Mechanical Simulation @

755 Phoenix Drive, Ann Arbor MlI, 48108, USA
Phone: 734 668-2930  Fax: 734 668-2877 « Email: info@carsim.com

CarSim

carsim.com

Introduction to CarSim

OVEIVIEW OF CaAISIM . .eiiiviiiciii ittt s b e sabe s s bae s 1
VA L A L OF: 10T 11 1 A 1
BaSiC USE OF CarSiM .....cciicueiiii ittt sttt sa e s ba e e s nreas 4

CarSim AdVanCed FEATUIES .........coiiuvii ittt s 9
Vehicle Options and CONLIOIS..........ccoiiiriiiieece s 9
Model Extension with VS Commands and Python...........c.ccccccevviveveineinene. 11
ADAS and Automated VENICIES ........ccccovviiiiiiiiciec e 12
Roads and ENVIFONMENT..........cocuiiiiiiiciee ettt 13
Co-Simulation and Third-Party SOftWare ..........ccccoceveiviiiniiineieeeee 17
Running Multiple VENICIES ........c.oovi v 20

This document describes the main features of the CarSim software and provides references to more
detailed information within the extensive CarSim documentation.

Unless otherwise noted, all features that are described in this document for CarSim also exist in
TruckSim and BikeSim. (Exceptions for TruckSim and BikeSim are noted in parentheses.)

Overview of CarSim

What Is CarSim?

CarSim is a software tool for simulating the dynamic behavior of passenger vehicles and light-duty
trucks. It uses 3D multibody dynamics models to accurately reproduce the physics of the vehicle
in response to controls from the driver and/or automation: steering, throttle, braking, and gear
shifting. Environmental conditions include a 3D ground/road surface as well as aerodynamic and
wind effects.

As a tool, CarSim is extensively validated and correlated to real-world results as measured and
observed by many automotive OEMs around the world. The foundational technology upon which
CarSim is based is called VehicleSim, abbreviated as “VS” when referencing other content in the
product, e.g., the VS Visualizer (video and plotting) and VS Commands (scripting language).

High-Fidelity System-Level Vehicle Models: CarSim math models are represented at the system
level, meaning the vehicle data is intended to be either measured or calculated and does not depend
on detailed knowledge of component materials, suspension linkage intricacies, etc. The
mathematics representing the vehicle are sufficiently detailed such that the simulation can replicate
physically measured responses within the limits of testing repeatability. To accomplish this, data
describing the vehicle such as kinematics and compliance of the suspensions, tire force and moment
properties, and environmental conditions are required. In the case of limited reference data, the
math models still provide representative results well-suited for evaluating alternative designs and
control strategies.

1/20 June 2021


http://www.carsim.com/

Parametric Vehicle Definition: CarSim uses a combination of parameters and variables to
represent the vehicle. As shown in Figure 1, parameters represent measurable properties such as
dimensions and inertia properties. Configurable Functions relate variables in the model with linear
coefficients or tables that use a variety of interpolation and extrapolation methods. Many of the
tables support data obtained from suspension and tire test rigs. The tabular form is also convenient
for other potentially nonlinear relationships that can be imported from spreadsheets, such as road
geometry and friction.

=
L=
File Edit Datasets Libraries GoTe View Tools Hel
== == = = = = - el (@) [CarSim_Data: Read-Only] Suspension: Camber Angle; { 5-Link Rear } Rear 5-Link - Camber Change —
<—| hd @ ﬁ \“/ @ File Edit Datasets Libraries GoTo View JTools Help
Back  Fonwa Home Previous Net Dupicste Undo Redo i c -
- @ amber_53623. — =
Vehicle: Sprung Mass <" ﬁ hd ﬁ D e T D =F
Back  Fonwa Home Previous Next Dupicste Undo Redo  LibTool Parsfile Delste Sidebar  Refresh
z Suspension: Camber Angle
Height for Length for video/target:
video/target A Camber angle (deg) Function Spline interpolation & extrapolation
1405 o 1.8 )( is: Suspension cmp, joUNCe
Width far a5 i Auis: Camber angle [deg)
video/target 1015 | ¥ Axis Y Axis
2082 Sral o 1 [ v.seare
—_— 540 2 -60 | 1.43877
Left Right Left 0.5- 3 50 | 121143
325 325 325
4 40 |0.981031
X - 0.0-
Sprung mass 5 30 |0.746032
coardinate system 2910 05- 6 20 | 0505036
Frant distance
fortarget: 800 7 10N 102616
All dimensions an 1.0 g 0 0
9 10 |-0.266403
The inertia properties below are all for the sprung mass, unladen -1.5- 10 20 |-0.543604
11 30 [-0.832791
Sprung mass: 1270 kg Edit radii of -2.0-
u : 20 12 40 [-1.13524
Rollinertia (b 5366  kg-m2 Rc 0650 e T T 13 50 |-145237
Pitch inertia (3} 15367 kg-m2 Ry: 1100 740 60 5004030 20 00 0 1020300 400 50 60 70T 14 60 |-1.78583
. Suspension cmp. jounce) (mm}
Yaw inertia (lzz): 15367 kg-m2 Rz: 1.100 15 70 |-2.13754
Product (ko o kg-m2 Inertia and radius of sz s Lonimi
Product [lxz): 0 kg-m2  related by the equati Constant Camber: 0
R D kg-m2  Radii must be SPEGIE camper is the roll outward of a wheel relative to the chassis. This dataset defines camber due to
formulas are not SUPE ¢ ispension geometry (no tire shear forces and zero steering).
Rows: 15
Suspension jounce and camber can be transformed with additional parameters.
For details, search an echo file for "CAMBER", B [ |Glculstor | Excel

Figure 1. Parametric and tabular data used in CarSim.

ADAS and AV Support: CarSim includes moving “target” objects that are used to represent traffic
vehicles, pedestrians, bicycles, etc. to simulate scenarios involving Advanced Driving Assistance
Systems (ADAS) and/or autonomous vehicles (AVs). These target objects are detected by virtual
sensors, with each sensor providing 24 calculated output variables for each possible sensor / target
detection pair.

Database, User Interface, and Documentation: CarSim comes with over 600 example
simulations, each consisting of one or more vehicles and a set of test conditions. These examples
include over 40 example vehicles representing at least 10 unique vehicle configurations.

The Windows version includes a Graphical User Interface (GUI) called the VS Browser. Use it to
run CarSim, set up parameters and tables, and view results. The different screens within the
Browser correspond to different vehicle, environment, and procedure data stored within a database.
Each screen has a Help button; clicking it will bring up a document describing the screen’s function
and various options. Technical memos, reference materials, and tutorials are available from the
Help drop-down menu. All of the documents are PDF files contained in a Help folder that is
indexed for rapid searching with Adobe Reader.

2/20



In the following material, references to documentation are made using the item on the Help menu.
For example, a reference to the CarSim Quick Start Guide is: Help menu item: Guides and
Tutorials > CarSim Quick Start Guide.

Plots and Visualization: CarSim includes VS Visualizer, a tool for providing high-quality
animation of simulation results corresponding to engineering plots of hundreds (or sometimes
thousands) of variables from the math model (Figure 2). Time-synchronization of the plots and
video facilitates the viewing of both qualitative and quantitative data, and the option to overlay
multiple runs (up to six total) allows for comparisons of various vehicle and control combinations.

@) VS Visualizer - CarSim - Baseline <* * Quick Start Guide Example> - a X
Eile View Playback Plot Tools Help
3D Animation X
T Arrange Auto Arrange  Columns: |3 5| Rows: |3 5

Lateral distance to path - m Steering wheel angle - deg Angle - deg

[ E P

Station (path) at vehicle origin - Time-s Time-s
Lateral Tracking vs. Station : B: ~ Steering: Handwheel Angle : B¢~ Road Wheel Steer Angle - Fron

Angle - deg Lat. accel., inst. CG, vehicle - ¢ Roll, vehicle - deg

Lk 9 A I

Time - s Time - s Time - s

Slip Angles: Instant : Baseline Lateral Accel. of CG's vs. Time Roll Angle of Sprung Masses ve

Yaw rate (body-fixed), vehicle - Force - N Longitudinal speed - km/h

(e A

Time - s

Yaw Rate of Sprung Masses vs Vertical Forces : Baseline Longitudinal Speed (Vxz_Fwd)'

@ [ | 2.009/63

Figure 2. Viewing synchronized video and plot of CarSim vehicle response with VS Visualizer.

Fast Calculations: The CarSim math model is highly optimized for calculation efficiency and
typically runs 15 to 20 times faster than Windows clock time, e.g., a simulation of a 60s test will
finish in 3 or 4s on a modern Windows computer. The simulation execution speed may be reduced
under high load cases such when many moving objects and sensors are added, generating thousands
of outputs to be saved to file. Even so, the simulations still run faster than real time on Windows.

Installation: Installation of CarSim on Windows is done via a program called
Setup CarSim_<version> <revision>.exe. Once installed, access to CarSim is typically via

a shortcut on the desktop or the Start menu.

The installation includes over 60 archived and compressed “mini databases” that are used to build
multiple custom databases as needed. (CarSim allows multiple database folders, in support of
multiple projects.) Pre-defined combinations include a minimal database, basic or standard ADAS
examples, basic or standard vehicle dynamics examples, and a “full” database with most examples
that are not specialized. In additions, the specialized archives (e.g., trailers, third-party tire models,
real-time platforms, software development kit (SDK), desktop driving simulator, etc.) may be used
to build separate databases, or added tin any manner to make custom databases.

3/20



Basic Use of CarSim

There are certain basic features in CarSim that will be used for almost any application if you are
running with the Browser and VS Visualizer on Windows. You will use CarSim to view existing
simulation results and the data used to generate the simulations. You can also make new simulations
using existing vehicle examples or create new examples by copying existing ones and modifying

them.

Browser: Graphical User Interface (GUI) and database manager

The Browser uses GUI controls such as buttons, check boxes, drop-down lists, and text fields.

Run Control: The Home screen (Figure 3) shows the main screen of the CarSim Browser. The

CarSim GUI screens are organized into libraries in the database folder. The current library name is

shown in the Windows title bar (1), along with the title of the dataset in view (2).

©) ~ (2
@ [CarSim_Datal CarSim Run Control; §* * Quick Start Guide Example } Baseline - O x
File Edit Em.\[ + = k —F + J/ @_
e & 4% & B Rnseones [x O=1-ERE
Back Forward Home Previous Mext Duplicate Undo Redo Lib Tool  Parsfile Dedete Sidebar  Refresh Help Lock
‘Car5im Run Control
This Is 3 baseline example used in the Simulated Test Specifications Run Control Analyze Results (Post Processing)
fEEEE?;?.f:Fﬁ?“G'ﬂfdi'li,?jm 'Véﬂg’"a':ﬂ::tc‘::izd @: @ Run Math Model Models:| ¥ Video s V\dEuEI— ::’t" Nui::t color -
The box is checked to "Write all Procedure - Do not set file type here ¥| []Write all outputs Keep Last ¥ Most Recent Output ¥
:nliwzpeitasfnpT\?;:Iar"rzlflzlreesu-‘tc:ef:rsE = I e B ] Plot | More plots:[0 ¥
:::g”ﬁfa;s:;;‘;‘::‘gx";;g'—;:éﬂt::; Show more options on this screen
Miscellaneous Data
Miscellaneous: Multiple Objects i D Set time step here
1 Driver Preview Point i
E & - J J
;”Ammator: Camera Setup: 13 Azm qu . Y - Y
1. Vehicle: Assembly: C-Class, Hatcl . ) L
4. Procedures: DLC @ mh (L Set up the vehicle and |+ . View results with video
i i»lum;jle Mo::f; Egjiztl:: 1215?;: test maneuver Run a simulated test and plotting
D Set driver controls here DAdvan(Ed settings
DO\rerlaywdeos and plots with other runs
Vehicle being simulated
View information about
the model as configured
A
‘ > | carsiM ®@) R
Expand Collapse Refresh = Reset MECHANICAL SIMULATION C-Cla{s;,_g:gr;back ew cho file with initial conditions ¥
Figure 3. The Run Control screen in CarSim (Windows).
14
There is a row of buttons below the menu bar. The v | Edofile with initial conditions v ‘
Duplicate button @ is used to copy the current dataset | Echo file with initial conditions |
. Echo file with final conditions
before:\ making chfemges to accom'moda}tg anew set of data. Echo file with current dats
Locations for editable text are identified with a yellow All data sent to solver or animator
background (+) if the dataset is unlocked (9). The Sidebar Log file of parsfiles and events
. . . Simulation results (Excel)
button () is used to show or hide the region on the left cmiation revults (VATLAB
that includes optional notes (+) about the current dataset VS/ERD header file
and a tree view of the current simulation. e
Imports into math model [text)
The drop-down control in the lower right corner st et o
contains information about the current simulation, Figure 4. Drop-down control for

viewable @ using a text editor or spreadsheet (Figure 4).

4120

View options.




The first item on the list (Echo file with initial conditions) shows a full description of the model
when the simulation begins (Figure 5).

€ ConTEXT - [Z:\2020.1 DeviCarSim_Data\Results\Run_bcb07365-85a3-4a3b-95f9-c5c8446876... — O *

C File Edit View Project Tools Options Window Help -8 X
S — ~
! VEHICLE

! The instant center of gravity is calculated every time step using the sprung mass
! + axles and wheels + payloads. Output variables for the wvehicle such as Vx, Vy,

! vz, Ax, Ay, and Az are based on the motion of this instant CG for the total laden
! (TL) unit.

! HCo TL 5@6.9128586 ; mm ! CALC -- Height of TL CG
!X €6 TL 1849.562958 ; mm ! CALC -- X distance TL CG is behind origin

1
!

¥ Ca TL @ ; mm ! CALC -- ¥ coordinate of TL CG

P M_TL 1581 ; kg ! CALC -- TL mass

! I _TL 712.7828188 ; kg-m2 ! CALC -- TL roll inertia moment
P IVY_TL 2844.3154 ; kg-m2 ! CALC -- TL pitch inertia moment
! IZZ_TL 2192.889539 ; kg-m2 ! CALC -- TL yaw inertia moment

The following parameters apply for the sprung mass without payloads, designated
5U (sprung mass unladen). If any payloads are attached, the combined inertia
properties (SU sprung mass + payloads) are also listed and designated 5L (sprung
mass laden).

H_Co_sU 548 ; mm ! Height of CG of sprung mass, unladen (SU} [I]

LX_Ca_su 1815 ; mm ! X distance SU CG is behind sprung mass origin [I]

¥_Ca_sU @ ; mm ! ¥ coordinate of SU CG [I]

M_sU 127@ ; kg ! Mass of unladen sprung mass (SU) [I]

¥ _sU 536.6 ; kg-m2 ! Roll inertia for unladen sprung mass [I]

I¥Y_sU 1536.7 ; kg-m2 ! Pitch inertia for SU [I]

IZ7_sU 1536.7 ; kg-m2 ! Yaw inertia for SU [I]

IXY_SU @ ; kg-m2 ! X¥ product of inertia for SU [I]

IXZ_sU @ ; kg-m2 ! XZ product of inertia for SU [I] w
£ >
Ln 5626, Col 23 Insert Sel: Normal Dos File size: 236104

Figure 5. Portion of Echo file listing all simulation data.

The Echo file is organized into sections describing different parts of the model such as the Sprung
Mass, Suspension, Powertrain, Tires, Roads, Paths, and more.

The GUI makes extensive use of blue configurable Simulated Test Specifications
hyperlinks, similar in function to hyperlinks seen with Web Math Model: Ind_Ind hd
browsers (Figure 6). In the same manner as a web link, (5) s totcroacs [ =

hovering the mouse cursor over a blue link (s) will underline
the text. Here, clicking on the blue link from the Run
Control screen will show the linked Vehicle: Assembly
dataset (Figure 7).

Figure 6. Blue link to another
dataset.

The hyperlink control is extended in two ways using attached drop-down controls. Consider the
blue link in the upper left corner of the VVehicle: Assembly screen (Figure 8), used to specify the
Sprung Mass data for the vehicle.

5/20



Vehicle: Assembly
. []3x1 image
Vehicle Body il
Rigid sprung mass >
C-Class, Hatchback N
Aerodynamics P
C-Class, Hatchback Aero i
Animator Data
Vehicle 3D Shape: Vehicle Shape P
C-Class, Hatchback i
Systems
: Powertrain: Front-wheel drive bl
125 kW, 6-spd., 4.1 Ratio w/ Visc. Diff. w| Front Suspension Rear Suspension
Always install speed controller for this vehicle Generic/Independent o Generic/Independent fruct
C-Class, Hatchback - Front Pt C-Class, Hatchback - Rear Pt
Brake System: 4-Wheel System N
{HbK): MC Press, ABS - Springs, Dampers, and Compliance Springs, Dampers, and Compliance
C-Class, Hatchback - Front v C-Class, Hatchback - Rear N
Steering System: 4-Wheel Steer Py
C-Class, Hbk: Power, R&P h.of Tires: Specify all four tires alike v
[[] Custom settings All tires v
215/55 R17 M

Figure 7. A Vehicle: Assembly dataset used in the example simulation setup.

Vehicle: Assembly
Vehicle Body U fﬂl';"age
Rigid sprung mass @' [Mo linked library] o
C-Class, Hatchback @ ¥ Generic ¥ !:;"/ :
Aerodynamics v| Vehicles b v Vehicle: Sprung Mass
C-Class, Hatchback Aero - Vehicle: Sprung Mass [from Whole Vehicle)

Figure 8. Libraries available for a blue link.

The Sprung Mass blue link @ serves as a link to the underlying dataset; clicking it will switch to
the linked Sprung Mass screen. The top control @ is a drop-down menu used to select a library
in the database. In this example, CarSim is shown to have two ways of representing the Sprung
Mass data: Sprung Mass and Sprung Mass (from Whole Vehicle). The top control is used to
choose between these two libraries.

The drop-down control to the right of ~Yehide Bedy

the blue link @ (Figure 9) shows all 2‘3.'212_"@221’222& @: [No Dataset]

datasets in the selected library when Acrodynamics v f;f:s:”“ SR X
pressed. Choose any dataset name S ¥ b ohass ,
from the drop-down control to = X
configure the blue link to use that \ EClass »
dataset or copy an existing dataset to S spercar '
make a new dataset that can be | Pickup Trucks ’
modified as needed. Pickup Trucks: Baja ’

More instructions about the GUI Figure 9. Datasets in the linked library.

controls are provided in the Help
menu item: Guides and Tutorials > CarSim Quick Start Guide. The full reference for the GUI is in
the Help menu item: Reference Manuals > VS Browser (GUI and Database).

6/20



Parsfiles

The data for each screen is contained in a text file called a Parsfile. Each screen has a button (1)
(Figure 10) that you can click to view the Parsfile. Text in a yellow field in the GUI will appear in
the Parsfile preceded by a keyword that identifies a corresponding parameter in the model.

File Edit Datasets Libraries GoTo View Tools Help (1)
- i = Sprivliass_aS5al.. =
<_I @ ﬁ ~ @ ég D -nf-as- 2020 15:21:22 X 1 & ? =S|
Back Home Previous Mext Duplicate Undo Fedo LibTool Parsfile Delete Sidebar  Refrezh Help: Lock
Vehicle: Sprung Mass .
€ ConTEXT- [2:2020.1 DewviCarSim_Data\V.. — O X
Height far Length for video/target: 210 € File Edit View Format Project Tools Options Window Help
video/target I Y
-8 X
0 Lat]
40 = [PARSFILE "
Width for | #FullDataName Vehicle: Sprung Mass C-Class, Hatch
video/target Wil #WehCode Rigid sprung mass
e @ Mass cent] #RingCtrle @
7 #CheckBox2 @
Left Right & | Left Right X_LENGTH 2918
aa
325 325 325 325 Y—LENGIH 1580
- iaxle 2
X & . iside 1
prung mass 291m
coordinate system 2810 | LX_AXLE 2918

Front distance LX_CG_SU 1815

fortarget: 200 M_sU 1278
All dimensions and coor IXX_SU 536.6
I¥Y_SU 1536.7
IZ7 SU 1536.7
The inertia properties below are all for the sprung mass, unladen IJ(Z_SU 8
*RX 0.650 r
5 3 k i ii i
prung mass 1270 a |:| Edit radii of gyratio =Ry 1.100
Roll inertia (bog: 5366  kg-m2 Re 0650 m *RZ 1.180
Y_Ca_s5U @
Pitch inertia (lyy): 1536.7 kg-m2 Ry: 1.100 m H_CG_SU 546
Yaw inertia (lzz): 1536.7 kg-m2 Rz 1.100 m IXY_sU @
2 . . L I¥YZ sU @
Product (ly): 0 kg-m2  |nertia and radius of gyratio —
related by the equation: | = Z_LENGTH 1485
Praduct (lxz): 0 kg-m2 ythe equation: Y_LENGTH 2082 v
Produdt (lyz): 0 kg-m2 Radii must be specified with ¢ >
formulas are not supported
Ln1. Call Inzert Sel: Mormal

Figure 10. The dataset for each screen is contained in a Parsfile.

The Parsfile format is also used for Echo files. This is done to support applications where
simulations are continued from previous runs using the Echo files as an input.

Running the Simulation

You run a new simulation by clicking on the Run Math Model button on the Run Control screen
(%), Figure 3, page 4). When you do this, CarSim performs several steps to run the simulation:

1. The Browser creates a large Parsfile starting with the Run Control Parsfile, plus all
Parsfiles linked to the Run Control dataset (vehicle, procedure, etc.), plus all Parsfiles
linked to those, and so on. This Parsfile is called the All Parsfile.

2. The Browser writes a simulation control file called a Simfile which lists the full pathname
for the All Parsfile, plus pathnames for requested output files.

3. The Browser loads carsim 32.d11 (a VS Solver library) and uses VS Modularity
functions to read the Simfile and All Parsfile, and construct a VS Math Model for the
simulation.

7120



4. The VS Math Model write an Echo file (as seen in Figure 5 on page 5) after reading all
input data, then calculate svariables over the duration of the simulation while writing to
output files, and then generates another Echo file when the run ends.

5. The Browser unloads the DLL.

The outputs from the VS Math Model are written into a file with a specified type (binary or text),
sample interval, and selection of outputs. By default, only outputs needed for animation or specified
for plotting are written to file. Other options are to write all outputs, or to write a set of specifically
selected outputs.

Comprehensive information about the VS Solver library is provided in the Help menu item:
Reference Manuals > VS Solvers, including file handling, syntax, numerical methods, and more.

VS Visualizer

VS Visualizer is launched by clicking one of three buttons on the Run Control screen (Figure 3,
page 4): Video (10), Video + Plot (i1), or Plot (12). If video is to be shown, the camera settings are
obtained from an Animator: Camera dataset located below the Video + Plot button (i1). Plot
datasets are typically linked on the Procedures screen @ and can represent either the time history
of an output variable or a cross-plot between any two output variables.

Clicking the Video + Plot button @ to launch VS Visualizer will bring up a window showing a
camera view and a grid of plots (Figure 2, page 3).

@ VS Visualizer - CarSim - Baseline (Debug) <* * Quick Start Guide Example> - O X

File VWiew Playback Plot Jools Help
3D Animation

Force - N

2637.4 —F— Tire L1 vertical

1 [6630.9 —=— Tire R1 vertical
3000 856.14 —=——Tire L2 vertical
4662 .9 —F—— Tire R2 vertical

6000

4000

2000

0 1 2 3 4 5 B
Time -5

Vertical Forces : Baseline (Debug)

2.200/6.3
: o oL LIE
0.0 |<= @ e < |= =| = ESS =3 6.3 _“. 1.00

Figure 11. VS Visualizer interactive controls.

Any plot can be quickly expanded to view details (Figure 11). For example, a vertical line indicates
the current time stamp @ with corresponding animation, and digital values are shown in the plot

8/20



legend for that time (2). If the animation is paused, a slider control at the bottom of the window
can be used to move the time forward and backward (3).

VS Visualizer supports the overlay of both animation and plots @ @ (Figure 12), effectively
demonstrating the difference in results. A virtual heads-up display (HUD) option (2) is available
for emulating driver alerts and showing calculated math model output. Visual effects such as skid
marks are also supported @

©) VS Visualizer - CarSim - Roll Stability Testing w/ ESC <Handling and Stability Tests> - a X

File View Playback Plot Tools Help
3D Animation X

Roll, vehicle - deg

RollRoll Stability Testing w/ ESC__|
Roll; Outrigger for Roll Stability Testing

Fs.3628

-18.335

-10

-15

-20

Time - s
Roll Angle of Sprung Masses vs. Time

ARG | 3.438/80

Figure 12. VS Visualizer shows overlays of multiple runs, heads-up displays, and skid marks.

Help menu items: Guides and Tutorials > CarSim Demo Tutorial and the CarSim Quick Start
Guide. Please also see Reference Manuals > VS Visualizer Reference Manual.

CarSim Advanced Features

CarSim is used in a wide variety of simulation applications, from classical vehicle dynamics
through ADAS and autonomous vehicle development. There are many features which might be
considered advanced by some users, but which are absolutely essential for other users. This section
summarizes some of these features.

Vehicle Options and Controls

CarSim is a self-contained simulation tool that does not require any other software to run. The
vehicle models include the fundamental multibody physics and vehicle component equations (tires,
suspensions, powertrain, aerodynamics), as well as open-loop and closed loop control options. The
built-in options for extending the model are described below.

9/20



Vehicle Math Model Options

The VS Math Model constructed by CarSim always includes vehicle dynamics for the selected type
of vehicle. Options listed here are added to the model based on commands written into the screen
parsfiles (either by linking to a screen or selecting an option on a screen).

Trailers: Trailers with one, two, or three suspensions can be added to the vehicle model and are
supported by dedicated GUI screens. An extra license is needed to run a simulation with trailers.
Help menu item: Vehicles. (TruckSim includes trailers in the basic license; BikeSim does not
support trailers.)

Payloads: Up to 99 payloads may be added to the model, attached to the sprung mass of the motor
vehicle and/or trailer. Help menu item: Payloads.

Dual tires: The default wheel type in CarSim is for single tires. However, dual tires also available.
Documentation about dual tires is available throughout the Help system, including the Help menu
item: Tire Models. (TruckSim always uses dual tires; BikeSim does not support dual tires.)

Custom forces and motion sensors: Up to 99 motion sensors may be added to a simulation and
attached to sprung mass or unsprung mass bodies. Up to 27 output variables per sensor are
available, related to the motion of a point of interest in the vehicle (position, velocity, acceleration,
jerk, curvature).

There is also an option to add up to 99 points where user-defined forces may be applied. Custom
moments may also be specified for the sprung masses and all non-spinning wheel bodies (hubs).
The force and moment magnitudes may be defined using the built-in scripting language VS
Commands (see page 11), or imported from external software (see page 18). Help menu item:
Model Extensions and RT > Custom Forces and Motion Sensors.

Driver Controls

CarSim has closed-loop controllers for steering and speed, allowing the vehicle to follow a target
path at an appropriate speed. CarSim supports up to 500 paths and can switch between them as
needed, so it is easy to simulate most scenarios that involve driver control.

Steering controller: The CarSim closed-loop steering control steers the vehicle to follow a
prescribed path. Several modes of operation are available: steer by angle, steer by torque, steer with
a single preview point, or steer with an optimal control method (10 preview points). The single
point controller works while driving forward or in reverse. Switching between modes, including
open-loop control (angle or torque), is available at any time during the simulation. (BikeSim has a
rider controller that both steers and leans to follow a path.)

Speed controller: The CarSim closed-loop speed controller applies throttle and braking to achieve
a target speed. Target speed can be a constant or a function of time and station (distance along a
path). The speed controller can also determine speed based on a path preview, considering limits
in lateral and longitudinal acceleration, as well as lateral and vertical curvature. Options exist for
three driver skill levels. Help menu item: Controls > Driver Control Screens.

Electronic Brake Systems (EBS)

ABS: CarSim includes a basic antilock brake system (ABS) control that is supported by the GUI.
If selected, a command is automatically applied to add the system. Help menu item: Brake System.

10/20



ESC: CarSim includes a basic electronic stability control (ESC) control that is supported by the
GUL. If selected, a command is automatically applied to add the controller. Help menu item:
Controls > Electronic Stability Control. (BikeSim does not have built-in ESC.)

Model Extension with VS Commands and Python

VS Commands
The VS Math Model may be extending using a scripting language called VS Commands.

Formulas: Numerical values for parameters in the VS Solver are normally provided as numbers.
VS Solvers also work with formulas involving numbers (e.g. 1/16) or names of parameters and
variables. The formulas may use common math functions, and arithmetic and Boolean operators.

New variables: New variables may be added using VS Commands such as
define parameter,define output,define import, and others.

New equations: New equations can be added that involve existing variables and new variables
added with define commands. Commands are available to insert the equations at various points
in the calculation sequence, from initialization (eq_init) to various places in the time step
(eg_in,eq dyn,eq out,eq full step, etc.). New degrees of freedom can be added with
ordinary differential equations using the eq_differential command.

New functions: New functions can be created for use in the formulas applied in VS Command
equations.

Events: The define event command is used to define a condition using a formula; when the

condition is non-zero (Boolean true), a new Parsfile is read that changes the simulation. Figure 13
shows a run where define event and other VS Commands are used to set controls for the

vehicle in response to detections of road signs, bicycles, and pedestrians.

Manage units: Units can be changed for parameters and variables, and new units can be introduced
with the define units command.

Linearize: The VS Command 1inearize will numerically perturb the state variables calculated
with differential equations to derive linear A, B, C, and D matrices, and print a MATLAB text file.
MATLAB can then be used to determine properties of the linearized system, such as Eigenvalues
and plots such as root locus and frequency response.

Save and Restore states: The VS Command save state will take a snapshot of the state of the
entire math model and save it in memory. The command restore state will later completely
restore the state. The commands can be applied in Events to support highly efficient optimizations
in which parameters or other model properties are changed, and the simulation jumps back in time
to try again.

Help menu items in the Reference Manuals submenu: VS Commands and VS Commands Summary.

Embedded Python

CarSim on Windows and Linux (non-RT systems) support embedded Python. A Python file may
be loaded and enabled with the command run python string. Python functions that have
been loaded are accessed with the command Python().

11/20



8. ConTEXT - [C:\Product_Working\2020.1_Dev\CarSim_Data\Results\Run_b0c07ea7-b767-4282-b497-84214c758...  — O X
‘€ File Edit View Project Tools Options Window Help -8 X
e Run_echo.par #
€35¢ EQ DIFFERENTIAL ROLLO_4 = (-ATAN(PATH CURV_ID(S OBJ_4, -3.1, 1001, 1)*V_OBJ_4"2/G) -R(a
€357
@ VS Visualizer - CarSim - Road Signs, €358 !
: . €359 ! EQUATIONS APPLIED AT THE END OF EVERY FULL TIME STEP
File View Playback Plot Tools €360 !

€361 EQ_FULL_STEP COND_START_OBJ_2 = STATION > -15;
€362 EQ_FULL_STEP COND_STOP_OBJ 2 = LATO_2 > 9;
€363 EQ_FULL_STEP COND_START OBJ_3 = STATION > -13;
€364 EQ FULL STEP COND_STOP_OBJ 3 = LATO 3 > &;

€3€s5

€3¢€ !

6367 ! EVENTS

€3e8 !

€363 ! Each event is defined with a formula and an optional pathname for a parsfile to
6370 ! read if the specified formula is not zero. If no pathname is specified and the

€371 ! specified formula is not zero, then the run stops.

€372 SET_EVENT_ID 100

€373 DEFINE_EVENT TYPESIGN == STOP_SIGN; Evencs\Evencs_7249d68f-eb5c-4840-32d1-0;d5652f5efk

€374 DEFINE_EVENT TYPESIGN == SPEED SIGN; Events\Events_el277272-2fe8-4225-31f7-edb391ddfat

€375 DEFINE_EVENT (TYPESIGN == LIGHT RED) | (TYPESIGN == LIGHT_YELLOW); Events\Events_393d¢

€37¢ SET_EVENT_ID 110

€377 DEFINE_EVENT ((VXZ_FWD > 5) & (TYPEO == PEDESTRIAN)) & (Y_OBJ > Y RIGHT); Events\Eventw
< >

Ln 6364, Col 45 Insert Sel: Normal DOS File size: 340716

10.314/36.575 ’

Figure 13. VS Commands are used to manage detection of signs, bicycles, pedestrians.

Help menu items: Reference Manuals > VS Commands and Technical Memos > Example:
Extending a Model with Embedded Python Utility.

ADAS and Automated Vehicles

The development of Advanced Driver Assistance Systems (ADAS) and Automated Vehicles (AVs)
relies heavily on simulation due to the number of variations in control strategies and environment
variables.

Moving Objects (Targets)

CarSim supports up to 200 detectable objects whose location or speed is of interest; these include
traffic vehicles, buildings, signs, pedestrians, bicyclists, etc. (Figure 13, Figure 14). These objects
may be positioned anywhere and support multiple options for motion control: position, velocity
control, acceleration control, direct attachment to a vehicle sprung mass.

Visibility and color controls are useful when simulating traffic signals. Other properties that factor
into an object’s detection include its shape, size, material type, and reflectiveness.

12 /20



@) VS Visualizer - CarSim - Irregularly Shaped Object Detection <ADAS and Active Safety> - m] X

File View Playback Plot Tools Help

ARG : : = » ] e 9.031/220

Figure 14. Scenario with a building, traffic lights, a bus, and pedestrians.

ADAS Sensors

CarSim supports up to 99 Advanced Driver Assistance Systems (ADAS) range and tracking sensors
(camera, radar, ultrasound, etc.) that detect moving objects as targets. These are “true detections”
based on 3D vectors that connect a sensor location to points on the moving objects. (An optional
license is needed to use the built-in ADAS sensors.)

In addition to the location and motion properties and variables for target objects, the objects also
have properties that affect how they appear to sensors, such as shape and reflectiveness.

A set of 24 output variables is calculated for each combination of sensor and target object. These
include three bearing angles, distances to points on the object, relative velocities, local coordinates,
and more. Two of the variables are based on user-defined properties — type and message — that
are useful when the target represents a road sign such as a Speed Limit or Stop Sign.

The detection calculations take occlusion into account. Figure 15 shows blue lines connecting a
sensor in the blue car to target objects. The motorcycle occludes the detection of the wall, and the
wall and motorcycle both occlude the detection of the truck on the ramp. Help menu item: ADAS
Sensors and Target Objects.

For those interested in image-based detection — color, surface normal, pixel depth, etc. — CarSim
also supports a shared memory buffer-based sensor option. Help menu item: Reference Manuals >
VS Visualizer.

Roads and Environment

The CarSim VS Math Model includes the vehicle, plus environmental conditions of interest. This
is particularly valuable when using simulation in the development of ADAS and autonomous
vehicle control systems. The ability to control and simulate scenarios involving wind, detailed 3D
road surfaces, and other actors such as traffic vehicles, pedestrians, bicycles, buildings and
infrastructure allows you to examine the control response to a variety of external stimuli, sensor
faults, and other inputs.

13/20



®) VS Visualizer - CarSim - Detectable Wall Objects <ADAS and Active Safety> - m] X
File View Playback Plot Tools Help

EJ @ I 20.524/55.025

Figure 15. Objects can block (occlude) detection of other objects.

Road Surfaces

In order to simulate ADAS scenarios, it is sometimes essential to include realistic 3D models of
intersections and complicated road designs (Figure 16). To do this without external software tools,
CarSim supports ground surfaces made from up to 200 road surfaces that use S-L path-based
coordinate systems (S is station, the longitudinal distance along a path, and L is a lateral distance
perpendicular to the path). Connections between surfaces are made automatically for each point of
contact for a vehicle tire or moving object.

@) VS Visualizer - CarSim - Roundabout (3D, 36 m), C-Class, Traffic <Road Networks: Intersections and Roundabouts> - a X

File View Playback Plot Tools Help

: 5] @ [ | 5.401/212

Figure 16. Ego vehicle and traffic on a roundabout made from five VS Road surfaces.

Help menu item: Paths, Road Surfaces, and Scenes > Path and Road Surfaces.

14 /20



VS Terrain

Information about the 3D ground surface is sometimes available from 3D files made with third-
party software. These include the FBX and OBJ formats supported by 3ds Max (3D modeling
software), OpenDRIVE, and the Unreal Engine. These 3D assets use a mesh of points to represent
a surface. The VS Terrain format provides a high-efficiency mesh representation well-suited for
providing ground input to tire models. Along with geometry at the point of contact, VS Terrain
provides friction and a rolling resistance coefficient needed by tire models. Figure 17 shows
pavement and curb geometry in the Mcity test facility, provided by a VS Terrain file.

©) VS Visualizer - CarSim - Mcity Proving Grounds: Outside Loop <ADAS and Active Safety> - [m} X
File View Playback Plet Tools Help
- —~4 1

2 @D I 23.560/160.0

Figure 17. Complicated 3D ground geometry in Mcity is provided by VS Terrain.

3D files in FBX and OBJ format may be converted to VS Terrain files using the VS Terrain Utility,
accessed from the Tools menu and described in the Help menu item Paths, Road Surfaces, and
Scenes > VS Terrain.

VS Scene Builder

CarSim includes the V'S Scene Builder, a tool for assembling a scenario from a library of tiles and
3D assets such as animated pedestrians, barriers, and signs @ (Figure 18). The tiles are connected
to form a scenario region (2), and a path or series of paths are created by clicking on the arrows
presented on the tiles @ These paths, along with the terrain and animation assets that make up the
tiles, are imported into CarSim @ to define the driving environment. Figure 19 shows the urban
scene in VS Visualizer after it has been imported into CarSim.

The VS Scene Builder includes an option in the File menu to import data from OpenDRIVE. This
will create a new tile, after which paths can be specified and subsequently imported into CarSim.

Help menu item: Paths, Road Surfaces, and Scenes > VS Scene Builder.

15/20



@ VS Scene Builder: City_Intersection - [m] X
File Edit Tools Windows Help
Tiles & x Properties g X

OpenDRIVE ~ Prop Name: Pump Jack
Prop Size: 2x 6 m

Prop Set: Animated Props

Rural

Transitions

Standalone

Urban

ﬁops - Animated Props

)
] =
Paths 8 X
r Ego Vehicle Path Sto W
" ‘ Pedestrian Path Eto W

Props - Barriers

Props - Environment

Props - Signs (European) v = = =

< > Add Path Edit Name Delete Path

Figure 18. VS Scene Builder tool from CarSim.

@ VS Visualizer - CarSim - City Environment: Car 2 <* C5 2020.0 - Multiple Autonomous Vehicles> - [m] X

File View Playback Plot Tools Help

4B 1 9878/250

Figure 19. Urban scene with buildings and roads from VS Scene Builder.

Atlas Road and Path Import
There is often a need to simulate vehicle behavior on existing roads. One way to specify the
geometry for road surfaces is by downloading GPS data from a mapping service, such as Google
maps, using the CarSim Atlas web tool. The appeal of this approach is that mapping services cover
most of the developed world and data acquired using Atlas is free. The amount of online data is
increasing rapidly in support of navigation services for human drivers and autonomous driving
software.

CarSim users have access to the Atlas tools at atlas.carsim.com. Atlas provides an interface to data
from mapping services by Google and Here, shown in the center panel in Figure 20. The left-side

16 /20


http://atlas.carsim.com/

panel shows a highway off-ramp as viewed in Google, and the right-side panel shows the same
highway off-ramp imported into CarSim after some clean-up effort.

al = T | 1 © Vs Visualizer - TruckSim - * Atlas: 3D Highway Bxt (Sceni.. — O X

2 Google Maps x © Mechanical Simulation 4 X File View Playback Plot Tools Help

< C | @ Secure | https//www.google.com/maps/@42.27. € C | @ Secure | https//pre.atias.carsim.com

3 Apps @ Magical Dashboard [ NewTab ©) Privacy error i Apps W Magical Dashboard [} NewTab ) Privacyerror i App
= . Mechanical Simulation @

Map Provider:
Google Maps ¥

Map  Sstetice
5 - i
Origin address or degree de
|
Destination address o degr| |

(o e

8 Download Format:
VsScene ¥ auant @ SE Fag of

Download Route -

Welcome to Atiss! Use this
ool t5 get GBS data far 2
VS Rafarence path
o Bethienem Cemetery @
g &
I e, B
o

H

s
(CSV or VS S )
download the file, and (S)
import the file into your

s
CutrAosaents Q
%

e

. - te button to /
. 7/ /I A
Unnamed Road genes path. 1 :J {

Ann Arbor, M1 48103

14.476/37.000

Figure 20. The Atlas web tool used to reproduce the 3D geometry of a highway exit.

Note: GPS data suitable for vehicle navigation is not guaranteed to be suitable to use “as-is” as a
road geometry definition in CarSim; the expectation is that some clean-up effort will be required.

Help menu item: Paths, Road Surfaces, and Scenes > Connecting 3D Roads from Atlas.

Co-Simulation and Third-Party Software
All features described up to this point are part of any CarSim installation, with the exception that
CarSim for non-RT Linux does not include a VS Browser.

CarSim users often run CarSim together with other (third-party) software. The architecture of
CarSim is intended to provide support for easily building stacks with CarSim and other tools like
MATLAB\Simulink, Unreal Engine, Python, and others. The System Requirements and
Compatibility documentation details more about what types of other software can be used with
CarSim. Help menu item: Release Notes > System Requirements.

The Windows version has two VS Solver library files, carsim 32.dlland carsim 64.d11,

to be loaded in 32-bit and 64-bit applications, respectively. For Linux, the single file
libcarsim.so0.2020.1 is a 64-bit library. The VS Solvers are provided in this form so they

can be loaded into a variety of programs.

17/20



Import and Export Arrays

Running a CarSim math model from other software can be as simple as loading the VS Solver
library and applying a Run command. However, usually the CarSim model will be included as part
of a larger simulation and will need to communicate information to and from the other software.
This is handled with arrays of Import and Export variables.

Lists of available Import and Export variables are configured based on the options selected for a
given simulation. Many features, such as Motion Sensors, ADAS Sensors, or trailers are modular
in nature and are not included if they are not used. In addition to the built-in options, new Import
and Export variables may be added with VS Commands. A CarSim simulation is likely to contain
several hundred available Import Variables and hundreds if not thousands of calculated output
variables.

The Import and Export arrays are configured by activating existing variables. A typical setup for
running under external software will have a subset of the available variables activated for import
and export, matching the requirements of the external model. For example, if the external model
has a braking intervention system, it should provide throttle and brake controls and receive sensor
outputs from CarSim.

Help menu item: Reference Manuals > VS Solvers.

Simulink and LabVIEW

CarSim includes a set of Simulink S-Functions that connect the CarSim solver library to Simulink
models. Figure 21 shows how the S-Function vs_sf appears in a Simulink model. The block is

connected to the rest of the model with Import and Export variables that were activated in CarSim
to match the requirements of the Simulink model.

VS Browser
@
File Edit Datasets Libraries GoTo View JTools Help

e~ & 1+ 9 &~ Run_9e4c7912. | 3¢ - g |? 2
= 3

VS Wrapper: S-Function

02-16-2018 131336 =
Back  Foverd  Home Previous Next Dupicste Undo Redo  LbTool Parsie Deiete Sdebar Reesh  Hep  Loc
(CarSim Run Control
= - Simulated Test Specifications Run Control with Simulink Analyze Results (Post Processing)
Math Model: Ind_Ind ¥ RunNow | o Simulink Models: ¥ video Video + Plot | [ Set color
X -
B-Class, Hatchback 2017 (No ABS) Contraller - Front View, Road Ref, [Rr, Facing) ~
Procedure v Do not set fi e here v| [ ]Write all outputs Keep Last ¥ Most Recent Output -
Spit Mu from 65 km/h -
T uliVanables b plot | More plots:[0
Vs sf [Ishow more options on this sereen
= "y | &
X File Edit View Display Disgram Simulation Analysis Code | pls Help File Tools View Simulation Help ~
M [ = | s - o X abs_Cs9
Home (2} @
€ -~ overs > w0 | Seerchsol. £ a Import Export
A . vs_sf
= = =)
CarSim S-Findion
=
=] mode -
Brake Adtuator Model Vehicl ey 7 Pressure
carsim 324l carsim_64.dll esv2erdm mat2erdm = R Joss LFRFLRRR file Tools \View Simulation Help
4\ .
— WiC P
> . T 1Y g
D) WIC P
2 -—I Simple ABS Controller Model
Veiocky
slblocks.m Solver_SF.mdl Solverbd.exe tre32dl v ]
items 1 item selected 330 ME = " L.I_.@ EpeEsEane) (O] 70.00 : ‘ll‘,“.w-‘J,.‘[‘JJJJLLLMVW;‘a
L Pressurs e o Clock - ! -
» = Time (sec) 2 6

Simulink Model

Figure 21. Running CarSim under Simulink.

18/20



When the Simulink model is run, the S-Function loads the CarSim VS Solver library, uses VS
Modularity functions to construct a VS Math Model, and exchanges 1/0 data each time-step with
Simulink. Plots in Simulink can show the results as the simulation proceeds. Once the simulation
has finished, VS Visualizer may be used to further analyze data and view the animated video.

Help menu items in the Guides and Tutorials submenu: CarSim Demo Tutorial and Running a VS
Math Model in Simulink. Similar capabilities are provided for LabVIEW.

FMI/FMU

Functional Mock-up Interface (FMI) is a standardized interface used in computer simulations to
support both model exchange and co-simulation of dynamic models from different simulation tools.
(Check the web site https://www.fmi-standard.org for definitive information about the FMI
standard.)

One means for combining simulation tools with FMI is through co-simulation in which each tool
is represented in the form of a Functional Mock-up Unit (FMU). CarSim supports FMI co-
simulation by including the capability to automatically generate a slave VS FMU.

Help menu item: Guides and Tutorials > Running a VS FMU in Simulink.

Real-Time Platforms

While many CarSim simulations can run purely on Windows or Linux, a vast number of toolchains
involving CarSim require physical hardware to be included, such as a hardware ECU, an entire
brake system, a powertrain dynamometer, a camera for ADAS applications, or other types of
physical hardware. Hardware can be included in a CarSim simulation using a Real Time platform,
such as those provided by dSPACE, Opal-RT, ETAS, National Instruments, Concurrent, and A&D.

In all cases, a Windows Host machine runs the CarSim Browser and VS Visualizer. When making
a simulation, the files are copied automatically to the RT Target machine. Depending on the system,
the CarSim solver library is connected to either a Simulink RT S-Function or an RT FMU.

When configuring CarSim for use with RT hardware, operation is very similar to working with
Simulink or FMI systems on Windows. However, it is necessary for users to also be familiar with
the RT System software and tools to execute the simulation.

Help menu items: Model Extensions and RT > External Models and RT Systems. Documents
specific to each RT platform are found in Help > Real-Time and DS Systems.

Unreal Engine

The Unreal Engine is a game engine developed by Epic Games. Originally created for first-person
shooter games, it is now used in a variety of other genres including simulation environments for
driving simulators.

The VehicleSim Dynamics plugin for Unreal Engine allows CarSim math models to run in an
environment created with Unreal Engine (Figure 22). The plugin is available from the Unreal
Marketplace and the User Section of the CarSim web site. (There is not a plugin for BikeSim.)

19/20



Figure 22. An Unreal Engine scene with vehicle physics provided by the CarSim plug-in.

VehicleSim Software Development Kit (VS SDK)

The CarSim solver libraries can be used from custom software created by advanced users and
programmers working at companies that use CarSim. The SDK may be obtained from the
carsim.com website, and includes all the tools, libraries, documentation, and example projects
necessary to get working on a project with as little configuration as possible.

Running Multiple Vehicles

CarSim ADAS scenarios are typically simulated using moving objects as sensor targets, where
these targets represent vehicles following simple motions such as a specified speed or acceleration
along a path. CarSim also has two options to support scenarios with multiple full vehicle models.

Multiple vehicles in a single solver instance. Starting with version 2020.1, the VS Math Model
can be constructed to include up to four independent vehicles. Each vehicle has its own set of
controls (open-loop and/or closed-loop, powertrain, brake system, etc.). All vehicles share the same
environment with the same ground surface, paths available for controllers, and other “actors” such
as pedestrians. Each vehicle can be detected by other vehicles. Figure 19 (page 16) shows four
complete vehicles all running in the same environment. See Help Tech Memos > Simulations with
Multiple Vehicles. (BikeSim does not support this option.)

Co-Simulation with Parallel CarSim Solvers. Up to 20 VS Solver libraries can be used in parallel
under MATLAB/Simulink, dSPACE SCALEXIO, Concurrent SimWB, NI Linux RT, or ETAS
RT. These are set up using a dedicated GUI screen (Tools > Parallel Solvers) in which a CarSim
VS Solver library is duplicated and given a unique name. These VS Solver libraries — along with
their associated data — will all be loaded into a single simulation. The example simulation shown
in Figure 19 (page 16) can also be run under the control of Simulink. See Help >Tools > Running
with Parallel Vehicles.

20/20


http://www.carsim.com/

	Overview of CarSim
	What Is CarSim?
	Basic Use of CarSim
	Browser: Graphical User Interface (GUI) and database manager
	Parsfiles
	Running the Simulation
	VS Visualizer


	CarSim Advanced Features
	Vehicle Options and Controls
	Vehicle Math Model Options
	Driver Controls
	Electronic Brake Systems (EBS)

	Model Extension with VS Commands and Python
	VS Commands
	Embedded Python

	ADAS and Automated Vehicles
	Moving Objects (Targets)
	ADAS Sensors

	Roads and Environment
	Road Surfaces
	VS Terrain
	VS Scene Builder
	Atlas Road and Path Import

	Co-Simulation and Third-Party Software
	Import and Export Arrays
	Simulink and LabVIEW
	FMI/FMU
	Real-Time Platforms
	Unreal Engine
	VehicleSim Software Development Kit (VS SDK)

	Running Multiple Vehicles


