spacecraft body is

Symbolic Computer Language 23

controlled by three pairs of thrusters that fire bursts of propellent when the angle of the craft
drifts beyond a “dead zone” tolerance of .0025 rad. Once fired, the thrusters continue for at least
0.02 seconds. Each pair of thrusters is balanced to apply a pure couple to B about the axes 1, 2,
and 3. Figure 8 lists a very simple Fortran subroutine that provides controller commands for this
maneuver, and also a Fortran function that defines the control laws for the thrusters. The Fortran
code shown in Figure 7 is the complete hand-written part of the simulation code. Every other
line of code is written or assembled automatically by AUTOSIM, based on the inputs shown in
Figure 6. The macro add-moment is used to include the moments applied by the torsional
springs and the thrusters. The macros add-variables and add-subroutine cause
AUTOSIM to properly include a CALL to the user-written subroutine CMD. The command
mks specifies that the MKS units system should be used to generate labels for output plot files
and documentation files that are optionally generated by AUTOSIM. The command dynamics
results in the complete derivation of the equations of motion for the system.

C Simple control subroutines for spacecraft example
C
 SUBROUTINE CMD(T, CLKCMD, CAMCMD)
 PARAMETER (PI = 3.1415926)
 IF (T .LT. 1.) THEN
 CLKCMD = 4.-PI
 CAMCMD = -.5
 ELSE IF (T .LT. 11.) THEN
 CLKCMD = 4. -.025*(T-1.) - PI
 CAMCMD = -.5 + .01*(T-1.)
 ELSE
 CLKCMD = 3.75 -PI
 CAMCMD = -.4
 END IF
 RETURN
 END

 FUNCTION THRUST(T, AXIS, ERROR)
 INTEGER AXIS
 REAL DBAND, TMIN, FIRE(3), TOFF(3)
 SAVE TOFF, FIRE
 DATA DBAND /.0025/
 DATA TMIN /.02/
 DATA FIRE, TOFF /3*0., 3*0./

 IF (ERROR .LT. -DBAND) THEN
 IF (FIRE(AXIS) .LT. 1.) TOFF(AXIS) = T + TMIN
 FIRE(AXIS) = 1
 ELSE IF (ERROR .GT. DBAND) THEN
 IF (FIRE(AXIS) .GT. -1.) TOFF(AXIS) = T + TMIN
 FIRE(AXIS) = -1
 ELSE IF (T .GE. TOFF(AXIS)) THEN
 FIRE(AXIS) = 0
 END IF
 THRUST = FIRE(AXIS)
 RETURN
 END

Figure 8. External function to simulate thrusters.

Symbolic Computer Language 24

The portions of the inputs in Figure 6 that are underlined specify that certain variables are
“small.” These include the twelve coordinates and speeds associated with B, and the four
rotational coordinates and speeds associated with the Boom (bodies E and F). However, the
rotational coordinates and speeds of bodies C and D are not small. Figure 9 compares time
history plots computed by simulation codes generated with and without the underlined portions
of the input. It shows that the small-variable assumptions are fully justified for the slew
maneuver of interest. Table 13 lists numerical values used to compute these results. Each
parameter was generated from the AUTOSIM input from Figure 6, either explicitly (e.g., L1, KB,
etc.) or implicitly (e.g., MB, IB11, etc.). A companion paper (1) provides details as to how the
equations for this system are formed, (2) includes excerpts of the equations, and (3) contains a
summary of their computational complexity.19

axis 1, full nonlinear

axis 2, full nonlinear

axis 3, full nonlinear

axis 1, “small variables”

axis 2, “small variables”

axis 3, “small variables”

0 5 10 15 20 25 30

Time - sec

-3x10-3

-2x10-3

-10 -3

0

10 -3

2x10 -3

3x10 -3
Rotation - rad

Figure 9. Attitude of spacecraft body computed for two formulations.

Conclusions
Methods were presented for representing all of the components of a simulated multibody

system in symbolic form on a computer, including: (1) algebraic expressions for vector/dyadic
analyses, (2) physical components in a multibody system, and (3) program structures needed in a
simulation code. A language called AUTOSIM has been written in Lisp to implement these
methods. Modeling and programming strategies employed by humans can be mimicked in
computer software when all of these objects are available for computer manipulation. The main
practical advantages of this approach are that (1) models of dynamic systems can be developed

Symbolic Computer Language 25

with much less effort than alternative methods, (2) modeling options are available to tailor a
simulation code to match the expectations of an intended “end user” (e.g., by using using
arbitrary coordinate systems and familiar parameter definitions), and (3) the numerical
computation software generated is highly efficient, such that the code can be used for real-time
simulation and other applications where computational efficiency is critical. An advantage for
researchers is that alternative modeling strategies can be tested and compared with a fraction of
the effort that would otherwise be needed.

Table 13. Parameter values for example.

DB 10 N-m-s

DC 20 N-m-s

G 2 s

IB11 115 kg-m2

IB12 -14 kg-m2

IB13 14 kg-m2

IB22 316 kg-m2

IB23 -34.6 kg-m2

IB33 440 kg-m2

IC 0.35 kg-m2

ID11 4.85 kg-m2

ID12 0.41 kg-m2

ID13 -0.07 kg-m2

ID22 2.2 kg-m2

ID23 -0.54 kg-m2

ID33 5.5 kg-m2

IF1 27.2 kg-m2

IF2 0.2 kg-m2

KB 2000 N-m/rad

KC 3500 N-m/rad

L1 1.5 m

L2 0.75 m

L3 0.1 m

L5 0.22 m

L6 0.2 m

L7 1.2 m

L8 3.3 m

LTT1 0.23 m

LTT2 0.21 m

LTT3 0.31 m

MB 410 kg

MC 6.8 kg

MD 57.5 kg

MF 10.7 kg

Acknowledgements
The work reported in this paper was funded by the U.S. Army Tank and Automotive

Command (TACOM) and by the UMTRI Fellowship program.

References
1 Crespo da Silva, M.R.M. and Hodges, D.H. “Role Of Computerized Symbolic

Manipulation In Rotorcraft Dynamics Analysis.” Computers & Mathematics with Applications,
Vol. 12a, 1, 1986, pp. 161-172.

2 Golnaraghi, M., Keith, W. and Moon, F.C. “Stability Analysis of a Robotic Mechanism
Using Computer Algebra.” Applications of Computer Algebra. R. Pavelle ed., 1984, Kluwer
Academic Publishers, Boston. 281-292.

3 Hussain, M.A. and Noble, B. “Application of Macsyma to Kinematics and Mechanical
Systems.” Applications of Computer Algebra. R. Pavelle ed., 1984, Kluwer Academic
Publishers, Boston. 262-280.

4 Pavelle, R., “Macsyma: Capabilities and Applications to Problems in Engineering and the
Sciences.” EUROCAL ’85 European Computer Algebra Conference, Linz, Austria, Springer-
Verlag, 1985.

Symbolic Computer Language 26

5 Levinson, D. “The Derivation of Equations of Motion of Multiple-Rigid-Body Systems
Using Symbolic Manipulation.” AIAA paper No. 76-816, 1976.

6 Krishnaswami, P. and Bhatti, M.A. “Symbolic Computing in Optimal Design of Dynamic
Systems.” The American Society of Mechanical Engineers, 1985, pp. 1-6.

7 Char, B.W., Geddes, K.O., Gentleman, W.M. and Gonnet, G.H., “The Design of MAPLE:
A Compact, Portable, and Powerful Computer Algebra System.” EUROCAL ’83 European
Computer Algebra Conference, London, England, Springer-Verlag, 1983.

8 Wooff, C. and Hodgkinson, D. muMATH: A Microcomputer Algebra System. 1987,
Academic Press. London.

9 Wolfram, S. Mathematica. 1988, Adison-Wesley Publishing Company.
10 Nielan, P. and Kane, T., “Symbolic Generation of Efficient Simulation/Control Routines

for Multibody Systems.” Dynamics of Multibody Systems, IUTAM/IFToMM Symposium, Udine,
Italy, Springer-Verlag, 1985.

11 Schaechter, D.B. and Levinson, D.A. “Interactive computerized symbolic dynamics for the
dynamicist.” Journal of the Astronautical Sciences, Vol. 36, 4, 1988, pp. 365-388.

12 Kane, T.R. and Levinson, D.A. Dynamics, Theory and Applications. McGraw-Hill Series
in Mechanical Engineering. 1985, McGraw-Hill Book Company.

13 Schiehlen, W.O. and Kreuzer, E.J., “Symbolic Computerized Derivation of Equations of
Motion.” Dynamics of Multibody Systems, IUTAM. Munich, Springer-Verlag, 1977.

14 Rosenthal, D.E. and Sherman, M.A. “High Performance Multibody Simulations via
Symbolic Equation Manipulation and Kane’s Method.” Journal of the Astronoutical Sciences,
Vol. 34, 3, 1986, pp. 223-239.

15 Wittenburg, J. and Wolz, U., “MESA VERDE: A Symbolic Program for Nonlinear
Articulated-Rigid-Body Dynamics.” Proceedings of the 10th Design Engineering Division
Conference on Mechanical Vibration and Noise, Cincinati, 1985.

16 Orlandea, N., Chace, M.A. and Calahan, D.A. “A Sparsity-Oriented Approach to the
Dynamic Analysis and Design of Mechanical Systems, Parts I and II.” Journal of Engineering
for Industry, Vol. 99, August, 1977, pp. 773-784.

17 Nikravesh, P.E. and Haug, E.J. “Generalized Coordinate Partitioning for Analysis of
Mechanical Systems with Nonholonomic Constraints.” ASME Journal of Mechanisms,
Transmissions, and Automation in Design, Vol. 105, September, 1983, pp. 379-384.

18 Steele, G.L.J. Common Lisp: The Language. 1984, Digital Press.
19 Sayers, M.W. “A Symbolic Vector/Dyadic Multibody Formalism for Tree-Topology

Systems.” Journal of Guidance, Control, and Dynamics, Vol. 14, No. 6, Nov/Dec 1991, 1240-
1250.

20 Sayers, M.W., “Symbolic Computer Methods to Automatically Formulate Vehicle
Simulation Codes.” PhD thesis, University of Michigan, 1990.

21 Stribersky, A., Fancher, P.S., MacAdam, C.C. and Sayers, M.W., “On Nonlinear
Oscillations in Road Trains at High Forward Speeds.” 11th IAVSD Symposium of Vehicles on
Roads and Tracks, Kingston, Ontario, 1989. pp 552–565.

