
SYMBOLIC COMPUTER METHODS TO
AUTOMATICALLY FORMULATE VEHICLE

SIMULATION CODES

by

Michael William Sayers

A dissertation submitted in partial fulfillment
 of the requirements for the degree of

Doctor of Philosophy
(Mechanical Engineering)

in The University of Michigan
1990

Doctoral Committee:

Assistant Professor Sridhar Kota, co-chairman
Adjunct Professor Robert R. Ryan, co-chairman
Professor Donald T. Greenwood
Professor Robert Howe
Professor Emeritus Leonard Segel
Research Scientist Paul S. Fancher

© by Michael William Sayers 1990

All Rights Reserved

ii

to my father, Robert E. Sayers

iii

ACKNOWLEDGMENTS

The research reported in this dissertation was funded primarily by the United States

Army Tank Automotive Command (TACOM). Additional support was provided through

the University of Michigan Transportation Research Institute (UMTRI) fellowship

program. Funding for a pilot study was provided by TACOM and the Applied Dynamics,

Inc. (ADI) company.

I would like to thank the six members of the dissertation committee for their support,

guidance, and editorial work on the manuscript.

I appreciate the enthusiasm and support of Ric Mousseau (Ford), Roger Wehage

(TACOM), and Paul Fancher (UMTRI) during the past two years. Ric’s skills at “guerrilla

funding” were instrumental in getting the project off to a start, and the considerable time he

spent testing the software and emphasizing practical applications have strongly influenced

the AUTOSIM software that was developed. Long technical discussions with Roger

provided many insights into the dynamics of multibody systems. Also, the methods

described in Chapter 7 stem from Roger’s observations. Paul waded through almost every

draft of the manuscript prepared over the past two year, and his discussions and

observations were very helpful in organizing and clarifying the material.

The first three examples in Chapter 9 were used to validate the equations generated

automatically with results obtained independently by Len Segel, Don Greenwood, and Ric

Mousseau. The first two examples identified modeling simplifications made by Segel and

Greenwood that were later incorporated into the automated methods.

The dynamics course taught by Bob Ryan was very influential to this work. Although

we have never met, I would also like to thank Professor Thomas Kane (Stanford), whose

approach to dynamics proved to be a strong foundation for this work.

This dissertation is in part a consequence of early encouragement from Len Segel, Tom

Gillespie, James (Red) Gallagher, and Cesar Queiroz. More recent support and

encouragement were provided in copious quantities by my wife, Nancy, and daughter,

Samantha.

iv

PREFACE

Simulating the behavior of mechanical systems comprised of rigid bodies and massless

elements is a well-established technology that has been available with digital computers for

over twenty-five years. One of the main application areas of multibody simulation is that of

vehicle dynamics. With faster, cheaper, and more versatile hardware, applications

involving simulation are almost limitless. Further, it is widely acknowledged that

simulation is useful for wide-ranging analytical activities, such as (1) evaluating alternative

designs prior to building prototypes, (2) studying the behavior of existing systems and

design configurations, (3) reconstructing accidents, (4) studying the behavior of humans or

hardware components via “real-time” “man-in-the-loop” or “hardware-in-the-loop”

simulation. Yet, even with these recognized advantages, computer simulation of ground

vehicles is not a tool used routinely by designers or other engineers. Why is this?

Just as the potential utility of simulation is widely known, it is also well known that

existing software is not sufficiently convenient to meet the needs of most engineers.

Although there have been great strides in devising ever better ways of formulating the

equations of motion of multibody systems, and also new methods for numerically

“solving” the equations to compute the behavior numerically, there is a great deal of work

involved in translating these methods into robust, easy-to-use computer codes. Most

engineers who need answers that can be obtained through simulation are limited in the

types of computer that can be used (desktop) and the time needed to learn to use new

software (a few days, at most).

At the University of Michigan Transportation Research Institute (UMTRI), formerly

known as the Highway Safety Research Institute (HSRI), there is a long tradition of using

computer simulation to study the behavior of ground vehicles. Even so, we face some of

the same problems as engineers in industry. The computers available to us are primarily

(1) desktop computers, and (2) the mainframe computer of the university. Commercial

simulation software, such as the ADAMS and DADS programs, have not been feasible

alternatives for us, due to the large amounts of computation required for simulating ground

v

vehicles. Desktop computers are too slow, and the CPU charges on our mainframe

computer are too high when such large amounts of computation are involved. Further,

considerable expertise in the use of the commercial codes is required to add the semi-

empirical models used to represent tires and suspensions (when such additions are even

possible.)

Instead, specialized simulation codes are used which are more computationally efficient

because they were developed for specific vehicle models. (These include the “Phase 4”

heavy truck simulation, the “Yaw-roll heavy truck model,” and others.) These are large

Fortran programs which were written in the 1970’s and early 1980’s. Unfortunately,

current simulation needs never seem to exactly match the capabilities of the existing

software. Hence, with every new research project, an existing program must be modified

slightly to accommodate a new vehicle configuration, or to compute a new set of output

variables. Modifying these large programs, and then verifying their correctness, is a

daunting undertaking that limits their usefulness even here at UMTRI where they were

developed.

The task of developing equations of motion for a multibody system and the task of

putting those equations into a simulation code both both require a meticulous attention to

detail and a considerable amount of time. Also, a specialized knowledge of dynamics and

numerical analysis methods is necessary to even get started. The research reported in this

dissertation was begun shortly after noting that these tasks are ideally suited to some of the

technologies and methods that have been developed in the field of Artificial Intelligence

(AI).

One of the basic tools of AI is Lisp, a language well-suited for symbol manipulation

and prototyping other computer languages. The basic strategy in this work was to design a

language suited to developing simulation codes, and to implement that language in Lisp.

(In contrast, most past work in simulating ground vehicles has involved the development of

equations by a dynamicist in a form that can be coded in an existing computer language by

a programmer.) The programming techniques used in this work emphasize recursion,

“object oriented programming,” and manipulation of symbolic data, rather than numbers

and matrices. These concepts are well established in computer science, and are not even

considered a part of AI any more (although they are mainly the result of AI research).

However, they have not yet been applied extensively to the area of multibody simulation.

A primary reason that AI techniques are not widely used in analyzing multibody

systems is that Lisp and the associated programming techniques were, until a few years

vi

ago, only feasible on mainframe computers, or on specialized (i.e., very expensive) AI

workstations. Advances in computer hardware have now made these tools available on

virtually all computers used by engineers, ranging from Apple Macintosh and IBM PC

desktop computers to Cray supercomputers.

The objective of the research reported in this dissertation was to look at the process of

developing simulation codes, and to separate the creative engineering part from the

drudgery. Ideally, once the model is conceived by an analyst, the dynamics analysis and

program development can be handled automatically by the computer.

Software was developed, called AUTOSIM, which demonstrates that, indeed, much of

the work formerly performed by specialists in dynamics and numerical analysis can be

handled automatically. Development time for a detailed simulation code is reduced from

months to hours.

One of the most significant practical result of the work is that the methods are

extendable to other types of engineering applications. The AUTOSIM software is

essentially an extension to the existing Lisp language. On top of Lisp, it adds computer

algebra, a representation of multibody systems, and a representation of a numerical analysis

computer program that will be generated as output. Although AUTOSIM also happens to

include a multibody formalism and design for generating a simulation code, that constitutes

a relatively small part of the overall software. Engineers interested in applications that

involve multibody systems can build upon the AUTOSIM language to program almost any

type of analysis with only a modest incremental effort. Essentially, any job can be

automated if it can be specified as a sequence of operations involving algebra, kinematics

analyses, computer programming, and well-defined mathematical analyses (similar to a

multibody formalism).

Mike Sayers

February 1990

Note: This copy of the dissertation was made by converting the original Microsoft Word 4

files to MS Word 6, for conversion to the Adobe Portable Data Format (PDF). It is thought

to be identical to the original, except the page breaks sometimes differ by a few lines. The

differences are due to changes in MS Word, not the thesis content.

April 1999

vii

TABLE OF CONTENTS

DEDICATION ... ii

ACKNOWLEDGMENTS... iii

PREFACE..... iv

LIST OF TABLES.. xi

LIST OF FIGURES.. xiii

LIST OF APPENDICES... xv

1. INTRODUCTION... 1
1.1. Objective... 1
1.2 New Research... 1
1.3. Organization of Dissertation... 3

2. BACKGROUND 5
2.1. Generalized Simulation Codes .. 6
2.2. Symbolic Analysis by Computer.. 7

Generic Computer Mathematics Languages............................. 8
Computer Mathematics for Dynamics.................................... 9
Automated Symbolic Multibody Analyses............................... 10

2.3. Research Approach... 13

3. CONVENTIONS ... 17
3.1. Elements in a Multibody System.. 17

Rigid Bodies, Reference Frames, and Coordinate Systems........... 17
Joints and Constraints.. 18

3.2 State Variables... 19
3.3. Notation.. 22

Subscripts and Superscripts... 23
Bodies and Points .. 23
Vectors and dyadics.. 23
Position, Velocity, Acceleration, and Derivatives .. 25
Matrices and Arrays.. 27
Computer Data Objects... 28
Parentheses, Braces, and Brackets....................................... 30

viii

3.4 Topology... 30
Degrees of Freedom.. 30
Trees .. 31
Additional Constraints .. 33

4. SPECIALIZED SIMULATION CODES.. 34
4.1. Overview... 34
4.2. Simulation Start-up Operations.. 35

Input .. 35
Prepare..... 36

4.3. “In-The-Loop” Computations... 36
Integrate.. 38
Update .. 39
Output .. 39

5. SYMBOLIC COMPUTATION METHODS.. 40
5.1. Considerations of Numerical Efficiency .. 41
5.2. Representing Symbolic Data... 44

Overview of Data Objects.. 44
Computer Algebra.. 46
Multibody System.. 48
Numerical Simulation Program... 52

5.3. Computer Algebra Operations... 53
Making Expression Objects .. 53
Primitive Algebra Operations.. 55
Multibody Operations.. 58
Higher Level Operations... 59
Operations on Program Code ... 63

6. MULTIBODY DYNAMICS THEORY 67
6.1. Fundamental Concepts... 68

Kinematical Equations .. 69
Newton-Euler Equations... 70
Constrained Systems... 72

6.2. Kane’s Approach ... 74
6.3. Overview of Dynamics Analysis Method.................................. 78

Additional Definitions.. 78
Implicit Dynamical Equations... 83

7. UNCOUPLING ALGEBRAIC EQUATIONS....................................... 84
7.1 Lower-Upper Triangular Decomposition (LUD).......................... 84
7.2 Ordering of State Variables.. 87

ix

8. A MULTIBODY FORMALISM 91
8.1. Describing the System.. 92

Joint Description for New Bodies.. 94
Direction Transformations... 100
Recursive/Nonrecursive Descriptions.................................... 104
Inertia Properties.. 105
Velocities .. 108

8.2. Kinematical Analysis... 110
Rotational Speeds... 111
Translational Speeds .. 112

8.3. Constraint Analysis... 113
Nonholonomic Constraints.. 113
Kinematical Loops.. 117
Redundant Constraints... 122

8.4. Dynamics Analysis .. 122
Initialization of Dynamics Analysis....................................... 125
Rotation Analysis... 126
Translation Analysis.. 131
Form Dynamical Equations.. 138

8.5 Write Fortran Program... 141
8.6 Summary........ 143

9. EXAMPLES........ 147
9.1. Passenger Car Handling Model... 148

The Vehicle Model.. 148
AUTOSIM Inputs .. 150
Results... 161
Analysis Details... 164

9.2 Four-Wheeled Cart . 174
Model Description.. 174
AUTOSIM Description .. 176
Results... 178
Analysis Details... 182

9.3. Four-bar Linkage with Spring... 194
Model Description.. 194
AUTOSIM Description .. 194
Results... 196
Analysis Details... 198

9.4. “Spacecraft #1”.. 204
Model Description.. 204
AUTOSIM Description .. 206
Results... 210

x

9.5. “Spacecraft #2”.. 213
Model Description.. 213
AUTOSIM Description .. 214
Results... 215

9.6. The “Stanford Arm” Manipulator... 217
Model Description.. 218
AUTOSIM Description .. 219
Results... 220

10. SUMMARY AND CONCLUSIONS.. 224
10.1 Summary........ 224
10.2 Conclusions .. 225
10.3 Further Research Opportunities... 228

APPENDICES....... 230

REFERENCES ... 305

xi

LIST OF TABLES

Table
3.2.1 Categories of state variables.. 20
3.3.1 Notational conventions for vectors and dyadics. 27
3.3.2 Conventions for computer data objects. 29
5.2.1 Summary of AUTOSIM expression types.. 47
5.2.2 Some of the slots in a body that support algebra functions..................... 49
5.2.3 Some of the slots in a point... 51
5.2.4 Some of the slots in a forcem. .. 51
5.3.1 Simplifications performed by creator functions.................................. 54
5.3.2 Summary of primitive AUTOSIM mathematics operations..................... 56
5.3.3 Summary of AUTOSIM operations for bodies and points. 59
5.3.4 Summary of higher-level mathematics operations............................... 60
7.2.1 Matrix-fill for several structures of the A matrix................................. 89
8.1.1 AUTOSIM macros for describing a multibody system. .. 92
8.1.2 Parameters and degrees of freedom of a body/joint. 94
8.1.3 Body slots related to joint translational displacement............................ 96
8.1.4 Body slots related to joint rotation... 98
8.1.5 Right-handed axis convention... 98
8.1.6 Representation of simple joints with “building-block” model.................. 100
8.1.7 Body slots related to direction transformations. 100
8.1.8 Indices for three possible rotation axes. 102
8.1.9 Body slots related to recursion... 104
8.1.10 Body slots related to inertia... 105
8.1.11 Body slots related to velocity... 108
8.4.1 Slots in body worksheet object pertaining to rotational velocity and

acceleration... 130
8.4.2 Formulas pertaining to rotational velocity and acceleration..................... 131
8.4.3 Slots in body worksheet object pertaining to translational velocity and

acceleration... 138
8.4.4 Formulas pertaining to translational velocity and acceleration.................. 139
9.1.1 Parameters identified for the car model, with names and units deduced

from context.. 160
9.1.2 Performance comparisons between three simulation codes..................... 164

xii

Table
9.1.3 Data associated with slots of body NRB.. 165
9.1.4 Printed summary of state variables.. 166
9.1.5 Summary of generalized speeds after constraint is added....................... 167
9.1.6 Listing of forces and moments... 168
9.1.7 Dynamics worksheet for the non-rolling body................................... 169
9.1.8 Dynamics worksheet for the rolling body. .. 170
9.2.1 List of output channels generated by simulation code for cart.................. 178
9.2.3 Generalized speeds before any constraints are added. .. 183
9.2.4 Generalized speeds and constraints, after four constraints are added. 184
9.2.5 Generalized speeds and constraints, after all constraints are added............ 184
9.2.6 Points in the cart example... 185
9.2.7 Slots in body B. .. 186
9.2.8 Slots in body LRW.. 187
9.2.9 Worksheet for body B of cart.. 188
9.2.10 Worksheet for body RRW of cart. 189
9.3.1 Points defined for four-bar linkage.. 199
9.3.2 State variables and speed constraints for four-bar linkage...................... 200
9.3.3 Echo file for 4-bar linkage with displaced initial conditions.................... 202
9.4.1 Generalized coordinates for Spacecraft #1.. 208
9.4.2 Independent speeds for Spacecraft #1... 209
9.4.3 Performance comparisons between three simulation codes..................... 212
9.5.1 State variables for Spacecraft #2... 215
9.5.2 Performance comparisons for Spacecraft #2..................................... 217
9.6.1 Parameters and values for Stanford Arm. .. 219
9.6.1 Performance comparisons between four simulation codes. 223
A.2.1 Mathematical functions that can be used in F-strings............................ 235
A.3.1 AUTOSIM functions for analyzing the multibody system...................... 237
A.3.2 AUTOSIM macros for describing a multibody system. .. 238
A.3.3 AUTOSIM functions for specifying outputs..................................... 247

xiii

LIST OF FIGURES

Figure
3.2.1 Categories of state variables.. 19
3.4.1 Example tree.. 31
3.4.2 Rigid bodies in a tree topology... 32
3.4.3 Two-link system... 32
3.4.4 Four-bar linkage... 33
3.4.5 Tree for closed loop... 33
4.1.1 Overview of a simulation program. .. 34
4.3.1 Block diagram for “In-the-loop” computations. 37
4.3.2 Example frequency of “in-the-loop” tasks.. 38
5.2.1 Hierarchy of AUTOSIM and Lisp data objects. 45
5.3.1 Angle calculation... 60
7.2.1 View of the computation of an element in the LU matrix....................... 88
8.1.1 Geometry of body relative to its parent. 95
8.3.1 Four-bar linkage... 117
8.3.2 Tree for linkage.. 117
9.1.1 Roll axis in a passenger car... 148
9.1.2 Tire geometry. 150
9.1.3 Points and dimensions for example vehicle model. 151
9.1.4 Description of car model in AUTOSIM... 152
9.1.5 Inputs for “small” variables. 156
9.1.6 Definition of direction for lateral acceleration. 157
9.1.7 Specification of output variables... 158
9.1.8 Inputs to specify characteristics of system parameters.......................... 161
9.1.9 Step responses of two models in lateral acceleration............................ 162
9.1.10 Step responses of two models in yaw rate.. 162
9.1.11 Use of automated plotter to view simulation results............................. 163
9.1.12 Fortran code for precomputing constants... 171
9.1.13 First part of Fortran code for computing derivatives of state variables........ 172
9.1.14 Continuation of Fortran code for computing derivatives of state variables... 173
9.2.1 Four-wheeled cart. 174
9.2.2 Bodies, reference points, and dimensions for cart............................... 175

xiv

Figure
9.2.3 AUTOSIM description of cart example... 176
9.2.4 AUTOSIM description of nonholonomic constraints for cart example........ 177
9.2.5 AUTOSIM description of cart output variables and parameter values......... 178
9.2.6 Transient responses of yaw rate and steer rate................................... 179
9.2.7 Transient responses of yaw angle and steer angle............................... 180
9.2.8 AUTOSIM responses to constraint definitions................................... 183
9.2.8 Constants that are precomputed for the cart. 191
9.2.9 Kinematical equations for the cart. 192
9.2.10 Dynamical equations for the cart... 193
9.3.1 Four-bar linkage... 194
9.3.2 Description of kinematics of four-bar linkage.................................... 195
9.3.3 Time histories of rotation angles for nominal initial conditions................ 197
9.3.4 Time histories of rotation angles for displaced initial conditions............... 197
9.3.5 Time histories of strut force.. 198
9.3.6 Trajectory of mass center of body B. .. 199
9.3.7 Jacobian matrix (ALPHA) and error function (BETA) used to compute

initial conditions for four-bar linkage. 201
9.3.8 Correction of integration error in computed coordinates Q(2) and Q(3) for

four-bar linkage.. 203
9.3.9 Force object created to represent strut... 203
9.4.1 Sketch of bodies in Spacecraft #1. 204
9.4.2 Subroutines for computing control signals and couples from thrusters....... 205
9.4.3 Description of spacecraft bodies for AUTOSIM................................. 207
9.4.4 Modifications to define “small” variables... 208
9.4.5 AUTOSIM description of active moments.. 209
9.4.6 Define units, default values, output variables, and name of multibody

system..... 210
9.4.7 Time histories of satellite attitude variables during slew maneuver............ 211
9.4.8 Time histories of boom deflection during slew maneuver...................... 212
9.5.1 Dimensions of “Spacecraft #2.” .. 213
9.5.2 Description of Spacecraft #2 in AUTOSIM. .. 214
9.5.3 Time histories for Spacecraft #2... 216
9.6.1 Sketch of “Stanford Arm” points, dimensions, and coordinates............... 217
9.6.2 Description of uncontrolled Stanford Arm.. 220
9.6.3 Description of control torques and force for Stanford Arm..................... 221
9.6.4 Time history plots of generalized coordinates.................................... 222

xv

LIST OF APPENDICES

Appendix
A. AUTOSIM Reference... 231
B. Passenger car handling model.. 248
C. Four-Bar Linkage.. 267
D. Spacecraft #1 equations... 288
E. Manipulator equations... 298

xvi

1

1. INTRODUCTION

This dissertation deals with the modeling and computer simulation of mechanical

systems composed of rigid bodies and massless force- and torque-producing elements.

Motions of the rigid bodies are predicted by numerically integrating differential equations

developed from principles of mechanics. The mechanical system is called a multibody

system, the computer program that integrates the differential equations is called a simulation

code, and the differential equations are called the equations of motion for the system.

Multibody systems pertaining to ground vehicles are of particular interest.

1.1. Objective

The main objective of this work was to create a means for automatically generating

highly efficient simulation codes for ground vehicles, while incorporating realistically

modelled components. To do this, the dissertation includes (1) a software design for

representing the mechanical system in symbolic form as a set of computer data objects, (2)

a multibody formalism (i.e., a formal strategy for deriving equations of motion for a

multibody system) that is valid for systems with various types of connections between the

bodies, (3) methods to manipulate symbolic expressions automatically within the multibody

formalism, (4) the design of an interface to the analyst that permits the description of

unconventional force- and torque-producing components, and (5) a way to accommodate

external computer subroutines that may have already been developed. A software package

called AUTOSIM was written in the Lisp computer language to validate and demonstrate

the methods. The software also includes an interface with the analyst that permits

immediate evaluation of expressions involving scalars, vectors, points, bodies, etc., and

the ability to generate complete simulation codes that are correct, properly documented, and

reasonably easy to use.

1.2 New Research

Multibody formalisms that have been used to automatically formulate equations,

whether numerically or symbolically, have not been representative of how human analysts

2

2

approach the same job. The multibody formalisms have represented well-structured

analysis strategies that can be programmed easily, whereas the human analyst usually

applies modeling and engineering knowledge to simplify the representation of parts of the

model, if for no other reason than to reduce the algebra involved in deriving the equations.

Of course, by reducing the algebra, the numerical computations based on the equations are

usually reduced as well. This dissertation develops several new analysis methods that are

based on concepts previously used only by human analysts.

First, an object-oriented symbolic computer language is developed so that the methods

can be programmed. Data objects represent (1) algebraic expressions, (2) physical

components in the multibody system, and (3) software components of the numerical

simulation code being created. The algebra portion of the system is implemented using an

original design such that vector expressions can be freely developed and manipulated

without concern for which coordinate systems are involved. Unit-vectors are represented

not as 3x1 matrices, but as primitive data objects that define three-dimensional directions.

With this representation, vector operations are performed with information contained in the

unit-vector objects, rather than by matrix operations as has been done in other computer

algebra languages. Consequently, vector expressions can be developed and manipulated

with the full degree of flexibility that a human analyst uses.

The multibody representation is also new. Components and geometric entities such as

bodies, points, forces, and moments are represented with data objects tailored to describe

those elements and their relationships to each other. Past methods have not directly

represented elements of the system, but have instead constructed matrices to represent

information related to the elements.

Finally, the inclusion of the output simulation code as a group of objects subject to

automated manipulation is a new approach.

The simplification methods developed in this work incorporate methods that have not

been used before in automated multibody analysis methods. In previous work, algebraic

simplifications have been based only on rules of algebra. In this work, simplifications are

based not only on rules of algebra, but also on (1) engineering judgements (e.g., terms that

can be proven to be numerically negligible are thrown out), (2) recognition of modeling

equivalences (e.g., grouping inertial terms to form composite bodies), and (3)

programming techniques used for numerical analysis (e.g., recursion, factoring out

constants that can be precomputed, introducing intermediate variables, etc.).

3

3

Another product of the research is a “complete” symbolic multibody formalism that

permits the analyst to include any forces and torques that can be modeled mathematically,

even if the models are unorthodox. Also, output variables computed by the simulation

code can be defined by the analyst in terms of arbitrary combinations of directions from all

coordinate systems present in the multibody system. (Past symbolic multibody formalisms

place many restrictions on the sorts of forces and variables that can be referenced.) In

addition to dealing with issues of multibody dynamics, the formalism includes

considerations of how the equations of motion are eventually programmed for numerical

solution.

A symbolic method is presented for expressing the equations of motion in explicit

form, eliminating the need for numerically solving sets of simultaneous equations. For

vehicle systems, the symbolic method can be much more efficient than numerical methods

commonly used.

Techniques are developed for handling constraints in a more automated manner than

has been possible before with symbolic multibody analyses. Nonholonomic constraints

and closed kinematic loops are described by the analyst with simple vector expressions that

are processed automatically to obtain scalar constraint equations.

Kinematic “closed loops” (e.g., four-bar linkage, slider-crank mechanism, etc.) with

complicated constraint equations are handled by automatically writing numerical

computation code to satisfy the constraints in such a way that singularities are unlikely to

occur. That is, the symbolic computation methods are used not only to derive conventional

differential equations, but also Jacobian coefficients and source code to recursively

compute values for variables when closed-form solutions are not feasible.

The combined effect of these new techniques is significant in at least two ways: (1) the

simulation codes generated are more efficient for vehicle dynamics models than any other

formulations that have been published, and (2) the input description prepared by the analyst

is minimal and does not require knowledge of the formalism details.

1.3. Organization of Dissertation

Chapter 2 presents background material for the work, covering key concepts and

previous work. Chapter 3 summarizes conventions in terminology and notation used

throughout this dissertation. Chapter 4 describes the sort of numerical computer code that

is desired as the output of the automated symbolic software.

4

4

Chapter 5 develops the computer representation of symbolic objects needed to

completely describe a multibody system and a simulation code. Most of this material deals

with computer algebra, and the representation and manipulation of vector/dyadic quantities.

Chapter 6 presents an overview of the dynamics theory needed to develop the formal

strategy for automatically analyzing multibody systems. The method advocated by Kane for

manually analyzing a system is presented, and then extended to include details for

formulating the equations of motion for numerical solution.

Chapter 7 develops the symbolic solution for sets of simultaneous linear equations,

such as those obtained by the method presented in Chapter 6.

Chapter 8 presents the multibody formalism. It describes how the model conceived by

the analyst is described in simple terms and translated into a computer representation. Once

the system is described, the equations of motion are developed automatically and a self-

contained Fortran simulation code is generated.

Chapter 9 describes six example multibody systems that were analyzed using

AUTOSIM and presents results of investigations into the significance of the various

techniques. Conclusions are summarized in Chapter 10.

Appendices are included to provide more detail about the examples. Appendix A

briefly describes the AUTOSIM commands used in the examples. Appendices B, C, D,

and E contain Fortran source code generated by AUTOSIM for some of the examples.

Those readers interested in all details of the work are encouraged to read the ten

chapters in sequence. Those interested mainly in the practical aspects can skip right to

Chapter 9, and refer to Chapter 3 and Appendix A as necessary to understand the

conventions and notation. Those interested mainly in the dynamics formalism should read

Chapters 3, 6, 7, and 8. Readers interested mainly in the symbolic computation methods

should read Chapters 3 and 5, and skim through 7 and 8.

5

2. BACKGROUND

The numerical simulation of multibody systems has been receiving an escalating

amount of attention in the past twenty years. The interest has been driven in part by the

ever-increasing capabilities of the digital computer, both in the areas of hardware

performance and and in programming concepts. Further, increasing design challenges for

complex spacecraft, robot manipulators, and high-speed mechanisms mandate simulation

during the design process. Even when established mechanical systems such as ground

vehicles are considered, simulation is essential for (1) designing future products in a

globally competitive environment, (2) evaluating the suitability of novel vehicle

configurations on public roads, (3) reconstructing accidents, and (4) investigating the

behavior of humans in simulated conditions through driving simulators involving “real-

time” “man-in-the-loop” simulation.

Given that most complex multibody systems that are of greatest interest can only be

understood with the aid of computer simulation, modern textbooks in dynamics now

emphasize analyses suited for computer solution (e.g., [35, 58]). Symposia and sessions

have been held on the subject of multibody systems [16, 38, 77], and specialized textbooks

are starting to appear that describe multibody dynamics from the perspective of

programming the dynamics in a computer algorithm [25, 97]. In the literature of

mechanical dynamics, papers dealing with analytical and computational methods pertaining

to multibody systems are too numerous to cite here (for example, Ref. [97] includes 257

citations). However, several overviews are available [38, 63, 74, 110, 113, 135].

The job of simulating a multibody mechanical system involves three steps: (1) creating

an idealized model of the system, (2) formulating equations of motion, and (3) solving the

equations numerically. The first step is the most critical, for it requires the creative

application of engineering knowledge and judgement to determine (a) what characteristics

of the system are important, (b) what characteristics should be neglected, and (c) a strategy

for modeling the important characteristics using rigid bodies, massless springs, and other

idealized elements. The third step can be performed by numerically integrating the

nonlinear ordinary differential equations of motion with a computer program called a

simulation code. It is the second step that is of primary interest in this work.

6

Approaches that are taken to formulate and solve equations for a system after a model

has been conceived by an analyst can be organized into three categories:

1. Equations of motion of the multibody system are derived by the analyst and

translated by a programmer into a specialized simulation code that pertains to one

particular multibody system.

2. A generalized simulation code is used in which the equations have been formulated

and programmed once and for all in a generalized fashion.

3. Symbolic analysis software is used to aid the analyst and programmer in the

formulation of equations and the development of a specialized simulation code.

 The manual derivation of the equations of motion for even a modestly complex system

is a tedious undertaking that involves considerable algebra, a nagging uncertainty regarding

the correctness of the equations, and a considerable programming and debugging effort.

To avoid these problems, the process of formulating equations is automated in the second

and third of the above approaches, which are discussed at length in the following two

sections.

2.1. Generalized Simulation Codes

Generalized (numerical) simulation codes are computer programs that employ a

multibody formalism established for all systems. They first build a set of equations from a

description provided by the analyst, and then proceed to numerically integrate the equations

to simulate behavior of the system. Available multibody codes that are used for simulation

of spacecraft, robots, mechanisms, biomechanics, and vehicles have been reviewed

elsewhere [39, 63]. With respect to simulations of ground vehicles, the codes ADAMS [3,

11, 18, 36, 76, 79, 86, 87] and DADS [85, 121] are primarily used by industry in North

America. These, and other generalized codes (e.g., [2, 26, 27, 80, 88, 95, 115, 116,

117]), are appealing to many engineers because they offer a “complete solution” that

handles the entire simulation effort, from model description to the numerical integration of

equations. Of course, there are some compromises made to achieve the generality.

One compromise is that the generalized codes often run slowly relative to specialized

simulation codes. A human dynamicist usually tries to obtain equations of motion that are

as simple as possible, using a number of techniques that will be detailed later. Further,

good programmers can improve computational efficiency when the equations are

incorporated into the simulation code. Because general-purpose simulation codes are

7

written to apply to all multibody systems, most simplification techniques cannot be used.

For vehicle simulations, the eventual difference in simulation speed between a special-

purpose code and a generalized code can be more than an order of magnitude (differences

in run-time speeds have been observed to vary by a factor ranging from 10 to several

hundred). The inefficiency of the general-purpose software makes it less than ideal for

highly repetitive design studies, and unfeasible for real-time, hardware-in-the-loop

operations.

Another compromise is that the generalized codes are not completely general when it

comes to introducing force- and torque-producing components. This can be a problem

with multibody systems that include elements characterized by semi-empirical models that

are not likely to have been fully anticipated by the programmer. For example, ground

vehicles include tires, nonlinear springs, complex shock absorbers, etc. that are modelled

differently based on the intended use of the simulation. Assuming that an engineer is able

to develop a computer representation of such an element as an external subroutine, the

subroutine must be incorporated into the multibody simulation. If the simulation program is

written by hand, it is a simple matter to incorporate external subroutines. However, for a

generalized simulation code, external subroutines are limited to cases that were anticipated

by the original programmer. Variables needed as inputs to the external subroutine

(positions, angles, speeds, etc.) are not always readily available, and may require the

analyst to develop interface software to compute the needed values from variables provided

in the multibody program.

2.2. Symbolic Analysis by Computer

Symbolic computation offers the potential to combine the high reliability of a general-

purpose code with the efficiency and modeling flexibility associated with the development

of a new special-purpose code. In this approach, the computer generates a simulation code

that is similar in structure and efficiency to one written by a human programmer.

There are three variations on this approach that have been taken for performing the

symbolic computation needed for analyzing multibody systems:

1. A generic symbolic manipulation language is used by a dynamicist who performs

the analysis in the same manner as would be done “by hand,” except that the

computer aids in performing the algebra.

8

2. A symbolic manipulation language tailored for dynamicists is used by an analyst

who guides the analysis, but uses the computer to perform algebraic manipulations

and to apply routine kinematical and dynamical formulas.

3. A complete, self-contained multibody analysis program is used to formulate

equations automatically, based on a description of how bodies in the multibody

system are connected to each other.

Generic Computer Mathematics Languages

Generic symbolic mathematics software has been employed to develop equations of

motion for multibody systems. Most of the work reported to date has been done with the

MACSYMA language [21, 33, 34, 44, 45, 73, 81, 82, 92], possibly because it has been

available on mainframe computers for over fifteen years. Other generic symbolic languages

that have been used are FORMAC [69] and REDUCE [67, 94]. Newer languages with

similar capabilities are MAPLE [20], MuMath [139], and Mathematica™ [138]. MuMath

and Mathematica can be used by a much greater audience than MACSYMA, as they run on

personal desktop computers. Further, more commercial symbolic computation languages

are rapidly appearing for the new generations desktop computers.

The generic mathematical languages include capabilities far beyond the basic “high-

school algebra” needed for analyzing multibody systems. For example, the language

MACSYMA consists of about 3000 compiled Lisp functions, accounting for over 300,000

lines of Lisp source code [92]. In past work, powerful computers have been required for

acceptable performance [82]. Also, the analyst must not only be an expert at dynamics, but

also in the use of the symbolic computer language.

Published equations generated with computerized symbolic manipulation have not been

particularly efficient [82]: the main advantages of this approach have been (1) that algebra

errors on the part of the analyst are eliminated, and (2) that the time needed by the analyst to

obtain the equations is reduced.

Part of the difficulty in using generic computer mathematical languages stems from their

lack of capability to represent the vector and dyadic expressions that occur naturally when

analyzing multibody systems. For example, consider a system that includes rigid bodies

A, B, and C, where A is connected to ground by a hinge joint, B is connected to A by a

hinge, and C is connected to B. Using unit-vectors fixed in each body, the angular velocity

of C might be written by an analyst as

9

ωC
 = u1 n1 + u2 a2 + u3 b3 (2.2.1)

where u1, u2, and u3 are state variables with units of rotational speed, and n1, a2, and b3

are unit-vectors fixed in bodies N (ground), A, and B, respectively. This vector

expression is written without concern for the coordinates needed to represent the unit-

vectors n1, a2, and b3. As such, it cannot be represented in any of the languages cited thus

far. Instead, a coordinate system must be chosen so that the vector can be represented by

an array of three scalar expressions, where each expression corresponds to one coordinate

in the chosen coordinate system. Two problems with choosing a coordinate system for

each vector expression are (1) the analysis is made more complicated because the

coordinate systems must be kept track of, and (2) it is not always clear right away which is

the “best” coordinate system to choose.

Computer Mathematics for Dynamics

At least one symbolic computation language has been developed specifically for

interactive use by a dynamics expert [106]. With this language, called AUTOLEV

(Automated Levinson), the dynamicist guides the analysis by introducing state variables,

defining coordinate systems, etc. Essentially, the dynamicist analyzes the system using

Kane’s method (described in Chapter 6), and the computer acts as an assistant that

performs most of the algebra. When the analysis is complete, the equations of motion are

written into a complete, self-contained Fortran program that is ready to compile and run as

a simulation code customized for the multibody system that was just analyzed. Although

the analyst is required to be well-versed in the Kane method of dynamic analysis, the

software is simpler to use than other symbolic mathematics computer languages. It is

designed for use on the IBM PC, and is therefore more accessible than many symbol

manipulation languages. AUTOLEV does not automatically generate nonholonomic

constraints or constraints for kinematic loops, nor does it have a facility for solving linear

equations in symbolic form.

Automated Symbolic Multibody Analyses

With a sufficiently detailed multibody formalism, equations of motion can be developed

automatically using only rudimentary computer algebra. Self-contained symbolic

multibody codes have been written to formulate equations that can be merged into a

simulation program. This area of symbolic multibody analyses is the most significant for

the research reported in the dissertation. In the following summaries, the dynamical

10

formulations used in the programs are noted, but will not be described in any detail until

Chapter 6.

Rosenthal and Sherman developed the symbolic multibody program SD/FAST, known

earlier as SD/EXACT [100, 101]. SD/FAST demonstrates that highly efficient equations

of motion can be derived automatically by a self-contained program with its own built-in

computer algebra capabilities, using Kane’s equations [55, 58]. SD/FAST includes

provisions for dealing with some kinds of closed kinematical loops via Lagrange

multipliers [35, 97]. If a system has a linkage involving ball joints and pins, the

constraints can be handled automatically.

A modified, highly recursive version of Kane’s analysis method was published by

Wampler in his PhD dissertation [125]. Wampler isolated portions of acceleration terms,

called acceleration remainders, to build equations of motion in a form that is explicitly

suited for numerical solution. Some of his techniques are also used in this dissertation.

The main application of Wampler’s dissertation involved robotics, so the techniques are not

completely generalized. They include provisions for actuator dynamics, and lack

provisions for topologies other than chains. Wampler demonstrated his formalism with

several numerical multibody codes that offer efficiency better than anything available at that

time (1985).

The methods of Wampler were adopted by Nielan, who wrote a computer program

called SYMBA to generate multibody equations symbolically, in a fashion similar to

SD/FAST [83]. Nielan also included part of the more general Kane formulation, to handle

topologies other than chains. The formulation obtained by Nielan produced equations for a

robotic system called “The Stanford Arm” that were the most efficient obtained to date

(1986) [45, 57, 82, 124, 125]. For systems more characteristic of spacecraft, the

formulations were comparable to those obtained by SD/FAST.

There are serious practical limitations in both SD/FAST and SYMBA with respect to

ground vehicle simulations. First, they only derive expressions for inertia forces and

inertia torques. That is, the programs offer no way for the analyst to specify active forces

and torques, as is normally done with generalized simulation codes such as ADAMS. The

analyst must still develop some of the equations by hand, program them, and manually

merge the code generated by SD/FAST or SYMBA with the hand-written code. The inertia

forces and inertia torques dominate equations of motion in some fields, notably spacecraft

11

and robotics simulation. However, equations of motion for ground vehicles have fairly

simple inertia terms and very complicated force and torques descriptions. For ground

vehicle models, the bulk of the simulation code would still have to be developed by hand.

A second limitation is that SD/FAST or SYMBA cannot generate and apply

nonholonomic constraints. Although SD/FAST will generate code with constraint

coefficients, it is up to the analyst to obtain expressions for those coefficients and manually

edit them into the simulation code.

A third limitation is that the above symbolic computation algorithms keep all nonlinear

terms in all equations. A human analyst typically throws out terms that are known to be

small, such as some Coriolis accelerations, products of small trigonometric functions, etc.

Even for a simple vehicle model studied as an example, these simplifications were shown

to have improved efficiency by a factor of 3 [103].

Several symbolic multibody programs have been developed in Europe specifically for

handling vehicle systems. These are NEWEUL, MESA VERDE, and MEDYNA. Unlike

the SD/FAST and SYMBA software, these programs properly include forces and moments

from tires, suspensions, and other force- and moment-producing components in a

multibody system. Also, they can be used to derive linearized equations of motion.

The program NEWEUL is based on a multibody formalism that can be applied to

systems of rigid bodies constrained by both holonomic and nonholonomic constraints. The

program has been used for applications involving ground vehicles, spacecraft, and robots

[40, 64, 65, 66, 108, 109, 111, 112]. The nonlinear terms in the equations of motion

appear in an isolated matrix, making it simple to obtain either linearized or fully nonlinear

equations. (However, it is not possible to derive equations where some variables are small

and others are not.) The NEWEUL program was originally written in Fortran and

performs the symbolic manipulations by representing expressions by integer codes in

arrays [112]. This method permits symbolic manipulation in a language not designed for

that purpose, but with severe limits in comparison with other symbolic manipulators.

NEWEUL cannot represent “nested” expressions. That is, products of sums are always

“expanded.” (For example, the expression (A + B)*(C + D) contains two “nested” sums:

(A + B) and (C + D).) Also, the automated replacement of repeated expressions is not

performed by NEWEUL. Hence, equations generated by NEWEUL that have been

published include many redundant expressions that would be taken out by almost any

human programmer. Further, when symbolic expressions are always expanded, great

demands are placed on the computer resources, and analysis of complex systems becomes

12

impossible. For example, for a simple three degree-of-freedom vehicle model, the

computational efficiency of equations derived with nested expressions and intermediate

expressions was about a factor of seven better than when those capabilities were disabled

[103]. The exact form of the input to NEWEUL has not been described in the literature,

other than to define matrices that must be provided by the analyst using NEWEUL.

The program MESA VERDE stands for “MEchanism, SAtellite, VEhicle and Robot

Dynamics Equations” and is based on a multibody analysis strategy developed by

Wittenburg and Roberson, and programmed by Wolz [136, 137]. The multibody system is

described by several matrices with integer and symbolic elements, which are provided as

inputs by the analyst. The analyst can define state variables in a variety of ways, and can

apply arbitrary force- and moment-producing elements. An interesting method is used to

specify closed kinematical loops [72]. One body in the loop is entered twice, with half the

mass and inertia each time. MESA VERDE is told that the two entered bodies are the same,

and constraint equations are automatically generated. The output of the program is the set

of equations of motion, written in either PASCAL or FORTRAN. Example equations

generated by the program have not appeared (to this author’s knowledge) in the English

literature, nor have example input requirements. However, the published descriptions

indicate that the analyst is expected to be familiar with the multibody representation

developed by Wittenburg and Roberson.

The program MEDYNA [24, 52, 62] formulates equations of motion in ACSL

(Advanced Continuous Simulation Language) that are linear with respect to state variables,

but which can involve nonlinear force and moment-producing elements. MEDYNA was

developed specifically for ground vehicles, especially those that travel on tracks and

guideways. Although its multibody dynamics analysis is limited to a linear representation,

it includes a number of pre-defined component models such as tires, railcar wheels, etc. to

facilitate its use with vehicles.

2.3. Research Approach

Although simulation of mechanical systems is widely acknowledged as a necessary

engineering tool, the technology is not yet mature in the sense that simulation of complex

nonlinear systems is not performed with the ease of other engineering analyses, such as

linear system analysis, CAD, etc. Each of the three general approaches described at the

start of this chapter has associated limits.

13

1. To develop a simulation code without computer aid requires (1) expertise in

dynamics, (2) a great deal of time to perform the pencil-and-paper analysis of the

system to be simulated, and (3) more time and programming expertise to put the

equations of motion into a form that can be solved by computer.

2. To use the generalized simulation codes described in Section 2.1, the engineer must

(1) have access to general-purpose simulation software and computer powerful

enough to run the software (generally, a mainframe computer or minicomputer), (2)

have extensive experience in dynamics, and (3) also have extensive knowledge and

experience with the simulation software. Even with the required software,

hardware, experience, and knowledge, the generalized simulation codes may

require too much computer time per run to be used for some analyses.

3. The symbolic analysis software packages mentioned in the previous section serve to

aid the analyst (in various degrees) in the development of simulation codes as might

be done “by hand.” However, much of the work must still be done by the

analyst, particularly in specifying forces and torques acting on bodies in the system,

and in specifying constraints. Also, the symbolic programs generate only a portion

of the overall specialized simulation code.

The third approach is the most recent, and least developed. With recent developments

in computer programming from artificial intelligence applications, many procedures that

used to be difficult or impossible to program can now be automated. Symbolic multibody

programs developed previously have been developed from the view: “Given the ways that

data can be represented symbolically in existing computer languages, how can equations of

motion for a mechanical multibody system be generated automatically?” Multibody

formalisms have been complicated, in order to compensate for the limited representation

possible in a conventional computer language. Because the symbolic manipulation

capabilities have been rudimentary, some important simplification methods have not been

applied. (Simplification techniques that are not included in the computer algebra can still be

applied by including them in the multibody formalism, as is the case with the linearization

option in NEWEUL, but there is a loss of modeling flexibility because the formalism must

include specific “plans” for dealing with all algebraic combinations that can occur in the

systems being modeled.) The methods are less general than approaches taken by human

analysts, because all of the possible combinations of multibody systems must be anticipated

in the formalism. Also, the simulation codes are generally not nearly as efficient as can be

obtained with better symbol manipulation capabilities.

14

In contrast, this dissertation takes the view: “How can the ways that humans analyze

multibody systems be automated?” To start, a symbolic mathematics language called

AUTOSIM is developed in Lisp to automatically generate simulation codes [104].

Although a number of mathematical symbol manipulation languages exist, none have the

capabilities needed to easily support the generation of efficient simulation codes. Much of

the literature in computer symbol manipulation has focused on the manipulation of

polynomials and the development of integrals and derivatives of complex expressions [12,

17, 92, 94, 123, 127]. In contrast, AUTOSIM neglects these types of manipulations.

Instead, the language is built upon representations of three aspects of the overall system in

symbolic form as data objects:

1. vector and dyadic algebra expressions,

2. components of the multibody system (bodies, forces, etc.), and

3. pieces of computer code that go into the numerical simulation code being generated.

The above data have been represented with scalar expressions and matrices in all work

done prior to this. The representation of vectors and dyadics in AUTOSIM is similar to the

“component-free vectors” in MuMath, except that the dot-product operator generates a

scalar expression (using knowledge of the multibody system), rather than a symbolic

vector expression.

Another novel aspect of AUTOSIM is the way in which intermediate expressions are

introduced to obtain efficient Fortran code. All of the symbol manipulation languages can

print equations in FORTRAN, but AUTOLEV is the only one that identifies

subexpressions that can be replaced by intermediate variables. None of the existing

software packages have the capability to identify constants that can be precomputed. (To

obtain maximum efficiency with existing software, the analyst is required to specify

numerical values for all parameters. A new set of equations must be formulated if any of

the parameter values are changed.)

Next, a multibody formalism is needed that parallels the process employed by a human

analyst. The formalism must be specified in sufficient detail that it can be programmed in

the new symbolic language. Ideally, the best features of existing multibody simulation

methods should be included, namely:

15

• A “complete solution” such as is provided by many generalized simulation codes

minimizes the time needed to proceed from a model concept to a working simulation

code if the process is entirely automated.

• Virtually any force- or moment-producing component can be included in a

simulation code developed by hand, even if the force/moment characteristics include

such behavior as (1) friction, hysteresis, and other discontinuities; (2) behavior that

is dependent on its past history (in addition to current states); and (3) dynamic

behavior of variables not directly a part of the multibody system.

• Virtually any motion variable, no matter how unorthodox, can be defined for use in

codes developed by hand. Such variables are typically needed as inputs to external

subroutines, or as output variables.

The generalized codes, both numerical and symbolic, are (hopefully) debugged

once and for all. Once debugged, equations produced are always valid and correct.

• The symbolic methods (automated and manual) can result in highly efficient

simulation codes, needed for use with desktop computers or for interacting with

hardware in real-time applications.

The advantages can be combined by creating a generalized symbolic multibody analysis

program that offers a “complete solution” and still allows the modelling freedom available

when simulations are developed by hand. Accordingly, AUTOSIM formulates equations of

motion and then generates a complete simulation code. When the source code for the

simulation is compiled, the resulting program reads input files with parametric data,

simulates the system, and writes output files in a form suitable for automated post-

processing software.

To match the “ease of use” that can be obtained with specialized simulation codes, the

analyst describes input parameters and output variables with algebraic expressions, such

that the simulation code generated by AUTOSIM reads input and writes output that is

exactly the input and output of interest to the end user—the engineer using the simulation

code generated by AUTOSIM. To accomplish this, the analyst can define multibody

parameters as arbitrary expressions involving constants familiar to the end user. (For

example, the location of the mass center of a vehicle might be described with an expression

involving a wheelbase and static axle loads.) Any force, torque, or motion variable can be

specified as an output without referring directly to state variables. External subroutines and

16

functions can be freely introduced into the system to handle complicated and unusual

elements.

17

3. CONVENTIONS

There is no standard convention for describing the elements and topologies of

multibody systems. Even with established areas of mathematics such as vector algebra,

different notations are used by different authors. In the hope of simplifying the discussions

that follow in subsequent chapters, this chapter is included to detail the conventions used

throughout this dissertation.

The first convention is that a word or phrase that represents an important technical

concept is shown in italics the first time it appears, unless the name is already well-

established. A definition is usually supplied in the material that follows. Subsequent

appearances of the term or phrase appear in normal typeface.

3.1. Elements in a Multibody System

The multibody systems under consideration in this dissertation are mechanical systems

composed of rigid bodies and massless elements that apply forces and torques to the

bodies.

Rigid Bodies, Reference Frames, and Coordinate Systems

A reference frame is an environment in which points remain fixed with respect to each

other at all times. A rigid body is an object in which every point is fixed in the same

reference frame. Thus, each rigid body in a mechanical system has an associated reference

frame. It is possible to conceive of reference frames for which there are no corresponding

rigid bodies. For example, consider a rolling disk. In addition to the reference frame that

rolls with the disk, it is convenient to define an auxiliary reference frame that follows the

disk but which does not roll.

In the remainder of this dissertation it is not essential to distinguish between reference

frames and rigid bodies, and some of the descriptions are simplified by using the two

names interchangeably. That is, rather than writing “the reference frame associated with

body B,” the shorter phrase “body B” is used. Reference frames that do not correspond to

18

a physical body in the system are treated as rigid bodies with zero mass and zero moments

of inertia. In the rolling disk example, the system is modelled as two rigid bodies: (1) a

massless body A which (a) slides over the ground, (b) steers, and (c) leans, and (2) a body

B that spins relative to A and has mass and inertia .

A coordinate system is a numbering convention used to assign a unique ordered trio of

numbers to each point in space. All coordinate systems involved in this work are right-

handed Cartesian coordinate systems, defined by three mutually orthogonal axes

intersecting at an origin. Further, each coordinate system is fixed in one of the bodies of

the system. In general, any number of coordinate systems can be defined for a given body.

However, in this work, only one coordinate system is introduced with each body. That is,

there is a one-to-one correspondence between bodies, reference frames, and coordinate

systems for all multibody systems as they are described in this dissertation.

Joints and Constraints

Kinematic relationships between bodies are defined by joints. In the context of how a

multibody system is described, a joint defines a set of zero or more holonomic constraints

that limit the geometric relationships that are possible between the bodies. Forces, torques,

and speeds are not factors in a holonomic constraint. Holonomic constraint equations are

called rheonomic if they include explicit functions of time, and scleronomic if they do not.

Unless stated otherwise, holonomic constraints are assumed to be scleronomic.

Joint constraints are handled in two ways in the multibody formalism developed later.

Most of the joints appear in a tree topology, as described in Section 3.4. Additional joints,

if they exist, are handled by adding constraint equations.

In addition to the holonomic constraints applied by joints, a system may also be subject

to nonholonomic constraints. These are constraints on motion but not position or

orientation. For example, a two-axled vehicle slowly navigating a turn is constrained such

that the instantaneous velocity vector of each wheel center is oriented in the same direction

as the wheel. That is, there is no lateral slipping. Thus, movement of the vehicle from one

position to another is constrained. However, the vehicle is not limited with respect to the

positions it could possibly occupy after sufficient maneuvering.

19

3.2 State Variables

A simulation code computes values for a number of output variables at discrete points

in time, based on initial conditions, applied forces and moments, and the parameter values

for the system. The set of variables written as output by the simulation code is completely

arbitrary and can be defined as the analyst sees fit.

To compute the output variables, a set of differential equations is numerically

integrated. Those differential equations are written in terms of state variables. The state

variables are selected to mathematically describe the state of the system, such that any

position or speed variable of interest can be written as an explicit function of the state

variables. Selecting state variables is an essential analytical step that will be developed at

length in Chapter 8. The state variables are grouped into nested categories, shown

schematically in Figure 3.2.1 and listed in Table 3.2.1.

State Variables

Coordinates Speeds

Multibody Coordinates Multibody Speeds

Generalized
Coordinates (n)

Generalized

Independent
Speeds (p)

Nonholonomic
Speeds (m)

Extra Dependent
Coordinates

Extra
Dependent Speeds

Extra SpeedsExtra Coordinates

Coordinates (µ)

Speeds (ν)
Independent

Coordinates (π)

Computed

Figure 3.2.1. Categories of state variables.

20

Table 3.2.1. Categories of state variables.

Name Nomenclature Description

Independent

coordinates

q1, ... qπ Generalized coordinates computed by

integrating their derivatives.

Computed coordinates qπ+1, ... qn Generalized coordinates computed both by

integrating derivatives and with iterative

numerical procedures. (µ = n – π)

Dependent coordinates expressions Coordinates defined as functions of time or

as explicit functions of independent and

computed coordinates.

Extra coordinates symbols Coordinates added by the analyst that are

not a part of the multibody system.

Independent speeds u1, ... up Speeds computed by integrating their

derivatives.

Nonholonomic speeds up+1, ... uν Speeds defined as linear combinations of

independent speeds. The dependencies

involve forces and moments of constraint

that influence the system dynamics.

(m = ν – p)

Extra Dependent speeds expressions Speeds defined as linear combinations of

independent speeds. The dependencies do

not involve forces and moments of

constraint that influence the system

dynamics.

Extra speeds symbols Speeds added by the analyst that are not a

part of the multibody system.

The figure shows how the most specific categories are nested. The broadest set

includes all state variables, and is divided into two groups: coordinates (scalar variables

involving position) and speeds (scalar variables involving velocity). Coordinate variables

are further divided into two sets: multibody coordinates and extra coordinates. The

multibody coordinates include all variables that represent displacement in either translation

or in rotation between the rigid bodies. Multibody coordinates have units of length or

angular displacement (e.g., in, rad). The extra coordinates are variables added by the

21

analyst that are computed in the simulation code, but which do not describe kinematics of

the mechanical system. For example, air pressure in an accumulator might be a variable in

a hydraulic system coupled to the multibody system. Similarly, the speeds are grouped in

two categories: multibody speeds and extra speeds. The multibody speeds include all

variables that describe velocity between rigid bodies, and have units of length/time or

angular rate (e.g., in/sec, rad/sec). Extra speeds are variables added by the analyst that are

not directly related to the multibody system.

The choice of whether an extra variable is classified as a speed or a coordinate is made

by the analyst and is arbitrary. These are simply variables, not directly related to the

multibody system kinematics, that are computed by integrating their derivatives in the

simulation code.

The multibody coordinates are divided into two sets: generalized coordinates and extra

dependent coordinates. The extra dependent coordinates are variables that can be written as

explicit functions of generalized coordinates. When such expressions are found, they are

used in place of the coordinates wherever they appear in the equations of motion. Thus,

the extra dependent coordinates are coordinates that were removed from the equations.

The multibody speeds are divided into generalized speeds and extra dependent speeds.

The dependent speeds are variables that can be written as functions of generalized speeds,

and which have no influence on forces and moments of constraint.

The extra coordinates, extra speeds, extra dependent coordinates, and extra dependent

speeds are shown in the figure and table for the sake of completeness, given that the

AUTOSIM software has provisions for using them. However, they do not appear in the

remainder of the dissertation. It is the four categories enclosed in the shaded boxes in the

figure that are used in the methods developed later, and which are described further below.

The generalized coordinates are introduced to allow the position of any point in the

multibody system to be written in terms of those coordinates and system parameters. The

generalized coordinates are further divided into two groups: independent coordinates and

computed coordinates. The independent coordinates are the coordinates that can be

computed only by integrating their time derivatives. The computed coordinates are

variables that are defined implicitly as functions of independent coordinates by constraint

equations. If a constraint equation is “solved” to obtain one coordinate as an explicit

function of the others, it is classified as an extra dependent coordinate and removed from

the equations of motion. However, when the constraint equations are too complicated,

22

explicit solutions are not easily found. Instead, numerical alternatives are used that will be

described in section 8.3. As indicated in the figure and table, there are n generalized

coordinates, π independent coordinates, and µ computed coordinates, where n = π + µ.

The generalized speeds are defined such that the speed of any point in the multibody

system can be written in terms of system parameters, the generalized coordinates, and the

generalized speeds. The generalized speeds are divided into two sets: independent speeds

and nonholonomic speeds. The independent speeds are the speeds that can be computed

only by integrating their time derivatives. Nonholonomic speeds can be written as

functions of the independent speeds. The nonholonomic speeds are mathematically not

independent due to the presence of forces and moments of constraint that influence the

behavior of the system. (The nonholonomic speeds are distinguished from the extra

dependent speeds that are not incorporated in the equations of motion.) There are ν
generalized speeds, p independent speeds, and m nonholonomic speeds, where ν = p + m.

In all six of the examples in Chapter 9, the state variables are defined such that n = ν, m

= µ, and p = π. However, the multibody formalism developed in Chapter 8 is made more

general by not presuming this relationship.

Table 3.2.1 showed the convention for writing the state variables. Their time

derivatives are written by putting a dot over the variable. When the state variables are

printed by AUTOSIM as Fortran source code, the generalized coordinates are printed as an

array named Q (e.g., Q(1), Q(2), etc.), the derivatives of the coordinates are printed as an

array named QP (e.g., QP(1), QP(2), etc.), the independent speeds are printed as an array

U, and the derivatives of the independent speeds are printed as an array UP. Symbols for

dependent coordinates, dependent speeds, and nonholonomic speeds are not used. These

variables are always replaced with expressions involving independent variables.

3.3. Notation

The analyses presented in the following sections are developed from the method for

analyzing a multibody system described by Kane and Levinson in their dynamics textbook

[58]. Their notational conventions are adopted, although some modifications have been

made with the intent of improving clarity and simplicity within the scope of this

dissertation.

23

Subscripts and Superscripts

Subscripts are used (1) to distinguish related coefficients and variables, (2) to identify

array elements, and (3) to annotate parameters.

In many of the formulations that follow, a convention is employed in the letters used as

subscripts. A subscript i indicates a number between 1 and n, where n is the number of

generalized coordinates; a subscript j refers to a positive number associated with a body or

joint (e.g., rotational degrees of freedom of a joint); a subscript o is an offset that relates a

joint index j to an index i for the generalized coordinates (that is, i = j + o); a subscript r is a

number between 1 and p, where p is the number of independent speed variables; and a

subscript s designates the index of a dependent variable (either a nonholonomic speed or a

computed coordinate).

Superscripts are used to identify points, bodies, and reference frames associated with a

variable or parameter. (Several examples appear in following subsections.)

Bodies and Points

Bodies are identified with capital letters written in a plain typeface. In following

material, N always refers to the inertial reference, B generally refers to an arbitrary body

under consideration, and A refers to the parent of B.

Each body has three associated points that are written according to a standard

convention. For body B, these points are: (1) B0, the origin of the coordinate system

associated with B, (2) B*, the center of mass of B, and (3) BJ, the “joint point” of B,

which is a point fixed in A that coincides with B0 when all generalized coordinates are zero.

Other points are written as capital letters, and are defined as they are introduced.

Vectors and dyadics

A unit-vector is a fundamental algebraic element that has a unity magnitude and defines

a direction in three-dimensional space. A vector is a sum of one or more products of unit-

vectors and scalars. Vectors and unit-vectors are designated with an overhead vector

arrow, e.g., r. A dyad is a notational convenience that occurs when two vectors appear

side by side in an expression,1 and a dyadic is an expression that contains dyads. A dyadic

1 A dyad is a simple product of two unit-vectors. For example, the expression (a • b) c is a vector

24

is designated with a dyadic arrow (I). Vectors and dyadics represented by English letters

are also shown in boldface.1

The coordinate system associated with each body is defined by three axes whose

directions are defined by three mutually orthogonal unit-vectors, and which all pass

through the origin (a point). The unit-vectors are named with a lower-case letter that

matches the body, and subscripted with indices 1, 2, and 3. For example, the unit-vectors

for the inertial reference N are n1, n2, and n3. Similarly, the unit-vectors for body B are

named b1, b2, and b3. A dyadic called a basis dyadic is associated with each body and is

obtained by “doubling” the unit-vectors. For body B, the basis dyadic is

b = b1 b1 + b2 b2 + b3 b3. The dot product of a basis dyadic and a vector is equivalent

to the original vector. That is, it is algebraically equivalent to multiplying by unity.

However, the result is expressed in the basis of B, such that the only unit-vectors

appearing in the expression are b1, b2, and b3.

In Chapter 9, example multibody systems are analyzed and a great deal of computer

input and output code is listed. The computer printouts include no formatting, such as bold

typeface, subscripts, vector arrows, etc. In that chapter, unit-vectors are written with

enclosing square brackets. Symbolic names are written in upper-case letters if they are

“outputs” from the computer, and in lower-case letters if they are “inputs” from the analyst.

For example, the unit-vectors n1, n2, and n3 might be written [N1], [N2], and [N3], or, as

[n1], [n2], and [n3]. (Upper or lower case is not significant with respect to the meanings

of symbols.)

Position, Velocity, Acceleration, and Derivatives

Vectors representing position are generally written with the letter “r.” A superscript is

used to identify the two points connected by the vector. For example, rA0B0 is a vector that

whose direction is c and whose scalar magnitude is the dot product a • b. The same expression could also

be written a • (b c), where the expression (b c) is a dyad. A dyad is a notational convenience that is useful
for indicating quantities that are eventually projected (by the vector dot product operator) onto arbitrary
directions.

1 Vectors represented with Greek letters are not shown in boldface, due to a limitation of the Apple
printer used to create this document.

25

goes from point A0 to point B0. When only one point is shown, the implicit first point is

the origin of the inertial reference. For example, the absolute position of B0 is given by the

vector rN0B0, written more simply as rB0.

Vectors representing direction are also written with the letter “r.” The body associated

with the direction is shown with a superscript, and a descriptive subscript defines the type

of direction. For example, a rotation axis for body B is written rrot
B .

Reference frames for derivatives are indicated with preceding superscripts. For

example, the derivative of the vector rB0 with respect to the reference frame A is written

d rB0

dt

A
. When no preceding superscript is shown, the derivative is with respect to the

inertial reference. Derivatives taken with respect to the inertial reference are also shown

with an overhead dot for brevity. That is,

r
B0 = d rB0

dt
 = d rB0

dt

N
(3.3.1)

Vectors representing velocity are generally written with the letter “v .” A superscript is

used to indicate the point whose velocity is represented. A leading superscript is used to

indicate a reference frame other than the inertial one. For example, the velocity of B0 in the

reference frame of A is written vB0A . If the velocity is relative to the inertial reference, the

leading superscript is usually omitted. That is, the absolute velocity of point B0 is written

vB0, rather than vB0N .

Acceleration is written with the letter “a” in a fashion similar to velocity. For example,

aB0A is the acceleration of B0 with respect to the reference frame of A, and aB0 is the

absolute acceleration of the same point.

Incremental velocities and accelerations are defined as the difference in velocity or

acceleration between two points. For example,

vA0B0 = vB0 – vA0
(3.3.2)

and

aA0B0 = aB0 – aA0
(3.3.3)

26

The name “incremental” is used instead of “relative,” because the terms “relative velocity”

and “relative acceleration” are sometimes defined as velocities and accelerations relative to a

specified reference frame. (The incremental velocity is the time derivative of the position

vector connecting the two points, with respect to the inertial reference. Similarly, the

incremental acceleration is the second derivative of the same position vector, with respect to

the inertial referene.)

Angular velocity is written with the letter “ω.” Here, superscripts refer to bodies. For

example, the angular velocity of B relative to A is written ωBA
, and the absolute angular

velocity of B is written ωB
.

Angular acceleration is written with the letter “α.” Thus, the angular acceleration of

body B is written α B
.

Incremental angular acceleration is written by putting the symbols for both bodies in the

superscript on the right-hand side of the symbol, e.g., the incremental acceleration from A

to B is

αAB
 = αB

 – αA
(3.3.4)

The incremental angular velocity from A to B is also the relative velocity of B with

respect to A. That is,

ωAB
 = ωB

 – ωA
 = ωBA

(3.3.5)

Because they are equivalent, incremental angular velocities are always written as

relative velocities (that is, the incremental angular velocity between A and B is equal to the

angular velocity of B relative to the reference frame of A). The same equivalence does not

hold for angular acceleration, and therefore the notation of eq. 3.3.4 is used. (The

incremental angular acceleration is the time derivative of ωBA
 with respect to the inertial

reverence, not the reference frame of A.)

Table 3.3.1 provides a summary of the vector and dyadic notation that will be used

extensively in Chapters 6 and 8.

27

Table 3.3.1. Notational conventions for vectors and dyadics.

Notation Description

ai, bi, etc., i=1,2,3 unit-vectors for body (body A for a1, a2, a3; body B for b1, . .)

a, b, etc. basis dyadic for associated body

rdir
B direction associated with joint between body and its parent.

Superscript specifies body, subscript describes type of direction.

rP position vector from fixed origin to point in superscript.

vP, aP absolute velocity or acceleration of point in superscript.

ωB
, αB

absolute rotational velocity or acceleration of body in superscript.

I
B* inertia dyadic of body about its mass center. (Superscript specifies

center of mass.)

ωi
B
, v i

B* holonomic partial angular and central velocities for body B

associated with speed ui. (Body/mass center is shown in

superscript, speed index is subscript.)

ωr
B
, v r

B* nonholonomic partial angular and central velocities for body B

associated with speed ur. (Body/mass center is shown in

superscript, speed index is subscript; tilde indicates that partial

velocity is nonholonomic.)

arem
B* , αrem

B
,

 arem
B*

, αrem
B

holonomic and nonholonomic acceleration remainders. Without a

tilde, the symbol represents the portion of acceleration comprised

of quadratic terms involving generalized speeds. With a tilde, it’s

the portion of acceleration not accounted for by derivatives of

independent speeds.

vA*B*, v i
A*B*,

 v r
A*B*

,arem
A*B*,

 ωAB
, αrem

AB
, etc

incremental terms appearing in recursive relationships, e.g.,

v r
B*

 = v r
A*

 + v r
A*B*

; αrem
B

 = αrem
A

 + αrem
AB .

Matrices and Arrays

Matrices and arrays are represented by underlined letters in plain typeface. Lower case

letters are used to represent one-dimensional arrays, e.g., f . Capital letters are used to

represent two-dimensional matrices, e.g., M . An overhead dot indicates that the derivative

is taken of every element of the array. For example, the array of independent speeds is u ,

and the array of the derivatives of the independent speeds is u.

28

A one-dimensional array is called a vector by many authors. To avoid confusion with

the concept of a vector described earlier, the word “vector” is reserved here for unit-vectors

and expressions involving products of scalars and unit-vectors.

As a matter of style in this dissertation, two-dimensional matrices are called matrices

and one-dimensional matrices are called arrays. Also, it so happens that all two-

dimensional matrices that appear in this dissertation are square (that is, the number of rows

equals the number of columns).

In past work involving computer representations of vectors and dyadics, vectors are

often represented as 3-element arrays and dyadics are represented as 3x3 matrices. As will

be seen in Chapter 5, that representation is not used in this work. Matrices and arrays are

used sparingly, particularly in comparison to other multibody formalisms.

Computer Data Objects

The multibody system is eventually represented as a set of symbolic computer data

objects that are manipulated by the computer. An “object” is a set of data that can be

handled as a single entity by the computer. The set might be a number, an alphanumeric

character, a string (a string is a sequence of alphanumeric characters usually written in

quotes, e.g., “this is a string”), an array, a list (a list is a sequence of objects, usually

enclosed in parentheses), a subroutine, a symbol (a symbol is an object that associates a

name and value), and others. In Chapter 5, many new types of objects are defined to

represent algebraic expressions and elements of a multibody system. Names of computer

objects are written in the Courier typeface, e.g., symbol. All symbols are represented

internally in upper-case letters, but are often written in lower-case. For example, the same

symbol can appear as rotor, ROTOR, Rotor, or RoToR.

Computer procedures are called subroutines in some languages; in Lisp, they are

usually functions or macros. In the context of computer methods1, the word “function”

refers to a computer object that performs a sequence of operations, possibly involving data

provided as arguments. For example, the Lisp object

1 In a different context, the word “function” is used to indicate an expression that includes certain

variables, e.g., “Y is a function of X” indicates that X appears in the expression that represents Y.

29

(add 2 3)

invokes the function add and provides values for two arguments (2 and 3). The object is

evaluated by applying the function add to the values of the arguments, yielding the result

of 5.

The names of formal arguments to computer functions are written in italics. For

example, the function add works by adding the two arguments arg1 and arg2. When the

function is evaluated, the names shown in italics are replaced by the actual arguments.

Data objects introduced in Chapter 5 have slots, where each slot has a name and value.

The slot names are always written in italics, e.g., the terms slot of a sum contains the terms

of a summation.

Some of the functions have arguments that are are used to override default values.

They are optional, and, if used, must be identified with keywords. All keywords are

shown in the Courier font, and begin with the character “:” (without the quotes). Example

keywords are :body, :name, and :coordinate-system.

Appendix A presents a short summary of Lisp syntax and provides a few more details

about how the computer data objects are written. Table 3.3.2 summarizes the conventions

just described.

Table 3.3.2. Conventions for computer data objects.

Convention Description

courier typeface used for (1) function and macro names, (2) types of data

objects, and (3) names of Lisp symbols.

italics typeface used for (1) formal arguments to Lisp functions, and (2)

names of slots in Lisp structures.

[N1] short names enclosed in square brackets and ending in the number

1, 2, or 3 are unit-vectors for the body associated with the short

name (e.g., [N1] indicates the unit-vector n1, associated with N).

:keyword symbols shown in Courier typeface that begin with a colon are

keywords used to specify optional arguments.

30

Parentheses, Braces, and Brackets

Parentheses and square brackets are used conventionally in equations and in text.

However, additional meanings apply when computer objects are described or printed in

Chapters 5, 8, and 9.

Parentheses are used to indicate Lisp forms and other lists. Expressions printed by

AUTOSIM use parentheses according to Fortran conventions for (1) nesting expressions

and (2) showing arguments of subroutines and functions.

Square brackets [] are used in expressions printed by AUTOSIM to indicate unit-

vectors, e.g., [N2].

Curly brackets {} are used in descriptions of AUTOSIM functions and macros to

indicate optional arguments.

Continental brackets « » are used to indicate that the enclosed expression is replaced

with an intermediate variable and that the intermediate variable is used for subsequent

appearances of the expression.

3.4 Topology

The topology of the multibody system is the description of how bodies are connected to

each other. The connections can be thought of as introducing degrees of freedom for

bodies that would otherwise be completely constrained. (Alternatively, they can be thought

of as constraining bodies that are otherwise free to move in any manner.)

Degrees of Freedom

The number of degrees of freedom for a multibody system is the number of

independent generalized speeds, p.

In this dissertation, it is useful to also consider the number of generalized coordinates

associated with each rigid body in the system. For lack of a better name, this number is

called the number of degrees of freedom of the joint connecting the body to another body.

There can be up to three rotational degrees of freedom, and up to three translational degrees

of freedom.

31

The total number of joint degrees of freedom for all of the bodies in a system equals the

number of multibody coordinates. If a system has kinematical loops or nonholonomic

constraints, the number of degrees of freedom for the entire system is less than the sum of

the degrees of freedom of the body/joint pairs. Constraint equations account for the

difference.

Trees

A tree is a type of graph constructed from entities called nodes. One node is the “root

node” that starts the tree, and which has no “parent node.” Every other node in the tree is

defined as a “child” of a previously defined node. An example tree is shown in Figure

3.4.1, for 8 nodes labeled by capital letters. Parent-child relations are shown by lines, with

the parent node above the child node(s). The root node is N; nodes A and B have N as

their “parent.” Thus, A and B are the “children” of N. B has three children. Nodes G, C,

D, and E all have no children, and are called “leaves” of the tree.

Many multibody systems are well suited for

description by trees. The nodes of the tree are rigid bodies

and the connecting lines are joints between the bodies. If

the body has no physical connection to its parent (e.g., a

free body whose parent is the inertial reference N), the

joint simply imposes zero constraints. In the other

extreme, a body rigidly attached to the parent involves a

joint that imposes six constraints. For example, the tree in 3.4.1 could be used to represent

the multibody system shown in Figure 3.4.2, with ovals used to designate rigid bodies.

The root in the multibody tree is a fixed inertial reference, N.

N

A

F

G

B

C D E

Figure 3.4.1. Example

tree.

32

N

B

C

D

E

A

F

G

Figure 3.4.2. Rigid bodies in a tree topology.

A tree-type multibody system is one in which all holonomic constraints are accounted

for in the tree. That is, as each body is added to the tree, a joint relating the body to its

parent is also introduced. The number of degrees of freedom added with the new body is a

number between 0 and 6, depending on the constraints imposed by the joint.

A tree-type multibody system is shown

in Figure 3.4.3. There are two bodies, A

and B, and ground, N. Body A has N as

its parent, and body B has A as its parent.

The motions of A and B are restricted due

to the holonomic constraints imposed by

the pin joints. Forces and moments are

generated by the two pins as needed to

constrain the motions, but the constraint

forces and moments do no work and cannot

actively move the bodies.

A third element is also shown, namely, a massless spring C that connects B to N. The

spring does not apply a kinematic constraint. Instead, it applies a force based on the force-

deflection properties of the spring. The spring is a force-producing component. Under the

convention developed here, the spring does not involve a joint and is not a member of the

tree. With or without the spring, the system still has two degrees of freedom.

N

A
B

C

Figure 3.4.3. Two-link system.

33

Additional Constraints

The tree representation does not directly

accommodate systems with kinematical

loops of the sort shown in Figure 3.4.4. In

this system, the spring has been replaced

with a rigid link, creating a four-bar-linkage

with just one degree of freedom. It cannot

be represented directly with a tree because

there is a loop, in which the number of

bodies equals the number of joints. That

is, if we start with N and build a tree with

N the parent of A, A the parent of B, and B the parent of C, we must stop without

including the joint between C and N. C can have only one parent, and C cannot be the

parent of N because N (as the root node of the tree) by definition has no parent.

A multibody system with closed kinematical

loops can be represented with a tree if it is

augmented with additional information to account

for the extra joint(s). The loop is closed by adding

the additional joint(s) in the form of constraint

equations. For example, the four-bar linkage is

described by the tree shown in Figure 3.4.5, where the dotted arc indicates the joint

between B and C. Without the arc, the system represented in the tree has three degrees of

freedom, rather than one. The constraint relationship represented by the dotted arc must

include two scalar equations that can be applied to reduce the degrees of freedom from three

to one.

Many of the analysis methods that follow involve “traversing the tree.” With the tree

drawn as shown (with the root at the top), traversing “up” the tree implies considering the

parent of a body, then the parent of the parent, and so on until the root is reached.

Traversing “down” the tree involves considering the children of a body, then the children

of the children, and so on until all bodies that have the initial body “up” the tree are

considered.

N

A
B

C

Figure 3.4.4. Four-bar linkage.

N
A
B

C

Figure 3.4.5. Tree for closed

loop.

34

4. SPECIALIZED SIMULATION CODES

This chapter describes the general method used to simulate a multibody system when

the simulation code is specific to a particular multibody system.

4.1. Overview

Figure 4.1.1 shows the flow chart for the simulation code. There are three basic tasks

that the software must perform:

1. The data that distinguish this run from other runs are read as input. Inputs of this

START

QUIT

INPUT Read files with
parameter values and
known functions of time

PREPARE
Set initial conditions,
start output file, and
echo input data

SIMULATE
Step through simulated
time, integrate equations
over small time steps,
write variables into
output file

Figure 4.1.1. Overview of a simulation program.

35

sort include parameter values, initial conditions, and specifications for

predetermined functions of time (i.e., forcing functions from controllers and

disturbances). This activity is shown by the block labelled INPUT in the figure.

2. Computations are made to prepare the simulation by setting initial conditions and

constants computed from parameter values. An output file is started, in which

values of the output variables will be written. Also, the input values might be

“echoed” by writing them into a file. These activities are identified by the block

labeled PREPARE.

3. The simulation is performed. The equations of motion for the multibody system are

used to compute values of state variables at discrete points in time. These values

may also be written into one or more output files. This task involves operations

that are repeated for each point in time, using a program loop. Thus, they are

referred to as “in-the-loop” computations. These tasks are represented in the figure

by the block labelled SIMULATE.

The validity and efficiency of the simulation is primarily determined by the computer

code that performs the third task, SIMULATE, because it is executed many times as the

simulation “steps” through time over small intervals.

4.2. Simulation Start-up Operations

 If the simulation software is to be used productively, the input requirements should

closely match the form of the data employed by the user to describe the system. The input

files should be easily understood, and allow the user to make minor modifications easily

for sensitivity studies. Also, the design of the input files should facilitate the building of

libraries, in which subsystems are described in separate files that are combined to define the

entire system. And finally, the simulation output should be written such that viewing of

results requires minimal post-processing. To attain these goals, the portion of the code in

the simulation code that performs the two tasks labelled INPUT and PREPARE is often

complex, and can account for more of the computer code than the portion that performs the

simulation.

Input

All parameters of the multibody system that are used in formulating kinematical and

dynamical equations are generally programmed in the program as variables, so that they can

36

be changed with each simulation run. New values for the parameters are read from one or

more input files, and then “echoed” in one or more output files to allow the user to confirm

that parameters were interpreted properly by the simulation code. The design of the

interface between the simulation code and the user has a significant practical affect on how

easy the code is to use. This topic is not a part of this dissertation, and therefore details of

how a simulation program reads and verifies new parameter values will not be explored.

However, complete simulation codes are included in Appendices B and C, and the

interested reader can review the methods used to provide a reasonably user-friendly file

format.

It is desirable that the input parameters for the simulation codes be familiar to typical

users. This has an implication when developing methods for automatically formulating

simulation codes. Generating simulation codes with the “correct” parameter definitions can

only be accommodated if the analyst is free to describe the system using symbols that are

already familiar. If the parameters commonly used do not correspond to constants

appearing in the equations of motion, the simulation code should compute the required

constants from the parameters defined by the analyst.

Prepare

Before starting the iterative “in-the-loop” simulation computations, a number of

computations are performed involving the data read from the input files. Terms that

involve constants are “precomputed” to reduce the number of arithmetic operations required

in the loop. The output file is created, and the labels associated with the output variables

are written. For a constrained system, the values of dependent variables may need to be

computed to start the simulation with a realizable state. For some kinds of user-supplied

subroutines, variables used by those subroutines must be given starting values. Scale

factors are applied as necessary to convert parameter and initial condition variables from

“user-convenient units” (lbm, deg, etc) to “equation-convenient units” (in-lb/sec2, rad,

etc.). (See the subroutine INPUT in Appendices B and C for example code that performs

such conversions.)

4.3. “In-The-Loop” Computations

The actual simulation is performed by numerically solving the equations of motion of

the mechanical system over and over, in a loop. Figure 4.3.1 breaks down this part of the

simulation software into three operations. These are performed many times, as multiples of

37

a basic “time step,” selected on the basis of the frequency response of the system and the

use made of the simulation. Figure 4.3.2 shows approximately the frequencies in which

these operations are performed. Typically, the evaluation of the derivatives via DIFEQN is

performed the most frequently, while the OUTPUT operation is performed the least.

 UPDATE Update auxiliary variables

1 n

Done?

QUIT

no
yes

 INTEGRATE

 OUTPUT

Write?

no
yes

Write variables to file
for time T+DT

 DIFEQN
T+h, {x ... x }1 n

{x ... x }1 n
• •

Calculate values of variables for time T+DT
using numerical integration

T T + DT

Compute derivatives,
given t, x , ... x

 DIFEQN Calculate derivatives for T+DT

Figure 4.3.1. Block diagram for “In-the-loop” computations.

38

Simulation Time

DT

Calls to DIFEQN

Calls to UPDATE

Calls to OUTPUT

Figure 4.3.2. Example frequency of “in-the-loop” tasks.

Integrate

The equations of motion for a multibody system are ordinary single-order differential

equations that are linear with respect to the derivatives but nonlinear with respect to other

variables. A subroutine DIFEQN contains the equations of motion for the multibody

system in a form suitable for computer solution. That is, it computes as output the

derivatives of the state variables for time T, given as input the values of state variables and

the value of T.

The derivatives provided by DIFEQN are used by a numerical integration algorithm

(shown in the figure as the subroutine INTEGRATE) to compute values of the state

variables at different times T+h, where h usually ranges between 0 and DT, and DT is a

time step that is “small” with respect to the highest frequency associated with the response

of the multibody system.

The subroutine DIFEQN is called after INTEGRATE, so that the accelerations for time

T+DT are available when the UPDATE and OUTPUT operations are performed. For

maximum efficiency, the INTEGRATE procedure can use these values also, and thus

should not call DIFEQN to obtain derivatives for the new time T.

Hundreds of numerical integration algorithms exist (Euler, Runge-Kutta, Predictor-

Corrector, Gear, etc.). The choice of which to use depends on the characteristics of the

system being simulated, the uses to be made of the results, and personal preferences of the

engineers developing the software [29, 37, 41, 93, 119]. Overall, the simulation algorithm

is but a small part of the simulation code which is easily changed as necessary. The

numerical integration algorithm can be an essential part of the computer representation of

the multibody system, by forming the equations of motion to tie in directly with the

integration equations [42, 81, 90, 122, 131].

39

The automated selection of an integrator algorithm is a worthy research topic, but it is

not covered in this dissertation other than to emphasize how important the code in the

subroutine DIFEQN is with respect to the computational efficiency of the simulation code

as a whole. (There will be a mix of analytical and numerical methods used in the equations

of motion as developed in Chapter 8, but the numerical methods are not directly related to

the integration algorithm,)

Nearly all numerical integration methods work by invoking a function such as DIFEQN

one or more times per time step. The plot of frequency shown in Figure 4.3.2 is

representative when a variable-step integrator is used. It shows the frequency of calls to

DIFEQN varying between time steps as needed to obtain a required numerical accuracy.

Also, it shows the routine being called at least twice for each value of T at which it is

invoked.

Update

There may be external subroutines which read values from files, or which “remember”

histories of system variables to compute forces and moments. Once per time step these

activities are performed.

Periodic updating is also necessary for real-time simulation, with hardware in the loop.

Once per time step, a subroutine is invoked that communicates with hardware, passing

computed values to the digital/analog converter (D/A), and grabbing new values of input

variables from the analog/digital converter (A/D).

The UPDATE operation is used only when such subroutines are incorporated into the

simulation code.

Output

Values of selected variables are written into one or more files for viewing. These can

include motion variables, forces and moments, and variables derived from state variables.

The sample frequency for the output file is a multiple of the time step. Depending on which

variables are of interest, and whether the post-processing software has its own sampling

requirements, the multiple can be as small as 1, or as large as several hundred. Typically,

it is between 2 and 20. Because the OUTPUT routine is invoked less frequently than

DIFEQN, output variables that are derived quantities should be computed in this routine,

rather than in DIFEQN.

40

5. SYMBOLIC COMPUTATION METHODS

This chapter develops a symbolic mathematics language tailored specifically for

analyzing multibody systems and generating numerical simulation codes. The language

directly represents three aspects of the overall system in symbolic form:

1. vector and dyadic algebra expressions,

2. components of the multibody system (bodies, forces, etc.), and

3. pieces of computer code that go into the numerical simulation code being generated.

In the remainder of this chapter, techniques are presented for representing and

manipulating these components as computer data objects, with emphasis on eventually

generating numerically efficient source code in a target language (e.g., Fortran).

The symbol manipulation language described in this chapter (called AUTOSIM) is

written in Lisp, or more specifically, the language “Common Lisp” [4, 118] (called simply

“Lisp” throughout this dissertation). The Lisp language has long been associated with

symbolic manipulation languages, and with prototyping other languages. The programs

MACSYMA, REDUCE, and MuMath were developed in various versions of Lisp [92, 94,

139]. Rudimentary computer algebra systems even appear in some introductory Lisp and

computer science textbooks as case studies, e.g., [7, 60].

There is another aspect of Lisp that is convenient for the intended work. Lisp systems

typically are provided with an interactive environment that allows the Lisp programmer to

interact easily with the computer. Basic functions such as opening, printing, editing, and

creating files are supported. Further, Lisp “forms” (a Lisp form is similar to a command in

other languages) can be entered and evaluated interactively. This environment is ideally

suited to the needs of a dynamicist analyzing a multibody system. (The advantages of Lisp

systems for general engineering analysis (i.e., not computer science) have also been noted

[8, 34].) As will be seen in the examples of Chapter 9, the analyst is free to view

intermediate results as the analysis proceeds, and to inspect various expressions in great

detail. Also, the symbol manipulation capabilities can be used interactively to derive

expressions of interest to the analysts which may or may not eventually appear in the

41

equations of motion for the system. Because Lisp is a well documentated language, it is

unecessary to invent a new syntax for AUTOSIM. That is, AUTOSIM is implemented

simply as an extension to the existing language.

Although Lisp has existed for almost as long as Fortran, it has mainly been used on

mainframe computers and specialized (i.e., very expensive) workstations until the past

several years. The full Common Lisp language is now available from a variety of

companies for machines ranging from IBM and Apple desktop computers up to Cray

supercomputers. (The computer work described in this dissertation was all performed on

Apple Macintosh computers using the Allegro Common Lisp compiler [6].)

5.1. Considerations of Numerical Efficiency

Choices made by an analyst deriving equations of motion for a multibody system have

a direct impact on the complexity of the resulting equations. Some of the techniques that

are typically employed to simplify equations are the following:

1. State variables are introduced that are “natural” to the system being analyzed (joint

displacements, speeds oriented in body-based directions, Euler angles, etc.),

avoiding transformations to a predefined choice (e.g., Cartesian global coordinates)

[35].

2. Terms which are known to be zero for the specific system (but which could be non-

zero for a more general formulation) are omitted from the equations.

3. Forces and moments that cancel due to symmetry or because they involve no work

are eliminated when possible [9, 46, 54, 55, 57, 58, 126].1

4. Equations are written in “factored form,” involving products and ratios of sums of

terms. For example, computing a value for the expression (A + B + C)2 requires

two additions and one integer power. In contrast, the expanded form (A2 + 2AB +

1 The effectiveness of this technique is controversial, as a trade-off is made between a small number of

complicated equations and a large number of simple equations. The question of whether large sets of simple
equations are better or worse than small sets of complicated equations has not been resolved, and is a topic
of current research. When the objective is solely to simulate motions due to forces and moments, forces
and moments of constraint are of no interest and additional computations made to determine them slow
down the simulation. However, when the objective is to obtain the forces and moments of constraint as a
means to evaluate alternate designs, formulations that compute the constraint forces and moments in
addition to the motions are necessary.

42

B2 + 2AC + 2BC + C2) requires five additions, six multiplications, and three

integer powers.

5. Terms involving products or powers of quantities known to be “small” are dropped

if they are of order 2 or higher. In many mechanical systems, some of the motions

are limited such that variables associated with those motions are much smaller than

other expressions arising in the equations of motion.

6. Trigonometric functions of small quantities are replaced with truncated Taylor

expansions.

Technique no. 2 (removing zero terms) can only be partially implemented for

generalized numerical multibody simulation methods (via the use of sparse matrix

operations). However, virtually all symbolic multibody programs employ it. Techniques 1

through 4 have been used by some programs, and techniques 5 and 6 have not been used in

a generalized sense until the implementation described in this dissertation. (In past work,

“small” variables, when used, are built into the multibody formalism. The analyst could

not utilize knowledge that some variables and parameters were small and that others were

not.)

A given set of equations can be programmed into a simulation code so as to minimize

computation by using the following techniques:

7. Complicated expressions that occur in several places are replaced with intermediate

variables. This technique is particularly important for multibody systems because

the equations of motion are inherently redundant. Some of the redundancy is

eliminated by using a recursive dynamics analysis method. Even so, inspection of

the equations of motion usually reveals that some subexpressions appear more than

once. A human programmer, concerned with numerical efficiency, will avoid

performing the same computation more than once by saving the results the first time

and then using the result when the same computation is called for again.

8. Computations that do not have to be performed in the DIFEQN part of the program

are performed elsewhere. Constant expressions are “precomputed” in the

PREPARE portion of the simulation code to avoid performing identical

computations more than once. Computations involving output variables (units

conversions, direction transformations, etc.) are performed in the OUTPUT part of

the program, which is executed less frequently than the DIFEQN part.

43

9. A human programmer will (hopefully) not introduce code that serves no purpose.

This obvious technique can be difficult to implement in an automated analysis

method. For example, details of the dynamics analysis are often recursive. Hence,

it is convenient at times to introduce expressions knowing that they will be

referenced in a later stage of the recursion. However, if the recursion stops, they

may not be needed. Or, an expression might be developed which is later multiplied

by zero. Determining whether a particular expression will be needed later can be

very difficult at the time the expression is formulated, although it is trivial to do

after all equations are formulated.

Once a simulation code is working correctly, a programmer concerned with

computational efficiency can look over the code for sections that can be eliminated.

10. Large matrices are partitioned into smaller matrices, based on the topology of the

system, before general numeric matrix solution methods are invoked. For example,

it is much less work to solve three sets of six simultaneous equations than to solve

one set of 18 simultaneous equations, because as n (the number of equations)

increases, the “cost” increases approximately in proportion to n3.

11. There is a certain amount of overhead in computer codes that do not explicitly

perform arithmetic, due to code generated by the compiler to support “higher level”

concepts in a language such as Fortran. Some examples:

• counters must be created and updated to perform DO LOOPS.

• computations must be made to determine the locations in memory of array

elements with variable indices.

• saving intermediate results in variables requires moving data from high-

speed working registers and CPU caches into predefined memory locations.

Thus, codes can run faster if DO LOOPS, variable indices in arrays, and

intermediate variables are used sparingly.

Techniques 7 and 11 have been applied by some, but not all, symbolic analysis

programs in the past [83, 101]. Techniques 8 and 9 have not been automated before as part

of a multibody analysis program. Technique 10 will be employed in the most efficient

manner possible, by obtaining a recursive symbolic solution for matrix equations in which

no “wasted” arithmetic operations are included.

44

5.2. Representing Symbolic Data

The methods required to manipulate symbolic expressions are derived from the design

of the computer data types that are used to represent algebraic expressions and other

entities. In past work, expressions have generally been represented with a list structure,

where the first element of the list provides the type of data (sum, product, function, etc.)

and the remaining items represent other expressions. In the NEWEUL and SYMBA codes,

such lists are used to represent most expressions implicitly as sums [83, 107]. In the more

general MAPLE language, a larger number of data types are accomodated with a basic list

structure [20]. An alternative to using existing computer data structures such as lists or

arrays is to define new types of data objects for the computer that correspond exactly to the

entities that they represent. This approach is a part of the “object oriented programming”

style, and is used in AUTOSIM.

Overview of Data Objects

Lisp includes over 40 types of data objects. In addition, new types are included by the

use of structures. Internally, the structure contains a number of slots which are essentially

variables defined locally within the structure. Each slot has a name and can be assigned a

value. In AUTOSIM, structures are used as objects to support object-oriented

programming.1 Objects facilitate data abstraction by allowing programs to manipulate the

objects, without requiring the programmer to know about details of their internal

representation. Further, “generic functions” work by obtaining procedures for

manipulating objects based on the types of the objects. For example, the generic function

dxdt (used to take the absolute derivative of an expression) works by looking at the type

of the argument, and looking up that type in a dispatch table of “installed” specialized

functions. The specialized function from the table is then invoked. To define the derivative

of a new type of expression (e.g., a user-defined function), a new specialized function is

written and “installed” in the system. (The installation is simply an updating of the function

dispatch table.) However, the original dxdt function is not modified. Thus, the object-

oriented style of programming allows new types of objects and new operations to be

incorporated into the system without modifying existing software.

1 Extensive object-oriented versions of Lisp are readily available, but are not standardized. To ensure

portability, AUTOSIM is written completely in standard Common Lisp. The object-oriented extensions are
a part of AUTOSIM.

45

structure

expression

eqs

outvar

declaration

number

Computer Algebra

body

point

forcem
force

moment

Multibody System

sum

prod

power

dyad

func

sym

uv

trig

asin

atan

cos

sin

indexed-sym

Numerical Simulation
Program

complex

rational

float

integer

ratio

array vector simple-vector

stringsimple-array

sequence list

symbol

Figure 5.2.1. Hierarchy of AUTOSIM and Lisp data objects.

Figure 5.2.1 shows a hierarchy of data types used in AUTOSIM, as they relate to data

types already in Lisp. Each type of object “inherits” from the type to its immediate left in

the figure. For example, an object of type cos is also of types trig, func, and

expression. Characteristics of the types trig, func, and expression are

46

“inherited” by objects of type cos, and many functions that work with objects of type

trig, func, and expression also work with objects of type cos.

The data objects in the figure are shown in four groups, related to (1) computer algebra,

(2) the multibody system, (3) the numerical simulation program, and (4) additional native

Lisp objects. All native Lisp forms are shown in italics, and those used extensively in

AUTOSIM are shown in bold italics. The multibody analyses and simplification

techniques are applied by manipulating these objects.

Computer Algebra

Expressions in AUTOSIM can represent scalars, vectors, or dyadics. They are

composed of numbers and expressions, whose characteristics are listed in Table

5.2.1. Of the expressions defined in the table, four are elementary types from which the

other compound types are built. The elementary types are the number, the sym, the

indexed-sym, and the uv. When printed as Fortran source code, the sym designates a

variable and an indexed-sym usually designates an array element. Unit-vectors are

never written in the final Fortran output, but can be entered and read by the analyst. (They

are printed with enclosing square brackets.)

In the next chapter, we will see that most of the quantities appearing in the dynamics

equations are vectors and dyadics. Virtually all previously developed automated multibody

analysis methods formally define directions ahead of time, so that vectors can be described

using three-element arrays of scalar quantities with predefined directions. This approach

works fine for many kinds of rigid-body analyses, because expressions can be formulated

in terms of unit-vectors fixed in the body with which they are associated. However,

simpler equations are sometimes obtained by writing expressions for velocity or

acceleration vectors using unit-vectors fixed in a different body. Also, an inflexible

approach becomes cumbersome when dealing with forces and moments between bodies,

because forces and moments are often defined in orientations that defy conventions of any

single multibody formalism. Introducing arbitrary forces has not been been possible with

symbolic analysis programs in the past, limiting the level of automation that is possible in

the modeling.

Table 5.2.1. Summary of AUTOSIM expression types.

Type Primary Slots Definition Examples

number number 2, 1/3, –.3333

47

expression type, small-order,

sort-code, dxdt,

sym-value, const-or-

var, units, name

meta-type for all

expression objects

sym symbol, default,

hide, exp

symbol for a scalar

parameter or variable

M

indexed-

sym

i, category indexed symbol for a

scalar parameter or

variable

Q(2)

uv symbol, body,

dot-products,

cross-products

unit-vector [A1]

dyad uv1, uv2 dyad ([A1] . [A2])

power base, exponent base expression raised to

power

U(1)**2

prod coef, factors product of numerical

coefficient and list of

expressions

2.0*M*SIN(Q(1))

sum terms sum of expressions I + M*L**2

func function, args function that will be

written into numerical

program

TIRE(FZ, SLIP)

trig symbol sin or cos

cos cos COS(Q(2))

sin sin SIN(Q(2))

asin arc-sine ASIN(X)

atan arc-tangent ATAN2(X, Y)

Limits involving the choice of unit-vectors used in vector expressions are averted by

including unit-vectors as a primitive entity in the computer algebra representation. Vector

and dyadic expressions can be introduced using simple mathematics notation, and then

manipulated automatically. Also, vector velocities and accelerations can be projected in any

48

direction (via the dot-product operation) to define scalar output variables or scalar constraint

equations.

Nested expressions (simplification technique no. 4 from Section 5.1) are supported in

the designs of the compound expression types. For example, the expressions in the list of

factors of a prod can be sums, powers, funcs, etc. There are no limits to the level of

nesting allowed (other than computer memory).

The meta-type expression defines a repertoire of qualities associated with all

expression types. For example, the units of any expression (if known) are kept in the units

slot; the name of the expression (if there is one) is kept in the name slot; the derivative with

respect to time, if known, is kept in the slot dxdt.

Expressions are classified in several ways besides their object type. The type slot tells

whether an expression is a scalar, vector, or dyadic. Powers, syms, and

indexed-syms always have their type slot set to the value scalar. Also, all numbers

are by definition scalar. A uv has its slot set to vector, and a dyad is set to

dyadic. The prod and sum objects can be any one of the three types, depending on the

types of their components.

The const-or-var slot tells whether an expression is a constant or a variable. It is

mainly used for scalar expressions, to identify expressions that can be precomputed. The

value of this slot is set for a sym or an indexed-sym when it is created. When

compound expressions are examined, the const-or-var slot is set to const if all

expressions contained in the compound object are constants; otherwise it is set to var.

Some of the other slots are described later, in the context of the algebraic operations

used on expressions.

Multibody System

A multibody system is composed of bodies influenced by forces and moments and

connected to each other by joints. Points are fixed geometric locations in bodies used to

define joint attachments, force attachments, and points of interest needed to define output

variables or constraint equations.

body — A data structure called a body is used to represent each body in the system. A

body contains about 30 slots that are used to access information about (1) the kinematics

of a joint associated with the body, (2) properties of the rigid body, (3) the position and

49

orientation of the coordinate system fixed in the body, and (4) expressions that arise in the

dynamics analysis applied to the multibody system. Because the vector dot-product and

cross-product operations involve transformations between coordinate systems, some of the

information in a body will be used to perform those operations. A few slots in a body

that support algebra functions are shown in Table 5.2.2. Many more slots exist and are

described in Chapter 8.

Table 5.2.2. Some of the slots in a body that support algebra functions.

Slot Name Type Definition

symbol symbol symbol for user to reference the body.

name string descriptive name written into output files produced by

a simulation code.

parent body parent body in tree topology.

children list list of bodies that have this body as their parent.

uvs array 3 unit-vectors that define 1-2-3 axis directions of

coordinate system.

cos-matrix array direction cosine matrix relating the unit-vectors of this

body to those of its parent.

level number level of the body in tree.

0-point point origin of coordinate system of this body.

joint-point point point in parent body that coincides with the 0-point

when all generalized coordinates are zero.

abs-w expression absolute rotational velocity of this body.

abs-v0 expression absolute velocity of the 0-point.

Massless bodies can be used to introduce compound joints or intermediate reference

frames. Also, bodies with zero degrees of freedom can be used to add (or subtract) mass

or inertia to an existing body.

Because each body (except the body used as the inertial reference) is explicitly a child

of another body in the system, this design for the body organizes the multibody system into

a tree topology. (The tree topology is described by the parent and children slots.)

Methods used previously to represent multibody systems have involved arrays that

indicate relationships between bodies. As a minimum, a body-connection matrix is needed

to indicate which bodies are connected by joints [46, 53]. Other matrices are needed to

50

indicate parent-child relationships and applications of constraint equations [32, 51, 75,

126]. The representation presented here is much simpler and permits reconstruction of the

entire tree starting from any body in the tree, using only body objects. It also facilitates

analyses that require that the bodies be processed in a certain sequence. For example, lisp

code is shown below to apply a function func to each body in an order such that the

parent is always processed before the child.

;;; apply function func to each body from the root down

(defun apply-func-to-tree-top-down (func body)
 (funcall func body)
 (dolist (b (body-children body))
 (apply-func-to-tree-top-down func b)))

The order of processing occurs from parent to child because the function is first applied to

the body, and then the apply-func-to-tree-top-down function is recursively

applied to the children of the body. By reversing two operations in the above function, so

that the recursion occurs before the body is processed, the children are always processed

first:

;;; apply function func to each body from the leaves up

(defun apply-func-to-tree-bottom-up (func body)
 (dolist (b (body-children body))
 (apply-func-to-tree-bottom-up func b))
 (funcall func body))

When the motion of a body relative to its parent is constrained due to the connecting

joint, the vector expressions developed for the body motions can be defined recursively,

based on the motions of the parent and the relative motion between the body and its parent.

The example function apply-func-to-tree-top-down is representative of the

functions employed in AUTOSIM to apply recursive formulations developed in Chapter 8.

Additional information is needed to fully describe multibody systems with

nonholonomic constraints, or systems with holonomic constraints that define closed

kinematical loops. The additional constraint information associates two bodies that are not

already linked by a parent-child relationship. This information is not kept with either body.

As will be seen later, constraint equations are included by modifying the indexed-sym

objects used to represent state variables.

point — Points are used to define locations of interest in bodies, such as origins of the

coordinate systems, mass centers, attachment points, etc. Each body contains at least four

points. (In addition to the two points listed in Table 5.2.2, a third point is introduced at

51

the mass center of the body as defined by the analyst, and a fourth point is introduced at the

mass center as defined in the multibody formalism.) Additional points can be defined as

needed to identify attachment points for forces or as points of interest for output variables

and constraint equations. Table 5.2.3 shows how a point is defined in the system.

Table 5.2.3. Some of the slots in a point.

Slot Name Definition

symbol Symbolic name (symbol) for user to identify the point.

name descriptive name (string) of the point.

body body that contains the point.

coordinates array of 3 coordinates of the point in the coordinate

system of the body.

forcem — Force-producing elements are represented by objects called forces and

moment-producing elements are represented by moments. Both types, which inherit from

the meta-type forcem, are summarized in Table 5.2.4.

Table 5.2.4. Some of the slots in a forcem.

Slot Name Definition

symbol Symbolic name (symbol) for user to identify forcem.

name descriptive name (string) of forcem.

direction vector expression that gives direction of forcem.

magnitude scalar expression that gives magnitude of forcem.

body1 first body on which forcem acts.

body2 second body from which forcem acts.

point1 point on line of action of force on body 1 (force only).

point2 point on line of action of force on body 2 (force only).

The point1 and point2 slots in a force are used to obtain expressions for the moment

applied to a body about its mass center. That is, the moment is defined as

T = rB*P × f (5.2.1)

52

where rB*P is the position vector going from the center of mass, B*, to the point P on the

body through which the force passes, and f is the force vector (i.e., the product of the

expressions in the direction and magnitude slots of the force object).

Numerical Simulation Program

In addition to expressions and the multibody system, the numerical simulation program

produced as output by AUTOSIM is represented with objects. Three that are the most

significant are the types eqs, outvar, and declaration.

eqs — A sequence of assignment statements is represented by an object called an eqs.

Some of the sequences that are generated and manipulated are the kinematical equations, the

dynamical equations, the trigonometric functions used in other equations, and the output

variables.

outvar — Information about a variable that will be produced as output by the simulation

code is represented by the outvar object. It includes a short name, a long name, a

generic name, an expression, and units. Before the simulation code is written, the list of

outvars is processed to ensure that statements are generated to compute all dependent

variables defined by the analyst. The labeling information is written by the simulation in

such a way that output files can be handled automatically by post-processing software for

graphics and analysis.

declaration — A list of all variables of a certain type (REAL, INTEGER, etc.) that

must be declared in a specific subroutine module of the simulation code is represented in a

declaration object.

In its present form, all output source code is written in the Fortran language. However,

the representation of the simulation program in eqs, outvar, and declaration

objects is not dependent on the language. Generating simulation code in a different

language (e.g., C) is mainly a matter of augmenting the print functions for each type of

object, so that they are printed according to the syntax of the target language.

5.3. Computer Algebra Operations

The mathematical operations needed to derive equations of motion for a multibody

system and generate source code for a numerical simulation program can organized into

five categories for the purpose of implementing the operations in software: (1) operations

53

are implicitly performed when a compound expression object is created (e.g., a power

object represents an expression raised to a power, a prod object represents the

multiplication of expressions, etc.), (2) several primitive algebra operations are defined that

use information obtained from slots in the expression objects to create a new expression

object and assign values to some of its slots, (3) operations are defined to easily obtain

variables associated with rigid bodies and their coordinate systems (e.g., angular rotation

of a body), (4) higher-level algebra operations are defined in terms of primitive operations,

and (5) some operations are performed on computer code that has already been generated.

This last category of operations is analogous to a human programmer “looking over” the

code he or she has written, to possibly make improvements.

Making Expression Objects

Each definition of a compound expression object implies an operation. The functions

that make objects check their arguments and create simpler objects when possible. In fact,

significant algebraic simplifications are performed in these operations. Table 5.3.1

summarizes simplifications that are performed by creator functions.

Most of the “small” quantity simplifications occur in the make-sum operation. The

term with the minimum order of “smallness” is used as a reference and all other terms are

compared to it. Terms whose order of smallness is more than the reference by some

threshold are dropped. Normally, the threshold for dropping small terms is 2. However,

this value can be modified if needed to perform alternate analyses that require higher order

terms. For example, AUTOSIM has been used to generate equations needed for a

bifurcation stability analysis in which all state variables are “small” and terms are kept up to

the fifth order [120].

Table 5.3.1. Simplifications performed by creator functions.

Function Simplifications

make-asin

make-cos

make-sin

• if argument is the inverse function, return argument of argument

 (e.g. sin(sin-1x) → x).

• if argument is a number, evaluate.

• if argument is small, return truncated Taylor expansion.

make-atan • same simplifications as for make-asin.

• if there are two arguments, divide both by GCF.

 [e.g., tan-1(A*X, A*Y) → ATAN2(X,Y)]

54

make-power • if base is a power, change exponent.

• if base is number, evaluate.

• if base includes small terms, drop if possible.

make-prod • if the coefficient is 0, return 0.

• if the coefficient is 1 and there is one factor, return the factor.

•• if any numbers are included as factors, remove them from the

list of factors and multiply them with the coefficient.

•• if any factors are prods, multiply coefficients and combine

lists of factors (i.e., expand nested prods).

•• if any factors can be combined into a power, make the

substitution.

• else, sort factors and create prod object.

make-sum •• compare “small-order” values of terms and remove those which

are negligible.

•• check for trig identities: sin2x + cos2x → 1; 1 – sin2x → cos2x;

 1 – cos2x → sin2x.

•• if any terms are sums, remove them and append terms from

nested sums to existing list (i.e., expand nested sums).

•• if sym-value of sum would be negative, negate all terms and

return negative sum (prod with coefficient of –1).

• else, sort terms and create sum object.

Note: simplifications marked with •• mean that after the simplification is

performed, the make- operation is called again recursively using

updated arguments.

The other places that “small” simplifications occur are in the trigonometric functions.

Truncated Taylor series are used to create expressions for these functions when the

arguments are small. Otherwise, the appropriate trig or func object is made and

returned.

Care has been taken to ensure that equivalent occurrences of a compound expression

always are created the same way. Sums nested within sums and prods within prods are

removed. For example, the sum (A + B) + C yields (A + B + C), rather than ((A + B) +

C). Terms and factors are sorted in the make-prod and make-sum functions. For

example, the product of B and A*C is A*B*C rather than B*A*C. A sign convention for

sums is used that results in a repeatable formulation for a given sum, regardless of how it

55

is obtained. For example, the expression (–A – B – C) would never be generated: instead,

that result is always represented as –(A + B + C).

Primitive Algebra Operations

Table 5.3.2 summarizes the primitive mathematical operations. These operations

involve one or two arguments. In the object-oriented environment, each operator has an

associated dispatch table which is used to find a function for dealing with a specific type of

expression (for unary functions) or combination of types (for binary operations). For

example, to add a sum and a prod, the appropriate table is searched for the combination (sum prod)

new types of expression objects and new functions are “installed” in the system without

modifying any of the existing software.

Most of the operators in the table work as might be expected. Exceptions and special

notes are provided below.

mul — When developing expressions through multiplication, further simplifications are

attempted. That is, numbers are multiplied on the spot, multiple appearances of an

expression are combined into a power, multiple powers with the same base expression

are combined, etc. Products are usually not expanded, in order to keep factored forms.

However, there are times that expanded forms are preferred. For example, when solving

for a symbol in an expression, it is necessary to subtract two potentially complex

expressions such that the result contains no reference to the symbol being solved for. The

expressions are expanded to ensure that the symbol is not buried in a subexpression, such

that complete cancellation takes place.

Table 5.3.2. Summary of primitive AUTOSIM mathematics operations.

Operation Argument(s) Description

add x, y x + y

const-or-var x is x constant or variable?

cross v1, v2 v1 × v2

dot v1, v2 v1 • v2

dxdt x x

gcf x, y find symbolic greatest common factor.

mul x, y x y (either x or y must be a scalar)

neg x –x

56

partial y, x ∂y ∂x
(x is scalar)

gcf — The symbolic “greatest common factor” (GCF) between X and Y is determined.

(If X and Y have no factors in common, or one of them is a number, then the GCF is 1.)

add — The general method for adding two expressions X and Y is with the formula

X + Y = GCF(X, Y) * (X / (GCF(X, Y) + Y / GCF(X, Y))

After the GCF is factored out, the results are combined with make-sum. For example,

when the expressions A*X and B*X**2 are added, the result is X*(A + B*X).

dot — The dot product operation is valid for two vectors, a vector and a dyad, or two

dyads. The method used for applying the operation is to recursively expand expressions

into multiplications and additions of subexpressions, and dot products of uv/dyad pairs.

This approach eventually expands the original dot product to an expression involving

operations defined for scalar algebra, together with dot products between unit-vectors.

Thus, the only new primitive operation needed is the dot product between two uvs.

Recall that the uv contains a slot called dot-products. This contains a table with all

pairs of uvs whose dot product is known. Initially, each table contains three entries for the

three uvs in the body in which the uv is defined. (The values are 1 for the dot product of

the uv with itself and 0 for the other two uvs of the trio.) If the table contains the answer,

it is used. Otherwise, the dot product is between two uvs associated with different bodies

that have not yet been analyzed. In that case, an analysis is performed as described below.

Each body has a slot with a direction cosine matrix relating the uvs for that body with

the uvs of the parent. The uv whose body is furthest “down” the topology tree is

transformed into an expression involving the three uvs of its parent body. The dot product

is then taken between the new expression and the uv that was “up” the tree.

This method is recursive—the dot operator is defined in terms of itself. It works,

because with each recursion, the expressions being considered are simpler, and/or the uvs

are closer in the tree. Eventually, the process is guaranteed to stop when both arguments

are uvs associated with the same body.

The results of the process are stored in the table of dot-products for one of the uvs, so

that the “tree-climbing” and transformations (via the direction cosine matrices) are not

required the next time the dot product is needed.

57

The method of “tree climbing” ensures that the minimum number of direction

transformations is performed for each dot product operation. Thus, trigonometric

simplifications are not required for this operation.

Note that the dot-product operator makes use of information from both the uv object

from the computer algebra part of the system, and also the body object from the multibody

part of the system.

cross — The cross product operation is performed using the same recursive approach as

described above for the dot product. A uv crossed with a uv is obtained from the table of

values in the cross-product slot of either uv if available (with a multiplication by –1 if the

table of the second uv is used). Otherwise, the cross-product is formulated using the

expansion:

a × b → a • b1 b1 + a • b2 b2 + a • b3 b3 × b (5.3.1)

where a is the first uv, b is the second, and b1, b2, and b3 are the unit-vectors for the

body containing b. As was the case for the dot product, some of the information needed to

perform the operation is obtained from the body object from the body slot of the uv

object.

dxdt — The derivative of an arbitrary expression is determined using elementary rules of

calculus to recursively expand the expression into products and sums of simpler

expressions and their derivatives. The expansion stops when a sym, indexed-sym,

number, or uv is reached. The time derivative of a sym or indexed-sym is zero if the

expression is a constant, otherwise it is obtained from the dxdt slot.

The time derivative of a uv (u) is defined as

u → ωB
 × u (5.3.2)

where ωB
 is the absolute rotational velocity of the body containing u, obtained from the

abs-w slot of the body found from the body slot of the uv.

There are other ways in which the time derivative might be defined. For example, one

could project the uv into the coordinate system of the fixed inertial reference and then take

derivatives of the scalar components. However, eq. 5.3.2 has two strong advantages:

1. it leads to simple expressions, matching the conventional definition of the derivative

of a vector fixed in a rotating reference frame.

58

2. the cross-product operation remains valid after small terms have been dropped and

trigonometric functions have been replaced with truncated Taylor series. Thus,

simplifications from small angles and small speeds can be made as soon as the

small quantities appear in the analysis without causing errors in derivatives of unit-

vectors taken later.

After the absolute time derivative of an expression is derived, the result is put into the

dxdt slot for further reference.

partial — Partial derivatives are obtained using the same basic process as used for

dxdt, except that (1) results are not saved, (2) the partial derivative of a sym or

indexed-sym is zero unless it is equal to the argument symbol, in which case the partial

is 1, and (3) partial derivatives of uvs are zero.

Multibody Operations

A few operations for dealing with points and bodies are useful for specifying forces,

moments, and dependent variables of interest. These are summarized in Table 5.3.3.

The effect of vel can be obtained using the pos operator together with dxdt.

However, the result usually involves derivatives of generalized coordinates, whereas the

vel function provides the result as an expression involving generalized speeds.

Table 5.3.3. Summary of AUTOSIM operations for bodies and points.

Operation Argument(s) Description

pos point position vector from origin of inertial

reference to point

pos point1, point2 position vector from point2 to point1

rel-vel point, body relative velocity of point in reference frame

body

rot body rotational velocity of body

vel point velocity vector from origin of inertial

reference to point

vel point1, point2 absolute velocity of point1 minus the

absolute velocity of point2

Accelerations are obtained by combining the dxdt function with rot and/or vel.

59

Higher Level Operations

Table 5.3.4 lists mathematics operations that are derived from the above primitive

functions. Some of the operators in the table have standard meanings and are implemented

according to their definitions. Others are not standard, and are defined below.

angle — The angle between two vectors v1 and v2 is determined by defining three unit-

vectors and projecting one onto the other two to obtain an expression for the arctangent of

the angle. The steps are described below and illustrated in Figure 5.3.1:

1. The directions of the two vectors are obtained:

u1 = v1

v1
u2 = v2

v2

(5.3.3)

2. A third direction is defined that lies in the plane defined by v1 and v2, and is

orthogonal to v1:

u3 = u1 × u2 × u1 (5.3.4)

3. The angle, θ, is defined as

θ = tan–1
u3 • u2

u1 • u2
 sign v3 • u1 × u2 (5.3.5)

Table 5.3.4. Summary of higher-level mathematics operations.

Operation Argument(s) Description

angle v1, v2, {v3} angle between v1 and v2, with sign

determined by optional v3

constant-part exp constant part of expression

convert-

coordinates

coordinates,

oldbody, newbody,

{offset-p}

convert coordinates from coordinate

system of oldbody to the coordinates

system of newbody.

dir v direction of vector, i.e., v v .

div exp1, exp2 invert exp2, then multiply with exp1.

dot-plane v1, v2 project vexp1 onto plane normal to vexp2.

inv exp make-power with exponent of –1

mag v scalar magnitude of vector, v → v • v .

nominal exp find expression when all generalized

coordinates are zero.

60

solve-for x, L, R, {num} solve for x, given relationship of form:

L(x) = R.

square exp multiply exp with itself.

sub exp1, exp2 negate exp2 and add to exp1.

This method is valid for angles of

any size. Results are expressed using

the Fortran ATAN2 function, which

accepts two arguments and is valid for

the range of –180° ≤ θ ≤ +180°. The

make-atan function is used to create

the resulting expression, with the

possible simplifications noted earlier in

Table 5.3.1. Note that an optional third

vector, v3, is used to establish the sign

of the angle. (The sign function in eq. 5.3.5 has a value of ±1, with a sign that matches

that of its argument.)

constant-part — This function returns zero unless (1) the expression is a constant,

or (2) it is a sum (or a negative sum) with at least one constant term. It is used to obtain the

part of an expression that is constant, and is useful for selecting potential divisors (for

constraint equations) that are unlikely to have zero values, regardless of the values of the

state variables.

convert-coordinates — This function returns an array of three coordinates

based in newbody, when provided an array of three coordinates based in oldbody. It is

used to permit the analyst to define points and directions using a specified coordinate

system, rather than the coordinate system of the body containing the new point or direction.

To perform the conversion, the coordinates are multiplied by the unit-vectors of oldbody

and added to define a vector r. If the optional argument offset-p is omitted or given a

value of NIL, the coordinates are converted without considering the possible offset

between the origins of the coordinate systems of oldbody and newbody. That is,

r = a1a1 + a2a2 + a3a3 – pos(B0, A0) (5.3.6)

u1 • u2

θ
u1 = v1

v1

u2 = v2

v2u2 • u3

u3 = u1 × u2 × u1

Figure 5.3.1. Angle calculation.

61

where a1, a2, and a3 are the three coordinates in the input array, and a1, a2, and a3 are the

three unit-vectors fixed in the oldbody, A0 is the origin of oldbody, B0 is the origin of

newbody, and the curly braces indicate that the offset is optional, depending on whether the

offset-p argument was given a non-NIL value. The output coordinates b1, b2, and b3 are

then defined as

b1 = nominal r • b1

b2 = nominal r • b2

b3 = nominal r • b3 (5.3.7)

(The nominal function is defined below.) When converting the coordinates of a

direction, it is appropriate to omit the offset-p argument. On the other hand, when

converting the coordinates of a point, the offset-p argument should be provided with the

value T.

dot-plane — This function describes a procedure in which a vector v1 is projected

onto a plane perpendicular to a second vector, v2. This is done by defining the plane as a

dyadic, and then taking the dot product of the vector with that dyadic. The new vector is

defined as v1 • v3 v3 + v4 v4 where

v3 =
v1 × v2

v1 × v2

v4 =
v3 × v2

v3 × v2

(5.3.8)

nominal — This function simplifies an expression by setting all state variables to zero.

As noted above, it is applied in the convert-coordinates function. Also, it is useful

for obtaining a nominal spring length.

solve-for — This function is used to “solve” a constraint equation. Given an

equation of the form

L(x) = R (5.3.9)

where x is the symbol to eliminate, this returns an expression that can be used to replace x.

The expression R is assumed to be independent of x. First, a linear solution is sought. If

L(x) is a sum, the terms not containing x are subtracted from both sides of the equation and

the function recursively calls itself with new arguments. Otherwise, the candidate solution

is

62

x = R ∂L
∂x

 if ∂2L

∂x 2
 = 0 (5.3.10)

If L is not linear with respect to x, as is the case for many constraint equations

involving position, then a numerical “solution” is obtained if the optional argument num is

T. In this case, the “solution” is based on the assumption that the current value of x is

close to the correct value, such that (L – R) is close to zero. (This assumption is valid in

the one place it is used in AUTOSIM, as will be seen in Section 8.3.) Call the current

value x0 and the corrected value xc, and consider an expression F that is identically zero

when x has the correct value. That is,

F(xc) = L(xc) – R (5.3.11)

Expanding in a Taylor series gives the following:

0 = F (xc)

= F (x0) +
∂ F (x0)

∂x
 (xc – x0) + O[(xc – x0)2] (5.3.12)

Ignoring the higher order terms, and solving for xc in terms of x0 yields the following:

xc ≈ x0 –
F (x0)

∂F (x0) ∂x
 (5.3.13)

The solution generated by the function solve-for is a recursive computational

formulation that replaces the old value of x in a Fortran program with a new value. That is,

x ← x –
F (x)

∂F (x) ∂x
(5.3.14)

where the symbol “←” indicates replacement. The example system analyzed in section 9.3

illustrates code of this nature.

Operations on Program Code

The equation simplifications noted earlier (simplification techniques 8, 9, and 10 in

Section 5.1) are easy to implement after the simulation code has been generated and can be

inspected. This means that equations are not written as they are derived, but are kept in

computer memory as eqs objects.

63

Introduction of Intermediate Variables and Constants

The simulation code generated by AUTOSIM includes two sets of intermediate symbols

used to replace expressions. One set is for constant expressions and the other is for

variables. (Both are called intermediate variables below, since that is how they are

implemented in a Fortran program.) A function called intro-var-if-new is used to

process expressions and introduce new variables as needed. The method for doing this

involves a table of all expressions that have been replaced by intermediate variables. The

replacements are indexed-sym objects, which print as elements of a Fortran array PC

(for precomputed constants) or Z (for variables). A simplified version of the algorithm in

intro-var-if-new is as follows:

• If the expression is an indexed-sym, a sym, or a number, it is returned.

• Else, if the expression is a vector or dyadic, terms are collected so that each unit-

vector or dyad appears only once. (For example, the terms in the expression

“L1 a1 + L2 b1 – L3 a1” would be collected, to yield the expression

“ L1 – L3 a1 + L2 b1.”) Then, intro-var-if-new is applied to every scalar in

the expression.

• Else, if the expression is in the table of existing intermediate variables, the

corresponding indexed-sym is returned.

• Else, if the expression is a constant, define a new indexed-sym, put it at the end

of the list in the eqs object for intermediate constants, put the expression and

symbol into the table of intermediate variables, and return the new indexed-sym.

• Else, if any constant expressions can be factored out, do so. Apply intro-var-

if-new to the constant part and the variable part, then apply intro-var-if-

new to the product.

• Else, apply intro-var-if-new to all components of the compound expression

(arguments in a func, factors in a prod, etc.), then continue.

– If the expression is a prod, process the scalar factors two at a time. If the

prod included a factor that is a uv or dyad, skip over it. Multiply the first

two scalar factors and apply intro-var-if-new to the result. Multiply

the result with the next scalar factor and apply intro-var-if-new to

that result. Proceed until all scalar factors have been processed. The

64

definitions of the new indexed-syms are variables, and are placed at the

end of an eqs object used for the intermediate variables.

– Else, introduce a new indexed-sym, put its definition at the end of the

appropriate eqs object, update the table, and return the new indexed-

sym.

This algorithm is recursive, and results in a number of intermediate expressions being

introduced for a single compound expression. For example, consider the expression

A*(B*X + C*Y), where A, B, and C are constants and X and Y are variables. Processing

this expression with the intro-var-if-new function leads to the following eqs object

for intermediate constants,

PC(1) = A*B
PC(2) = A*C

and the following object for intermediate variables:

Z(1) = PC(1)*X
Z(2) = PC(2)*Y
Z(3) = Z(1) + Z(2)

The number of multiplications needed to compute the full expression has been increased

from 3 in the original, to 4 with the intermediate variables. However, two of the new

multiplications involve constants, leaving only two multiplications that must be performed

at each time step during a numerical simulation run.

For the above algorithm to be effective, it is essential that expressions are uniquely

identified in the table. For example, if the product A*(1 + COS(Q(1))) is in the table of

previously replaced expressions, a search for (–COS(Q(1)) –1)*A would fail, even though

the two expressions are algebraically equivalent. This is why the make-prod and make-

sum functions described earlier ensure that a given product or sum always has the same

structure.

The above algorithm always introduces a new intermediate variable whenever an

arithmetic operation or function evaluation occurs. For simple multibody systems, this can

sometimes degrade computational efficiency by eliminating possible simplifications that

occur by factoring. For example, consider an expression A*U(1) which is later added to

A*U(2). If both expressions are replaced by intermediate variables, say Z(5) and Z(15),

the sum is (Z(5) + Z(15). It requires 2 multiplications, which occur when Z(5) and Z(15)

are computed. If the intermediate variables were not introduced, the result of the addition

would be A*(U(1) + U(2))—an expression with only one multiplication.

65

There are some reasons not to introduce a new intermediate variable if that variable will

only be used once. First, some potential simplifications are not made, such as the one just

described. Second, the equations become almost unreadable by humans. The equations

are usually complicated to begin with, and introducing intermediate variables that only

appear once compounds the difficulty. Third, some Fortran compilers optimize machine

instructions for large expressions, putting temporary intermediate results directly into

working registers. For machines with vector processing or other parallel computing

capabilities, the compiler may further improve efficiency by breaking down complex

expressions to take full advantage of the hardware. If an intermediate variable is defined in

the source code, the compiler is obliged to save its value by moving it into a RAM location.

For these reasons, the method described below for removing unused code is extended to

also eliminate any intermediate variables that would only be used once.

Removal of Unused Code

Before the equations are written as output into a Fortran program, they are inspected for

intermediate variables that are never used, or used only once. Only equations that

contribute to the computation of the derivatives of the state variables or to the computation

of output variables are actually written into the simulation code that is generated by

AUTOSIM.

An important part of the design of AUTOSIM is that the three symbolic elements—the

sym, the indexed-sym, and the uv—are stored in memory such that there are no copies

(e.g., the object printed as “Q(2)” exists in only one place, even though it appears in more

than one expression).1 Recall that one of the slots in the sym object is called hide. The

hide slot is used to keep count of how many times the sym actually appears. The eqs

object only prints equations involving syms whose hide slots are not set to 0. For

example, if an eqs contains 100 equations, but only 10 involve syms with hide counts

greater than 0, then only 10 equations are printed. The other 90 equations are still in

memory, but are hidden.

To count occurrences, the hide slots in all intermediate variables in an eqs are set to 0,

and then equations used to compute derivatives and output variables are processed with a

1 Lisp uses pointers to reference such objects when they are “contained” in other objects. Thus, when

an elementary object is changed, all expressions “containing” that element are updated since their pointers
continue to point at the changed object.

66

function called validate-exp. The validate-exp function operates recursively to

“validate” syms. If its argument is a sym or indexed-sym, it increments the count in the

hide slot, and then applies itself recursively to the expression on the right-hand side of the

equation (available from the exp slot). If the argument is a compound expression,

validate-exp applies itself to all of the parts of the expression (arguments in a func,

factors in a prod, etc.)

After the hide values have been established for all indexed-syms that appear on the

left-hand side of an equation, a second pass is made in which all intermediate variables that

are used only once (hide = 1) are expanded back into the original expressions.

67

6. MULTIBODY DYNAMICS THEORY

As noted in Chapter 2, there is a large body of literature covering techniques for

analyzing multibody systems. Traditionally, dynamics analysis methods in textbooks have

started with the equations of a particle, then a system of a few particles, then a rigid body,

and then a few rigid bodies (e.g., [35]). Emphasis is placed on gathering physical insight

into the system, so as to introduce meaningful variables, coordinate systems, etc. By

understanding the system and all of the details of the formulation of the system equations,

the analyst may choose to alter the model or eliminate terms to achieve simpler equations.

However, little is said about dealing with complex systems with numerous rigid bodies

subject to constraints. In contrast, “multibody formalisms” have been developed and

published which offer a systematic analysis method based on matrix representations [25,

26, 85, 87, 97, 110, 134, 137]. In these methods, the analysis consists of setting up

matrices which are subsequently manipulated to yield the equations of motion. Because all

of the details of the analysis are handled as matrix manipulations, it is more difficult for the

analyst to apply simplifications.

An analysis method developed by Kane [58] is used in this work for several reasons:

(1) as is the case for the multibody formalisms, it is presented as a “cookbook”

methodology that can be used to systematically analyze the most complex of multibody

systems, (2) the method is presented for a human analyst to follow, and it permits all of the

traditional simplifications to be made by the analyst while deriving equations, (3) it requires

relatively little symbolic computation, compared to other popular approaches (e.g., the

Lagrangian or the direct Newton-Euler type of analysis), and (4) it has been reported to

lead to highly efficient equations of motion [15, 55, 56, 57, 59, 70, 98, 125].

The purpose of this chapter is to review the basic existing method and to extend it to the

form needed for computer solution. This lays the groundwork for the detailed multibody

formalism developed in Chapter 8. The chapter begins with a quick summary of the first

principles underlying the equations of motion for a mechanical multibody system. Next,

Kane’s approach is described, and extended to a form suitable for numerical integration

algorithms. Terms useful for formulating the equations in a matrix structure (for computer

68

solution) are introduced. The equations and quantities developed in this chapter form the

foundation of a multibody formalism.

Steps involving judgements, traditionally made by the analyst, are added to the

formalism in Chapter 8. Also, a formal strategy for including kinematical loops and other

constraints is developed in Chapter 8. (The strategy involves the derivation of coefficients

introduced in this chapter.)

6.1. Fundamental Concepts

The state of the multibody system is described by state variables, which are divided into

two groups: generalized coordinates and generalized speeds (see Section 3.2 for

definitions). For constrained systems, some of the degrees of freedom might be eliminated

by (1) holonomic constraints, imposed by geometry, and/or (2) nonholonomic constraints,

imposed by motion limits. Starting with an unconstrained system of bodies, each

holonomic constraint removes an independent coordinate and an independent speed,

whereas each nonholonomic constraint removes only an independent speed. Further,

coordinates and speeds known by the analyst to be of no interest might be omitted.

Overall, the system has n generalized coordinates (designated q1, q2, ... qn) and p

independent speeds (designated u1, u2, ... up). The system is said to have p degrees of

freedom.

The objective in analyzing a multibody system in this dissertation is to be able to

compute time histories of variables of interest, in response to known inputs. To achieve

this objective, it is necessary to (1) define a valid set of state variables that describe the

system and can be used to compute the output variables of interest, and (2) derive equations

of motion for computing the state variables as functions of time. The equations of motion

are ordinary differential equations involving the state variables, their derivatives, and

known functions of time. These differential equations are commonly classified into two

groups: kinematical and dynamical. The kinematical equations are used to compute

derivatives of the generalized coordinates, and are developed from the definitions of the

state variables. The dynamical equations are used to compute derivatives of the

independent speeds (accelerations), and are derived from first principles of the dynamics of

rigid bodies.

69

Kinematical Equations

Kinematical equations define derivatives of the generalized coordinates as linear

combinations of the generalized speeds. They never include influences of masses, forces,

or moments. In many cases, generalized speeds are defined as the derivatives of the

generalized coordinates. If so, the kinematical equations are simply

q1
q2
. . .
qn

 =

u1
u2
. . .
un

(6.1.1)

Sometimes, however, there are reasons for defining speeds that are not derivatives of the

coordinates.

The fundamental tactic for obtaining a kinematical equation for a translational

generalized coordinate derivative is to obtain two vector expressions for a point on a body:

(1) as the time derivative of the position of that point, and (2) using kinematical rules

involving moving reference frames and the definitions of the generalized speeds. The first

vector expression involves derivatives of the generalized coordinates, whereas the second

does not. Scalar equations are obtained by equating the vector expressions and dot-

multiplying both by an appropriate unit vector.

For example, consider a simple vehicle model involving one rigid body constrained to

planar motions. It has two translational degrees of freedom, q1 and q2, that define the

coordinates of its center of mass in the directions n1 and n2, and a yaw rotational degree of

freedom q3 about the axis n3. Three generalized speeds are defined:

u1 = vB* • b1 u2 = vB* • b2 u3 = ωB
 • n3 (6.1.2)

The velocity of the mass center B* is defined implicitly in eq. 6.1.2, as

vB* = u1 b1 + u2 b2 (6.1.3)

Alternatively, an expression for the velocity is obtained by taking the derivative of the

position vector that goes from the fixed origin to B*:

vB* = d
dt

 q1 n1 + q2 n2

= q1 n1 + q2 n2 (6.1.4)

70

By equating eqs. 6.1.3 and 6.1.4 and dot multiplying with n1 and n2, two kinematical

equations are obtained:

q1 n1 • n1+ q2 n2 • n1 = u1 b1 • n1+ u2 b2 • n1

q1 = u1 cos q3 – u2 sin q3 (6.1.5)

q1 n1 • n2+ q2 n2 • n2 = u1 b1 • n2+ u2 b2 • n2

q2 = u1 sin q3 + u2 cos q3 (6.1.6)

Note that these equations are linear with respect to the generalized speeds, although the

coefficients are nonlinear functions of the generalized coordinates.

A similar tactic is used for rotational velocity of the body: two expressions are obtained

for rotational velocity, equated, and dot-multiplied with an appropriate unit-vector. For this

example, the third kinematical equation is

q3 = u3 (6.1.7)

It is not always possible to obtain equations with a single unknown variable on the left-

hand side. In the most general terms, the kinematical equations are written in matrix form:

 S q = v (6.1.8)

Where S is an n × n matrix, q is a column array of length n containing the derivatives of

the generalized coordinates, and v is a column array of length n.

To develop this strategy in more detail requires knowledge of how the generalized

coordinates and speeds are defined. Later, when rules are established for introducing the

state variables, the formulation of the kinematical equations can be specified in complete

detail.

Newton-Euler Equations

Dynamical equations are derived from first principles of the dynamics of rigid bodies,

namely, the Newton and Euler equations. For a rigid body, whose principle axes are

labelled 1, 2, and 3, Euler’s equations are

I1 α1 – (I2 – I3) ω2 ω3 = T1

I2 α2 – (I3 – I1) ω3 ω1 = T2

71

I3 α3 – (I1 – I2) ω1 ω2 = T3 (6.1.9)

where Ti is a component about axis i of a couple applied to the body, relative to its center of

mass or a point fixed in space, Ii is a moment of inertia for the rigid body about its mass

center or a point fixed in space, taken in the direction of axis i, αi is the component of

angular acceleration of the body about axis i, and ωi is the component of angular velocity

about axis i. Newton’s equation is simply

m ai = Fi (6.1.10)

where i can be an axis oriented in any direction, Fi is the component along axis i of the

resultant force applied to the body, and ai is the component along axis i of the acceleration

of the mass center.

The Newton-Euler equations are written more simply for a rigid body, independent of

direction, using vector and dyadic quantities. Momentum terms for body B can be written

as vectors:

P
B
 = mB vB* (6.1.11)

H
B*

 = I
B*

 • ωB
(6.1.12)

where P
B
 is the translational momentum of body B, mB is the mass, H

B*
 is the angular

momentum of B about its mass center, and I
B*

 is the inertia dyadic of the body about the

mass center. From these expressions, the Newton-Euler equations for B are

F∑ = dP

B

dt
 = mB aB* (6.1.13)

T∑ = dH
B*

dt
 = ωB

 × I
B*

 • ωB
 + I

B*
 • αB (6.1.14)

In the above equations, F∑ is the sum of all forces applied to the body and T∑ is the

sum of all moments (torques of couples) applied to the body about its mass center.

Scalar expressions are obtained from eqs. 6.1.13 and 6.1.14 by projecting the vectors

onto a direction of interest via the dot-product operation. For example, consider the

direction defined by a unit-vector u. The scalar equation obtained by taking the dot-

product of u with eq. 6.1.13 yields a force balance similar to eq. 6.1.10 in the u direction.

The corresponding dot product obtained with eq. 6.1.14 results in a moment balance about

the center of mass of the body, for an axis parallel with u. If u is oriented along a

principle axis of B, this moment balance is an Euler equation. (When u is not oriented

along a principle axis, a more complicated scalar equation is obtained that includes the

72

products of inertia of B.) For an unconstrained body, six independent scalar dynamical

equations are obtained by taking dot products of eqs. 6.1.13 and 6.1.14 with any three

orthogonal unit vectors.

The Newton-Euler equations define a linear relationship between the derivatives of

velocity (translational and rotational) and the sum of the forces (for translation) or moments

(for rotation) applied to the body. For a system with p dynamical degrees of freedom, a set

of scalar equations can be obtained that has the form:

 M u = f (6.1.15)

where M is a p x p matrix called the mass matrix, u is a column array containing the p

derivatives of independent speeds, and f is a column array of length p, called the force

array1. Many detailed approaches have been developed for obtaining the equations, and

one such method is presented later. Here, we consider only the general concept of how the

Newton-Euler equations are extended for multiple bodies.

Constrained Systems

For constrained systems, the simple approach of dotting the vector force and moment

equilibrium equations with three orthogonal unit vectors is by itself insufficient because it

produces too many equations for the system.

One method for dealing with a constrained system is to first obtain a set of equations

for each rigid body as if the body were unconstrained, and to then add additional equations

for each force and moment of constraint. The total set of equations then includes both

differential equations (from the Newton-Euler relationships) and algebraic equations (from

the constraints). Special numerical solution methods have been developed for solving sets

of ordinary differential and algebraic equations, which are numerically similar to ordinary

differential equations for “stiff” systems [29, 30]. Another approach is to search for the

“most independent” state variables and integrate only those [31, 32, 43, 51, 54, 61, 68,

71, 78, 85, 129, 132]. Because holonomic constraint equations involving position are

often highly nonlinear, in some formulations only the derivatives of the constraints are

1 The matrix M consists of the coefficients of the derivatives of the independent speeds as they appear

in the equations of motion. These coefficients are sometimes masses, sometimes moments of inertia, and
sometimes expressions with units of mass or moments of inertia. The name “mass matrix” is not perfectly
descriptive, but it is widely used in the literature. The array f simply includes all terms that appear on the
right-hand side of each equation of motion. The elements of f have units of forces and moments, which is
why the name “force array” is used.

73

included because they are linear. To prevent error from accumulating during the

integration, “constraint stabilization” methods are used [14, 19, 84, 89, 96, 126]. (A new

version of this approach is used in Chapter 8 for dealing with closed kinematical loops.)

Because there are many more equations than there are degrees of freedom, formulations of

this sort are sometimes called “redundant equations.”

Another method for dealing with a constrained system is to introduce only one

generalized speed for each nonholonomic degree of freedom, and one coordinate for each

joint degree of freedom. Then there is a one-to-one correspondence between degrees of

freedom and equations of motion. Formulations of this sort are sometimes called “minimal

equations.” In the above example involving a rigid body moving on a plane, the restriction

to planar motions is the result of holonomic constraints that prevent vertical deviations or

rotation about a roll axis or pitch axis. A minimal set of generalized coordinates and speeds

was introduced (n=p=3). Suppose a nonholonomic constraint is also applied, by defining

the forward speed as a constant. Then, the system would have three generalized

coordinates and two nonholonomic degrees of freedom. To obtain minimal equations, the

generalized speed u1 would be removed and replaced with a constant.

If a given multibody system is analyzed by different methods, to obtain both minimal

and redundant equations, it is usually the case that the many redundant equations are

individually very simple, whereas the few minimal equations are individually more

complicated [39]. There is no consensus in the literature that one approach is inherently

superior to the other for general numerical solution. However, for symbolic formulations,

less manipulation is needed to obtain equations in explicit form if the implicit equations are

already minimal.

A minimal equation formulation strategy is developed in this dissertation that is based

on Kane’s approach. Forces and moments of constraint are generally not included in the

equations of motion. However, methods for including the constraint forces and moments

exist for cases in which they are of interest [9, 10, 58].

6.2. Kane’s Approach

Kane has developed a methodology in which sums of forces and moments are projected

against vector quantities called partial velocities, which will be defined shortly. The partial

velocities are defined such that they account for constraints, and a minimal set of

74

differential equations is obtained. The procedure, as developed in a textbook [58], is

summarized below for nonholonomic systems. (Note: because the following summarizes

about 100 pages of text, some liberties have been taken to very briefly review tasks

performed by the analyst. Also, some changes in notation have been made to accommodate

methods developed later.)

First, the analyst develops a conceptual model of the system. He or she decides how

many bodies are used to represent the system, and how they are kinematically related to

each other. For each body, a trio of unit-vectors is established to define directions and

positions relative to that body. All of the force and moment-producing components are

identified. The attachments of these components to the bodies are described. Also,

external forces (gravity, vehicle tire forces, aerodynamic effects, etc.) are identified.

Next, a position analysis is performed to introduce generalized coordinates and develop

expressions needed to write expressions relating points of interest in the system.

Generalized coordinates are introduced for each joint degree of freedom that is of interest,

or which contributes to a force or moment, or which is needed to write expressions for the

velocities of mass centers of bodies in the system.

A velocity analysis is performed to develop variables and expressions needed to write

the velocity of any particle in the system. Generalized speeds are introduced for each joint

degree of freedom such that it is possible to write an expression for the instantaneous

velocity of any point on any body in the system, using only dimensional parameters,

generalized coordinates, and generalized speeds. When these are introduced, the analyst

should develop kinematical equations to define derivatives of the generalized coordinates in

terms of generalized speeds.

The system may be subject to nonholonomic constraints, which prevent all of the

generalized speeds from being mathematically independent. If there are ν generalized

speeds and m nonholonomic constraints, then are are p independent speed variables, where

p = ν – m (6.2.1)

If the system includes nonholonomic constraints (i.e., m ≠ 0) then the p independent

speeds should be numbered such that u1 ... up are independent and up+1 ... uν are

nonholonomic. It is necessary to develop explicit expressions for the m nonholonomic

speeds, using the following form:

75

us = Asr∑
r=1

p

ur + bs (s = p+1, ... ν) (6.2.2)

where the coefficients Asr and bs may be constants or functions of the generalized

coordinates and of time (they are defined by the analyst). The equations defined in eq.

6.2.2 are nonholonomic constraint equations.

The analyst develops an expression for the angular velocity vector of each body ωB
.

From each angular velocity, ν holonomic partial angular velocities are defined:

ωi
B
 =

∂ωB

∂ui
(i = 1, ... ν) (6.2.3)

A partial angular velocity is simply a coefficient appearing in an expression for angular

velocity. Because angular velocities are always vectors, and speeds are always scalars, it

follows that a partial angular velocity is always a vector. The total number of partial

angular velocities that exists for the multibody system is the product ν NBodies, where

NBodies is the number of rigid bodies in the system.

Next, expressions are developed for the velocity vectors of the the mass centers of each

body, vB*. From these expressions, ν holonomic partial velocities are defined:

v i
B* =

∂vB*

∂ui
(i = 1, ... ν) (6.2.4)

If the system is nonholonomic, nonholonomic partial angular velocities and partial

angular velocities are defined, using the coefficients from the constraint equations:

ωr
B
 = ωr

B
 + Asr∑

s=p+1

ν
 ωs

B

(r = 1, ... p) (6.2.5)

Also,

v r

B*
 = v r

B* + Asr∑
s=p+1

ν
 vs

B* (r = 1, ... p) (6.2.6)

The nonholonomic partial velocities are written with a tilde over the vector arrow to

distinguish them from the holonomic partial velocities.

For each body, all force vectors acting on the body are added to obtain a resultant force.

Forces acting between two bodies should appear in the resultant force vectors for both

76

affected bodies, with opposite directions. (For example, if a spring is attached to points in

bodies A and B, the direction of the force applied to B is the opposite of the direction used

for A.)

For each body, the torques of all couples acting on the body are also added. These

include pure torque couples (torsional springs, rotary motors, etc.) and moments of applied

forces. (The moment associated with an applied force is r × f , where f is the force vector

and r is a position vector that goes from the center of mass to a point through which the

force acts.) Torques acting between two bodies should appear in the resultant vectors for

both affected bodies, with opposite directions.

The contributions of all active forces and torques in the system are summarized in p

nonholonomic generalized active forces, defined as

Fr = Tt
B∑

t=1

NB,T

 • ωr
B
 + Ff

B∑
f=1

NB,F

 • v r
B*∑

B

all bodies

(6.2.7)

In the above equation, the number of torques and moments acting on body B is

designated NB,T, and the individual torques and moments are designated Tt
B
. Similarly,

the number of forces acting on body B is designated NB,F, and the individual forces are

designated Ff
B
. The outer summation, with index B, is meant to imply summing over all

bodies in the system.

Note that eq. 6.2.7 resembles the left-hand side of the Newton-Euler equations (eqs.

6.1.13 and 6.1.14), with the vector force and torque quantities for each body in the system

being projected against the partial velocity vectors and the partial angular velocity vectors

associated with the body.

Expressions are developed for the angular acceleration of each body (αB
) and for the

acceleration of the mass center of each body (aB*). With those expressions, p

nonholonomic generalized inertia forces are defined as:

Fr
* = – αB

 • I
B*

 + ωB
 × I

B*
 • ωB

 • ωr
B
 + mB aB* • v r

B*∑
B

all bodies

(6.2.8)

where I
B*

 is the inertia dyadic for body B about its mass center and mB is the mass of body

B. The above equation resembles the right-hand side of the Newton-Euler equations (eqs.

6.1.13 and 6.1.14). Again, vector quantities for each body are projected against the partial

77

velocities and partial angular velocities associated with that body. (However, the sign is

reversed to accommodate the convention used by Kane.)

The final step in the analysis is the application of Kane’s equation:

Fr + Fr
* = 0 (r = 1, ... p) (6.2.9)

This results in p scalar equations involving (1) system parameters, (2) the n generalized

coordinates (q1 ... qn), (3) the p independent speeds (u1 ... up), and (4) the p derivatives of

the independent speeds, u1 ... up. Expanding the generalized active and inertial forces

yields the following form of Kane’s equation:

0 =

Tt
B∑

t=1

NB,T

 – αB
 • I

B*
 – ωB

 × I
B*

 • ωB
 • ωr

B

+ Ff
B∑

f=1

NB,F

 – mB aB* • v r
B*

∑
B

all bodies

(6.2.10)

This use of partial velocities derives from Lagrange’s form of D’Alembert’s principle

(i.e., the virtual work associated with constraint forces and torques must vanish), and

reflects the facts that (1) forces and moments can do work only if there is movement (i.e., a

speed), and (2) the partial velocities are the directions in which those movements take

place. A very similar method is used in the NEWEUL formulation, based on Jourdain’s

principle (i.e., the virtual power associated with constraint forces and torques must vanish)

[107, 112]. Also, a similar formulation was developed by Passerello and Huston [47, 48,

49, 50, 91]. Further, Kane’s formulation is similar to, but simpler than, the Gibbs-Appell

equations [15, 22, 23, 59, 70, 98].

The above analysis method immediately applies several of the simplification methods

described in Section 5.1. First, it permits the introduction of “natural” state variables,

including generalized speeds that are not derivatives of the generalized coordinates

(technique no. 1). If there is reason to think that a certain set of variables is in fact optimal,

the analyst is free to use that set. (Rules will be developed to Chapter 8 to define state

variables that are, if not optimal, at least “very good.”)

A second potential simplification occurs because non-working forces and moments are

never introduced (technique no. 3).

78

6.3. Overview of Dynamics Analysis Method

Once the model is conceived by a human analyst as a system of idealized elements

(rigid bodies, force and moment elements, constraint relationships, etc.), the creative part

of the analysis effort has largely ended. The above method provides a clear path towards

the subsequent formulation of dynamical equations. However, it includes many

instructions to “introduce...” or “formulate...” or “obtain...” expressions. These

instructions are satisfactory for human analysts but lack the detail needed for computer

implementation. Also, the form of the final equations is not directly suited for

incorporation into a simulation code. That is, equation 6.2.10 does not explicitly define

derivatives of state variables, nor does it implicitly define the derivatives in terms of a mass

matrix and force array. A human analyst typically obtains equations in the desired form by

inspection and further manipulation as needed to obtain the form of eqs. 6.1.8 and 6.1.15.

Therefore, the Kane method will now be extended so that the analytical efforts applied after

the model is conceived can be fully automated using the symbolic manipulation tools

developed in Chapter 5.

Additional Definitions

An analysis procedure can be easier to understand when it is defined in terms of

familiar quantities, such as velocities and accelerations. However, when understanding is

not at issue (because the procedure is being programmed), there is little point in building

expressions that will later be decomposed, if the components are known from the start.

For example, the central1 translational velocities of the bodies do not actually appear in the

equations of motion. (They are used only to define the concept of partial velocities.) Also,

it will be seen that the accelerations often do not appear in one place in the final form of the

equations of motion.

In the multibody formalisms described by Wampler and Nielan [83, 125], Kane’s

equations were converted to matrix form, to facilitate the automated construction of

equations of motion as is done with other multibody formalisms. In this work, the original

vector/dyadic notation is retained. However, terms called “remainders” that were defined

1 “Central” velocities and accelerations refer to motions of a mass center.

79

by Wampler (and Rosenthal [99]) are used here as well, and are extended for

nonholonomic systems.

Partial velocities and partial angular velocities will be be introduced directly and used to

define other quantities, such as velocities and accelerations. The definition of partial

angular velocities from eq. 6.2.3 is converted to the following:

ωB
 = ωt

B
 + ui∑

i=1

ν
 ωi

B
 (6.3.1)

where ωt
B
 is a function of time. Kane keeps this term throughout the presentation, to

accommodate velocity inputs. However, inputs of this sort can just as well be

accommodated by introducing a nonholonomic constraint with a nonzero coefficient b (see

eq. 6.2.2). All systems will be considered to be potentially nonholonomic in this

dissertation. Thus, the term ωt
B

 is defined as zero so that eq. 6.3.1 can be replaced with the

simpler form:

ωB
 = ui∑

i=1

ν
 ωi

B
 (6.3.2)

Angular velocity can also be written as a sum involving nonholonomic partial angular

velocities. Combining eqs. 6.3.2 and 6.2.2 yields

ωB
 = ur∑

r=1

p

 ωr
B
 + Asr∑

r=1

p

ur + bs ωs
B∑

s=p+1

ν
(6.3.3)

This can be simplified by writing the right-hand side in terms of the nonholonomic partial

angular velocities, as defined in eq. 6.2.5:

ωB
 = ur∑

r=1

p

 ωr
B
 + bs ωs

B∑
s=p+1

ν
(6.3.4)

An expression for angular acceleration can also be developed in terms of partial angular

velocities:

αB
 = dωB

dt (6.3.5)

Substituting eq. 6.3.4 into 6.3.5 yields

80

αB
 = ∑

r=1

p

 dur
dt

ωr
B
 + ur

dωr
B

dt
 +

d bs ωs
B

dt∑
s=p+1

ν

= ∑
r=1

p

 urωr
B
 + ur

dωr
B

dt
 +

d bs ωs
B

dt∑
s=p+1

ν

= αrem
B

 + ∑
r=1

p

 urωr
B

(6.3.6)

where the nonholonomic angular acceleration remainder, α rem
B

, is defined to simplify later

notation:

αrem
B

 = αB
 – ∑

r=1

p

 urωr
B

= ∑
r=1

p

 ur
dωr

B

dt
 +

d bs ωs
B

dt∑
s=p+1

ν

(6.3.7)

The nonholonomic angular acceleration remainder is the part of the angular acceleration

that is put on the right-hand side of the equal sign in the equations of motion, in the force

array. It contains quadratic speed terms, and is sometimes identified as the “nonlinear” or

“quadratic” component of angular acceleration. By substituting eq. 6.2.2 into eq. 6.3.7, it

is written as follows:

αrem
B

 = ∑
r=1

p

 ur
dωr

B

dt
 +

d Asr ωs
B

dt∑
s=p+1

ν
 +

d bs ωs
B

dt∑
s=p+1

ν

= ur
dωr

B

dt∑
r=1

p

 + ur
d Asr ωs

B

dt∑
r=1

p

 +
d bs ωs

B

dt∑
s=p+1

ν

= ur
dωr

B

dt
 ∑
r=1

p

 + ur Asr
d ωs

B

dt
 + Asr ωs

B∑
r=1

p

 + bs
d ωs

B

dt
 + bs ωs

B∑
s=p+1

ν

= ur
dωr

B

dt
 ∑
r=1

p

 + ωs
B
 bs + urAsr∑

r=1

p

 +
d ωs

B

dt
 bs + urAsr∑

r=1

p

∑
s=p+1

ν

= ui
dωi

B

dt
 ∑
i=1

ν
 + ωs

B
 bs + urAsr∑

r=1

p

∑
s=p+1

ν

(6.3.8)

81

Two new terms are now introduced, to allow a simpler expression of eq. 6.3.8.

αrem
B

 = αrem
B

 + ωs
B
 cs∑

s=p+1

ν
(6.3.9)

where the holonomic angular acceleration remainder, α rem
B

, is defined as:

αrem
B

 = ui
dωi

B

dt
 ∑
i=1

ν
(6.3.10)

and m constraint acceleration coefficients are defined as:

cs = bs + urAsr∑
r=1

p

(6.3.11)

To summarize, we have taken the angular acceleration of B and broken it up into

several terms: (1) the part containing coefficients for the derivatives of the independent

speeds, which contributes to the mass matrix, (2) a holonomic part containing products of

all generalized speeds and holonomic partial angular velocities, and (3) a nonholonomic

part containing products of the derivatives of the constraint coefficients and the holonomic

partial angular velocities of the nonholonomic speeds. The second and third parts define

the nonholonomic remainder that appears in the force array, and contains the quadratic

terms in the angular acceleration.

A similar convention is used to develop an expression for the velocity of the mass

center using holonomic partial velocities,

vB* = v t
B*+ ui∑

i=1

ν
 v i

B* (6.3.12)

As with the angular velocity, the component, v t
B* is defined as zero. (A predetermined

function of time can be accommodated in the velocity as a nonholonomic constraint.) Thus,

eq. 6.3.12 simplifies to the form

vB* = ui∑
i=1

ν
 v i

B* (6.3.13)

The central velocity can just as well be written in terms of nonholonomic partial

velocities:

82

vB* = ur∑
r=1

p

 v r
B*

 + bs vs
B*∑

s=p+1

ν
(6.3.14)

The acceleration of the mass center can be written using the nonholonomic partial

velocities:

aB* = dvB*

dt

= d v t
B*

dt
 + ∑

r=1

p

 urv r
B*

 + ur
dv r

B*

dt

= arem
B*

 + urv r
B*∑

r=1

p

 (6.3.15)

where arem
B*

 is called the nonholonomic central acceleration remainder. It contains the

quadratic speed terms in the acceleration, and appear on the right-hand side of the

equations, in the force array. It is defined similarly to the nonholonomic angular

acceleration remainder:

arem
B*

 = aB* – ∑
r=1

p

 urv r
B*

= ur
dv r

B*

dt
 ∑
r=1

n

 + vs
B* bs + urAsr∑

r=1

p

∑
s=p+1

ν

= arem
B* + vs

B* cs∑
s=p+1

ν

(6.3.16)

arem
B*

 is the holonomic central acceleration remainder, defined as

arem
B* = ui

dv i
B*

dt
 ∑
i=1

ν

(6.3.17)

Implicit Dynamical Equations

At this point, all of the motion terms in the dynamical equations have been defined as

explicit functions of (1) the partial velocities and partial angular velocities, (2) the

independent speeds and their derivatives, and (3) the constraint coefficients and their

derivatives.

83

These equations are linear with respect to the accelerations, and therefore they can be

put into the form desired for the dynamical equations:

 M u = f (6.3.18)

By substituting eqs. 6.3.6 and 6.3.15 into 6.2.10 and comparing with 6.3.18, the

coefficient in the mass matrix for a particular row i and column j is obtained

Mij = ∑
B

all bodies

 ωj
B
 • I

B*
 • ωi

B
 + mB v j

B*
 • v i

B* (6.3.19)

Subtracting eq. 6.3.19 from eq. 6.2.10 yields the coefficient for element i in the force

array (corresponding to row i in the mass matrix):

fi =

Tt
B∑

t=1

NB,T

 – αrem
B

 • I
B*

 – ωB
 × I

B*
 • ωB

 • ωi
B

+ Ff
B∑

f=1

NB,F

 – mB arem
B* • v i

B*

∑
B

all bodies

(6.3.20)

Equations 6.3.18 through 6.3.20 implicitly define the p accelerations in terms of

known quantities. The accelerations can be computed using equation solving algorithms

for linear algebra, which are implemented symbolically as described in the next chapter.

84

7. UNCOUPLING ALGEBRAIC EQUATIONS

Both the kinematical equations and the dynamical equations occur naturally in implicit

form, defining sets of simultaneous algebraic equations that must be solved to obtain the

derivatives. This formulation is often described as a set of coupled equations. Finding the

solution for the independent variables is called uncoupling the equations. The matrix form

of the simultaneous linear equations is

 A x = y (7.1)

where A is an n × n square matrix, x is a column array of n unknown variables, and y is a

column array of n known values.

The solution of simultaneous linear equations is a well developed area in the field of

numerical analysis. A variety of specialized algorithms have been developed for different

classes of problems, as characterized by the structure of A . However, even the best

generalized solution method can result in extraneous computations involving elements of A

that are zero for a particular multibody system, but which are not, in general, zero for all

systems.

7.1 Lower-Upper Triangular Decomposition (LUD)

When the only known structure properties of the A matrix are that it is non-singular,

then lower-upper (LU) triangular decomposition is the appropriate solution method [93]1.

A set of equations involving a positive definite matrix can be solved by defining two

triangular matrices,

1 For numerical analysis, a more efficient method exists when the matrix is known to be symmetric (as

is the case for the mass matrix). The method is to decompose the matrix into a product of a triangular

matrix and its transpose, e.g., M = G GT. Cholesky’s method provides a solution with half of the
computation required for the LU method presented here. However, when the analyses are performed
symbolically, the Cholesky method requires more manipulation to simplify the equations. This is because
many of the elements in the G triangular matrix are square roots of expressions, and a certain amount of
manipulation is required to eliminate the square roots. Given sufficient symbolic manipulation, both
methods yield the same set of explicit equations.

85

 A = L U (7.1.1)

where the matrices L and U have the following structures:

L =

1 0 0 … 0

λ21 1 0 … 0

λ31 λ32 1 … …

… … … … 0

λn1 … … λnn–1 1 (7.1.2)

U =

υ11 υ12 υ13 … υ1n

0 υ22 υ23 … υ2n

0 0 υ33 … …

… … … … υn–1n

0 0 … 0 υnn (7.1.3)

If the L and U matrices can be found, then the original set of n equations are replaced by

two sets of n equations.

 L z = y U x = z (7.1.4)

The first of these equation sets is solved to obtain the n elements of the z array, using

forward substitution:

zj = yj – λjk zk∑
k=1

j–1

 (j = 1, 2, ... n) (7.1.5)

Eq. 7.1.5 is recursive, because for all j greater than 1, the evaluation of yj involves all of

the previously determined values. Thus, the index j must be incremented as shown.

 The second set of equations, which provides the desired values of the x array, is

solved using backward substitution:

xj = 1
υjj

 zj – υjk xk∑
k=j+1

n

 (j = n, n–1, ... 1) (7.1.6)

The backward substitution is also recursive, and requires that j be decremented from n to 1.

86

Because half of the coefficients in L and U are known by their definitions to be 0 or 1,

it is possible to store the other elements of both the L and U arrays in a single square array

that will be designated LU .

LU =

υ11 υ12 υ13 … υ1n

λ21 υ22 υ23 … υ2n

λ31 λ32 υ33 … …

… … … … …

λn1 … … … υnn (7.1.7)

Crout’s algorithm provides a relatively simple procedure for obtaining these elements.

The procedure is recursive, and is performed for each column j in the matrix where j is

incremented from 1 to n.

υij = « Aij – λik υkj∑
k=1

i–1

 » (i = 1, ... j) (7.1.8)

λij = « 1
υjj

 Aij – λik υkj∑
k=1

j–1

 » (i = j + 1, ... n) (7.1.9)

Eqs. 7.1.5 through 7.1.9 provide a means to compute each unknown xj using eq.

7.1.6. Because the equations are recursive, the x variables must be computed in a

particular order, from xn to x1.

To exploit the sparsity of a particular A matrix, the solution is developed explicitly in

symbolic form. Because the above equations are highly recursive, the computer code

developed symbolically by applying these equations is also highly recursive (see examples

in Appendices B through E).

When the solution developed here is written into a Fortran program, it is intended that

each arithmetic operation is performed only once. An expression that appears more than

once is replaced with an intermediate variable, so that the intermediate variable is used

subsequently. The replacement of an expression with an intermediate variable is made by

using the AUTOSIM function intro-var-if-new (described in section 5.3). In the

above two equations, the invocation of this function is indicated by enclosing an expression

with the symbols “«” and “».” The result is that each element in LU is represented by a

symbol. That is, the expression on the right-hand side of either of the above equations is

replaced with a symbol that is used in subsequent occurrences of the expression in the

recursion. This guarantees that in the worst case (see Section 7.2), the symbolic LUD

87

solution requires exactly the same number of arithmetic operation as when the procedure is

performed numerically. In all other cases, the explicit symbolic solution is more efficient

because terms that are symbolically zero do not appear in the solution.

The only division operations required in the above solution method occur in eqs. 7.1.6

and 7.1.9. In both cases, the divisor is υjj, a term that includes Ajj. Thus, this method

should only be used if the expressions in the diagonal of the A matrix are nonzero at all

times. This condition is in fact satisfied for the dynamical and kinematical equations. The

definition provided in the previous chapter for elements of the mass matrix guarantees that

all diagonal elements of the mass matrix are nonzero for well-posed models of mechanical

systems. Also, the method developed in the next chapter to form the kinematical equations

ensures that the diagonal elements in the array S are all unity.

7.2 Ordering of State Variables

Upon inspecting Crout’s algorithm, as defined in eqs. 7.1.8 and 7.1.9, it can be seen

that the number of multiplications needed to obtain the matrix LU is of the order n3 if all of

the indicated multiplications are performed. This is because there are three nested loops:

1. The algorithm proceeds through columns j=1, n.

2. For each column j, the upper elements υij are computed for rows i=1, j. Also, the

lower elements λij are computed for rows i=j+1, n.

3. For each element in LU , a summation is needed that involves the index k, where k

goes from 1 to either j or i (see eqs. 7.1.8 and 7.1.9).

However, when the algorithm is performed symbolically, the full number of operations

is needed only when all multiplications in eqs. 7.1.8 and 7.1.9 yield non-zero results. For

example, in eq. 7.1.8, if either λik or υkj is zero, the symbolic multiplication yields zero,

and a product is not written into the numerical analysis code.

88

Consider the number of operations

needed to compute one element in a 5x5

array, e.g., λ43. In Figure 7.2.1, the

elements that are used in eq. 7.1.9 are

shown in boxes. There are two

multiplications of elements that have

already been obtained (λ41 υ13 and λ42

υ23), indicated in the figure by arcs. In

order for the element λ43 to be zero, it is

necessary that (1) the corresponding

element A43 in the original matrix is zero,

(2) either λ41 or υ13 is zero, and (3) either λ42 or υ23 is zero.1 When Aij is zero, but the

corresponding element of the LU matrix is not zero because one of the conditions is not

satisfied, the LU decomposition is said to have caused matrix fill.

If all elements in A are non-zero, there is no possibility of matrix fill, because it is

already full. (Computationally, this is the worst case.) Also, if A is diagonal, there is no

possibility of fill. (Computationally, this is the best case). However, if A is sparse, but not

diagonal, the possibility exists. It turns out the matrix S (from the kinematical equations) is

very nearly diagonal, and fill is not a problem. However, the mass matrix M is usually

somewhere between the two extreme cases. Hence, the structure of M can influence the

computational effort needed to uncouple the equations of motion.

Recall that the mass matrix is symmetrical. Several possible structures for a symmetric

matrix A are shown in Table 7.2.1, along with the structures of the corresponding LU

matrices. (Zero elements are shown in the table with zeros, non-zero elements are shown

with dots.)

There is clearly less fill when the matrix is structured such the most zeros are found

towards the upper-left region of the matrix. The specific locations of the zeros is

determined by the ordering of the variables. For example, cases 3 and 4 could represent

the same set of equations, differing only in the ordering of the variables in the x array.

1 These conditions do not consider the possibility that non-zero terms will cancel. Such occurrences

are not considered because the are extremely rare in the mass matrices obtained for multibody systems.

υ11 υ12 υ13 υ14 υ15

λ21 υ22 υ23 υ24 υ25

λ31 λ32 υ33 υ34 υ35

λ41 λ42 λ43 υ44 υ45

λ51 λ52 λ53 λ54 υ55

Figure 7.2.1. View of the

computation of an element in the LU

matrix.

89

Recognizing the significance of the ordering, the solution method used for the

dynamical equations includes an additional step of permuting the mass matrix. Initially, the

Table 7.2.1. Matrix-fill for several structures of the A matrix.

Case Structure of A Structure of LU

1. (Full)

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •

2.

(Diagonal)

• 0 0 0 0 0
0 • 0 0 0 0
0 0 • 0 0 0
0 0 0 • 0 0
0 0 0 0 • 0
0 0 0 0 0 •

• 0 0 0 0 0
0 • 0 0 0 0
0 0 • 0 0 0
0 0 0 • 0 0
0 0 0 0 • 0
0 0 0 0 0 •

3.

(maximum

fill)

• • • • • •
• • 0 0 0 0
• 0 • 0 0 0
• 0 0 • 0 0
• 0 0 0 • 0
• 0 0 0 0 •

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •

4. (no

fill)

• 0 0 0 0 •
0 • 0 0 0 •
0 0 • 0 0 •
0 0 0 • 0 •
0 0 0 0 • •
• • • • • •

• 0 0 0 0 •
0 • 0 0 0 •
0 0 • 0 0 •
0 0 0 • 0 •
0 0 0 0 • •
• • • • • •

5. (no

fill)

• 0 0 0 0 •
0 • 0 • • •
0 0 • • • •
0 • • • • •
0 • • • • •
• • • • • •

• 0 0 0 0 •
0 • 0 • • •
0 0 • • • •
0 • • • • •
0 • • • • •
• • • • • •

90

mass matrix is formulated using an order that is convenient, based on the way in which the

generalized speeds are stored in memory. Then, each row in the matrix is inspected to

count the number of zero elements. The generalized speeds are then ordered such that the

variable with the highest number of zeros is first and the variable with the least number is

last. The mass matrix and force arrays are permuted accordingly, such the the equations

defined by the matrices remain valid. Then, Crout’s algorithm is used to symbolically

uncouple the equations.

To some extent we are applying one of the simplification techniques used by some

programmers to improve efficiency. When intermediate variables are introduced

appropriately, the symbolic solution of the acceleration equations results in an efficiency at

least as good as can be obtained from a carefully partitioned formulation. However, it

should be noted that a potential drawback of this approach is that the structure of the system

is “lost” in the building of a mass matrix which is later decomposed. Recently, a number

of recursive “Order-n” formulations have been published that offer greater efficiency for

systems with a “chain” topology when the length of the chain exceeds a certain number,

generally around n=10 [13, 25, 128, 129, 130]. For models of ground vehicles, the

formulation presented here is usually better. (Also, for the six-link Stanford Arm” robot

analysed in Section 9.6, the formulation developed using the methods of Chapters 5

through 8 was about 60% more efficient than a recursive O(n2) formulation [99]). On the

other hand, a recursive O(n) or O(n2) formulation should be considered for systems with

“long” chain topologies.

91

8. A MULTIBODY FORMALISM

In this chapter, a formal procedure is developed that can be applied automatically after

an analyst has conceived a model to represent the multibody system. This kind of

procedure is called a multibody formalism. The objective is to create a complete, valid,

specialized simulation code of the sort described in Chapter 4, from a description of (1)

how rigid bodies in a specific system are related kinematically, and (2) how force- and

moment-producing components act on those bodies. The formalism combines concepts

and general methods introduced in Chapters 5, 6, and 7.

The full process has been organized into the five steps summarized below:

1. Describe System. The analyst describes the objects comprising the multibody

system using a small set of AUTOSIM macros. As each body is added, a body

object is created and several analyses are immediately performed to assign values to

slots in order to support the computer algebra functions.

Points of interest on rigid bodies are identified by the analyst, and corresponding

point objects are created by the computer.

Active forces and moments are described, and corresponding force and moment

objects are created.

Additional equations are generated for nonholonomic constraints and closed

kinematical loops.

2. Kinematical Analysis. Kinematical equations are formed that define derivatives of

generalized coordinates as functions of the independent speeds.

3. Constraint Analysis. The constraint equations obtained in step 1 are processed to

obtain coefficients required in the dynamics analysis.

4. Dynamics Analysis. Terms needed for Kane’s equations are obtained using a

variety of formulations. The generic dynamical equations presented in Chapter 6

are then applied to obtain a mass matrix and force array. The implicit equations are

92

solved symbolically, as described in Chapter 7, to obtain explicit expressions for

the derivatives of the independent speeds.

5. Write Fortran Program. A complete simulation code is written in Fortran that (1)

reads input parameters, (2) simulates the multibody system, and (3) generates an

output file with predicted time histories of output variables.

These five steps are described in more detail in the following sections.

8.1. Describing the System

All of the parts of the multibody system can be represented using the computer data

objects presented in Chapter 5. Lisp macros and functions in AUTOSIM used by the

analyst to build the description of the multibody system on the computer are summarized in

Table 8.1.1. (Reference material for these macros is provided in Appendix A, and many

examples of their use appear in the next chapter.) Basically, each macro creates an

appropriate object and assigns data to slots in the object.

Table 8.1.1. AUTOSIM macros for describing a multibody system.

Lisp form Purpose

add-body describe one body completely, including its position in the

system topology, the kinematics of its joint, and the mass and

inertial properties of its rigid body.

add-constraint introduce a constraint equation that will be used to eliminate one

state variable.

add-gravity apply a gravitational force to each body with mass.

add-line-force describe force-producing component (direction of force is

known).

add-moment describe moment-producing component.

add-point identify point of interest on a body.

add-strut describe force-producing component (end points are known).

large declare parameters to be “large” with small-order of –1.

no-movement apply holonomic constraint for closed kinematical loop.

small declare syms to be “small” with a small-order of 1.

The add-body macro creates a body object to represent one of the rigid bodies in the

system. It also performs several analyses to put information into slots of the new object,

93

that are required in order for the vector algebra operations to work. The methods used to

determine values that are put into the slots of the body object are detailed later in this

section.

The macros add-line-force, add-strut, and add-moment create data objects

corresponding the force- and moment-producing components in the multibody system, and

then assign the slots using data provided by the analyst. The objects are not manipulated

until the entire system has been entered. Of course, the expressions provided for force and

moment magnitudes may involve considerable algebra, but this is handled by the basic

algebra routines and does not involve the multibody objects, except for functions that

obtain information from the body objects.

In a similar vein, the macro add-point simply creates a data object to represent a

point fixed on a body. The point may or may not be used in subsequent analyses.

The add-gravity macro adds the effect of a uniform gravitational field. The effect

is as if a force is applied to every mass center with the direction of the gravitational field

and an amplitude g mB, where g is the gravitational constant. However, upon inspecting

eq. 6.3.20, it can be seen that the same effect is obtained if the gravitational constant is

added to the acceleration remainder for B. Due to the recursive formulation developed later

for the acceleration remainder, it is much better to take the latter approach. Thus, the add-

gravity macro does not actually apply forces to the bodies. Instead, it sets a global

constant called *acceleration-due-to-gravity* to a vector obtained by

multiplying the gravitational constant (nominally the symbol gees) by the direction of the

field (nominally [n3]). When AUTOSIM is initialized, the value of *acceleration-

due-to-gravity* is set to zero. Thus, gravity is not included in the analysis unless

the add-gravity macro is invoked.

The small macro is used to declare that symbols are small (the small-order slot in each

argument is set to a value of 1) and the large macro declares that symbols are large (the

small-order slot in each argument is set to a value of –1). Ordinarily, these slots have a

default value of 0.

The add-constraint macro is used to introduce a constraint equation. The

constraints can apply to either coordinates or speeds. The no-movement macro applies

add-constraint twice: once to define a speed constraint, and once to define a

coordinate constraint. (A detailed discussion of the add-constraint macro is deferred

until section 8.3.)

94

Joint Description for New Bodies

The analyses performed when a body is added deal mainly with the coordinate system

of the new body, as determined by the kinematics of the joint connecting it to its parent. In

order to automate this process, it is necessary to define the kinematics relating a body to its

parent in a way that is meaningful to the analyst.

A building-block joint model is used to define the kinematical relation between a new

body and its parent. The joint includes between zero and six kinematical degrees of

freedom. Three of these are consecutive translations, and the other three are consecutive

simple rotations. (A simple rotation is one in which two reference frames have one line

which is fixed in both frames throughout the rotation. That line is the rotation axis.) This

model is not completely generalized, because it requires that the translations occur before

the rotations. However, by defining massless intermediate bodies (each with its own

building-block joint), almost any joint geometry can be built with this model. The

parameters that describe the building-block joint are summarized in Table 8.1.2.

Table 8.1.2. Parameters and degrees of freedom of a body/joint.

Parameter Description

rA0BJ position of joint point of B relative to origin of parent.

(rt1
B , rt2

B , rt3
B) list of 0, 1, 2, or 3 directions for translational degrees of freedom

of B, fixed in the coordinate system of the parent. (In Figure

8.1.1, the single direction is designated rT
B.)

(i1, i2, i3) list of 0, 1, or 3 axis indices in B for sequential rotations.

rrot
B orientation of first rotation axis of B (fixed in the coordinate

system of the parent).

rref
B reference direction for first rotation of B (fixed in the coordinate

system of the parent).

(rr1
B , rr2

B , rr3
B) list of 0, 1, or 3 directions of rotations for B. This list is derived

from the above parameters.

The geometry is illustrated in Figure 8.1.1 for an example involving one degree of

freedom for rotation and one for translation.

The three directions of the coordinate system of B are the unit-vectors b1, b2, and b3.

For the parent A, the three directions are a1, a2, and a3. The origin for B is the point

95

designated B0. In this figure, the magnitude of the translation is the generalized coordinate

qi and the magnitude of the rotation is the generalized coordinate qi+1.

Parent body A

Body B

A* (c.m.) B* (c.m.)

b
3

b1

a3
2a

Position of
 for zero rotation
(ref. axis,)

b1

A , origin for body A
(joint connecting to its
parent)

q i+1
rA B

i
q

TrB

rot. axis
(=)

b2

B , origin for body B0

0

r

rA*B0

A A*0

B B*0r

b 3rotrB

refrB

0 J

B , Joint Point
fixed in A

J

a1

Figure 8.1.1. Geometry of body relative to its parent.

The relationship between the coordinate systems of B and A depends on the type and

number of degrees of freedom:

• If the joint has one or more translational degrees of freedom, B0 can move within

the coordinate system of A. Otherwise, it is a point fixed in A.

• If the joint has one or more rotational degrees of freedom, at least two of the unit-

vectors of B differ from those of A. Otherwise, both bodies have coordinate

systems based on the same directions.

One generalized coordinate is introduced for each degree of freedom of the joint. The

description of the joint kinematics can be separated into translational and rotational

displacements.

Translational Displacement

The translational coordinates define how the origin for the new body is positioned

relative to the origin of the parent. Slots in a body that pertain to the translational

displacement of the joint are shown in Table 8.1.3.

Two of the slots are assigned to point objects. One is the point Bj fixed in the parent

body (in slot joint-point), and the other is the origin of the new coordinate system, B0 (in

96

slot 0-point). The point Bj is specified by the analyst using coordinates in an existing

coordinate system. (Regardless of the coordinate system used to specify the coordinates,

the point is fixed in the parent.) The point object is put in the joint-point slot of the

body to define the position of the origin in the nominal state when all generalized

coordinates are zero. A point is also created for the new body to define the origin of its

coordinate system. Because the coordinates of an origin are defined as (0 0 0), no input

from the analyst is needed to create the origin point.

If the joint has translational degrees of freedom, a list of the translational directions is

needed. These direction vectors, (rt1
B , rt2

B , rt3
B), are each specified by the analyst in the

same coordinate system as was used to define the joint-point. The directions are converted

to the coordinate system of the parent, and multiplied by the uvs (unit-vectors) from the

parent to create direction vectors. The list of vectors is then put into the translation-

directions slot of the body.

The number of translational degrees of freedom is determined by the length of the list of

directions. Translational coordinates are introduced by creating a list of indexed-sym

objects, which is then put into the translation-coordinates slot. For each degree of

freedom, two indexed-syms are created at this time: one for a generalized coordinate

(e.g., q3) and one for its derivative (e.g., q3). The printed representation of each

indexed-sym object is determined by the symbol put into its symbol slot and the number

put into its i slot. (E.g., a variable with “Q” in its symbol slot and “3” in its i slot prints as

“Q(3).” With the symbol “QP” in the symbol slot it prints as “QP(3)”.) Slots in the

Table 8.1.3. Body slots related to joint translational displacement.

Slot Name Type Definition

0-point point origin of coordinate system (also, joint attachment point

in this body).

joint-point point joint attachment in parent body.

translation-

coordinates

list translational generalized coordinates introduced for this

body.

translation-

directions

list directions corresponding to variables in translation-

coordinates.

small-

translations

list Booleans corresponding to variables in translation-

coordinates. T if variable is small, NIL otherwise.

97

individual indexed-syms that identify the objects as variables are also set. For example,

(1) the dxdt slot of the coordinate is set to the indexed-sym made to represent its

derivative, (2) the const-or-var slots of of both the coordinate and its derivative are set to

the symbol var, (3) if the analyst specified that the translation is “small,” the small-order

slots of the coordinate and its derivative are set to 1 (otherwise the order of smallness is 0),

(4) the units of the coordinate are set to the expression L (units of length) and the units of

its derivative are set to L/T (length per unit time), and (5) a name is created, based on the

names of the new body and the parent body and the direction of the translation. (Examples

of how state variables are named by AUTOSIM appear in the next chapter.)

The list of orders of smallness specified by the analyst is put into the slot small-

translations.

The position of point B0 relative to point A0 is the vector

rA0B0 = rA0BJ + qi+o∑
i=1

Ntd
B

 rti
B (8.1.1)

where Ntd
B is the number of translational degrees of freedom for body B and o is an offset

constant that maps the index i from the summation onto the indices of the generalized

coordinates. In Figure 8.1.1, Ntd
B is 1 and the position vector rA0B0 is rA0BJ + qi rT

B.

Rotational Displacement

Slots in a body that pertain to the joint rotation are shown in Table 8.1.4.

Recall that the building-bock joint model assumes consecutive simple rotations, in

which each rotation occurs about an axis fixed in B. The sequence of axes is provided by

the analyst as a list of integer numbers and put by the add-body macro into the rotation-

axes slot of the body. Two pieces of information are required in addition to the list, to

specify the orientation of B relative to A when all generalized coordinates are zero. First,

the orientation of the first rotation axis, rrot
B , is in a direction fixed in the coordinate system

of the parent. rrot
B

 is not always parallel with any of the axes of the coordinate system in the

parent, and can be entered as a set of constant coordinates in a selected coordinate system.

Those coordinates are converted to the coordinate system of the parent, and are stored in

the parent-rotation-axis slot of the body. In Figure 8.1.1, the rotation axis coincides with

b3. Thus, B can rotate relative to A about an axis that coincides with a direction vector

aligned with axis 3 in B. That same vector is described with a set of three constant

coordinates in the coordinate system of A.

98

Table 8.1.4. Body slots related to joint rotation.

Slot Name Type Definition

parent-

rotation-axis

array coordinates of rotation axis in coordinate system of parent.

rotation-axes list list of axes in new body about which consecutive rotations

take place.

reference-

axis

array coordinates of reference axis in coordinate system of

parent.

rotation-

coordinates

list rotational generalized coordinates introduced for this body.

small-angles list Booleans corresponding to variables in rotation-

coordinates: T if variable is small, NIL otherwise.

The third and last piece of information related to the orientation of B defines the

orientation of B when all generalized coordinates are zero. This nominal orientation is

defined with a vector, rref
B , called the reference axis. The rotation and reference axes are

orthogonal. (If the two sets of coordinates provided by the analyst are not orthogonal, the

component of the direction provided by the analyst that is orthogonal to the rotation axis is

derived and used as the reference axis.) The reference axis is shown by a dashed line in the

figure. In the nominal orientation, the three axes of the coordinate system of B are aligned

with (1) the rotation axis, (2) the reference axis, and (3) their cross-product. The reference

axis is specified by the analyst using coordinates in a selected coordinates system. Those

coordinates are converted to obtain coordinates in the coordinate system of the parent. The

converted coordinates are kept in the reference-axis slot of B.

The appropriate axis of B is aligned with the reference axis of the parent, where the

“right-handed” axis to use as a reference is provided in Table 8.1.5.

Table 8.1.5. Right-handed axis convention

Rotation Axis Reference Axis

1 2

2 3

3 1

99

A generalized coordinate is introduced for each rotation associated with the joint. In the

figure, this variable is designated qi+1. As was the case for translational variables, a new

indexed-sym object is created for each rotational variable and another for its derivative.

Slots in the indexed-sym are set to identify them as variables. The list of indexed-

syms is put into the rotation-coordinates list.

When the joint has three rotational degrees of freedom, a list of indices is provided to

specify the sequence of rotations. For example, the list (3 2 1) has the following meaning:

“Body B is initially aligned such that b3 is aligned with rrot
B and b1 is aligned with rref

B . B

then rotates about b3 by an angle qo+1, where o is an index offset. From that new

position, it is rotated about b2 by an angle qo+2. Finally, it is rotated about b1 by an angle

qo+3. After the first rotation, the orientation is an intermediate frame, designated B" After

the second rotation, the orientation is another intermediate frame, designated B'. These

intermediate frames are not created as body objects, and cannot be referenced by any of the

AUTOSIM algebra functions. If an intermediate frame is needed to develop moments or to

define angles, then instead of specifying one body with 3 rotations, 3 bodies should be

entered, each with one rotation. (The first two should be given zero mass and inertia

values.)

In order to simplify some of the rules that follow, the building-block joint model

allows zero, one, or three consecutive rotations between a body and its parent, but not two

rotations. Joints which involve two consecutive rotations are represented by two building-

block joints, where the first is associated with a massless body.

This representation is valid for mechanical joints that are commonly available in

multibody analysis programs. Several simple joints are represented in Table 8.1.6. Other

types of joints (cables, gears, cams, etc.) are described with combinations of building-

block joints and constraint equations.

100

Table 8.1.6. Representation of simple joints with “building-block” model.

Joint Type Translational

d .o . f .

Rotational d.o.f. No. of “building-

blocks”

Prismatic 1 0 1

Revolute 0 1 1

Hooke, Gimbal 0 2 2

Planar slider 2 0 1

Ball Joint 0 3 1

Cylindrical 1 1 1

Free 3 3 1

Direction Transformations

Slots in the body that define direction transformations are summarized in Table 8.1.7.

Each body in the system has its own coordinate system, with an origin and three axes.

The directions of the three axes are defined by unit-vectors. A direction cosine matrix is

used to relate the three unit-vectors of a body with the unit-vectors of the parent. The

directions of the axes of B are related to those of A by the direction cosine matrix B C A,

defined such that

Table 8.1.7. Body slots related to direction transformations.

Slot Name Type Definition

uvs array trio of uvs that defines the axis directions of the coordinate

system of this body, e.g., (b1 b2 b3).

cos-matrix array direction cosine matrix relating the unit-vectors of this

body to those of its parent.

basis dyadic a dyadic that transforms an arbitrary vector expression into

the basis of this body, e.g., b1 b1 + b2 b2 + b3 b3.

rotation-

directions

list list of rotation directions associated with the generalized

coordinates in the rotation-coordinates slot.

101

b1

b2

b3

 =

C11 C12 C13

C21 C22 C23

C31 C32 C33

a1

a2

a3

 (8.1.2)

Or,

Cij = bi • aj (8.1.3)

For the building-block joint model just presented, there can be 0, 1, or 3 rotational

degrees of freedom. The direction cosine matrix for each of these cases is described

below.

Recall that the dot-product operation is performed by using the direction cosine matrix.

Thus, the definition of eq. 8.1.3. cannot be used to define the direction cosine matrix,

because at the time the matrix is being created, the dot-product operation will not work.

Instead, the matrix is constructed by using the rotational information introduced above and

stored in the slots parent-rotation-axis, reference-axis, and rotation-axes.

Bodies with Zero Rotational degrees of Freedom

The axes for the coordinate system of a body with zero rotational degrees of freedom

are defined to be parallel to those of the parent body. That is, the three unit-vectors

associated with the body are the same as those of the parent: a1, a2, and a3. The direction

cosine matrix implied by eq. 8.1.3 is a 3-by-3 identity matrix:

CAB =
1 0 0
0 1 0
0 0 1

(8.1.4)

In the computer representation, the contents of the basis and uvs slots of the parent

body are copied into the corresponding slot of the new body, and the cos-matrix slot is set

to the above identity matrix. The rotation-directions slot remains NIL.

Bodies with One Rotational degree of Freedom

If body B has one rotational degree of freedom with respect to A, it rotates about an

axis whose direction is fixed in both B and A. Recall that the rotation axis rrot
B and the

reference axis rref
B are both vectors which are not parallel, but are not necessarily orthogonal

as defined by the analyst. Two cross-product operations are used to define two unit-

102

vectors that are combined with rrot
B to define three orthogonal unit-vectors for the coordinate

system of B:

bj = rrot
B × rref

B (8.1.5)

bi = bj × rrot
B (8.1.6)

bk = rrot
B (8.1.7)

The set of unit-vectors introduced for B are nominally designated b1, b2, and b3, and

are identical to the unit-vectors bi, bj, and bk, where the definitions of the indices i, j, and

k are obtained from Table 8.1.8.

Table 8.1.8. Indices for three possible rotation axes.

Case i j k

rrot
B = b1 2 3 1

rrot
B = b2 3 1 2

rrot
B = b3 1 2 3

First, the orientation of B relative to A must be determined for the nominal condition

when all generalized coordinates are zero. These are defined by dot products between bi,

bj, and bk and a1, a2, and a3. Because the rotation axis and reference axis are stored in

the body as coordinates in the coordinate system of A, the dot products are simply those

coordinates. Calling the rotation angle θ, two terms, s and c, are introduced as the sine and

cosine of θ to account for the rotation. The creator functions make-sin and make-cos

are used, so that small angle approximations are made appropriately. Each trig object is

created just once, so all references to that trig object later involve a single object in the

computer.

The elements of the direction cosine matrix are defined for each row using the same i, j,

and k indices assigned in Table 8.1.8:

Cir = c (ar • bi) + s (ar • bj) (r = 1,2,3) (8.1.8)

Cjr = –s (ar • bi) + c (ar • bj) (r = 1,2,3) (8.1.9)

Ckr = ar • bk (r = 1,2,3) (8.1.10)

The resulting array is placed in the cos-matrix slot of the body.

103

If the rotation axis is parallel to one of the unit-vectors of A, then the corresponding uv

unit-vector is also used for B. For example, suppose the rotation axis is described in A as

–a2, and the coordinate system for B is defined such that rotation of B relative to A occurs

about axis number 2. Then, the unit-vectors of B are b1, –a2, and b3. On this occasion,

one of the rows of the matrix B C A contains two zeros and a minus-one.

The rotation axis is not always parallel with a unit-vector of the parent. For example, if

the rotation axis is specified as a2 + a3

2
, then three new unit-vectors are introduced for B.

In this case, all three uvs in the uvs slot of B are new.

The rotation-directions slot is set to a list with one element: the uv aligned with the

rotation axis.

Bodies with Three Rotational Degrees of Freedom

A body B with three rotational degrees of freedom is subject to three consecutive

rotations. Starting with the nominal orientation, after each of the three rotations the

orientation coincides with: (1) a reference frame B", (2) a reference frame B' and (3) body

B. The method described above to obtain a direction cosine matrix for a body with one

rotational degree of freedom is applied three times, to obtain cosine matrices relating B to

B', B' to B", and B" to the parent. That is,

B C A = B C B' B' C B" B" C A (8.1.11)

In addition to the direction cosine matrix, the three rotation axes (rr1
B , rr2

B , and rr3
B) are

required for some of the following analyses. Unit-vectors are not introduced for

intermediate frames B' and B", and therefore these three axes must be represented using

unit-vectors for the coordinate systems of B and its parent, A. The first, rr1
B , is fixed in A

and was stored as rrot
B using the coordinate system of the parent. The third, rr3

B , is common

to B' and B, and is the unit-vector associated with the third index in the body axis rotation

list. The second, rr2
B , is common to the intermediate frames B" and B'. It can be written in

terms of the unit-vectors of B using a column of the cosine matrix B C B':

rr2
B = C1jb1 + C2jb2 + C3jb3 (8.1.12)

where j is the index of the second rotation axis, and C1j, C2j, and C3j are coefficients of
B C B'.

The list (rr1
B , rr2

B , and rr3
B) is put into the rotation-directions slot of the body.

104

Recursive/Nonrecursive Descriptions

Nonrecursive formulations are used when there are enough degrees of freedom in the

joint of a body such that its motions can be described without reference to other bodies in

the system. When this is not possible, recursive formulations are used. Two slots in the

body object store the types of analyses that are used for rotation and translation, as

indicated in Table 8.1.9.

Table 8.1.9. Body slots related to recursion.

Slot Name Type Definition

recursive-r symbol formulation to use for rotation analysis.

recursive-t symbol formulation to use for translation analysis.

The recursive-r slot is assigned to the symbol NIL if a nonrecursive analysis is to be

used to obtain expressions for rotational velocity and acceleration. A very simple rule is

used: if the body has three rotational degrees of freedom, the nonrecursive analysis is used.

Otherwise, the body is recursive. There are two variations of the recursive formulation

used, indicated by setting the slot to either the symbol t or rotor. The criterion is based

on the inertial properties of the body, as described in the next subsection.

The recursive-t slot is assigned to the symbol NIL if a nonrecursive analysis is to be

used to obtain expressions for translational velocity and acceleration. There are two

conditions in which the nonrecursive formulations are used: (1) bodies with three

translational degrees of freedom, and (2) bodies with two translational degrees of freedom

that are constrained to planar motions. The first case applies when the list of coordinates in

the translation-coordinates slot has three elements. The second applies when three

conditions are satisfied. First, the list of coordinates in the translation-coordinates slot has

two elements. Second and third, the following two tests must be true:

ωB
 × rt1

B × rt2
B

?
= 0

and
vBJ • rt1

B × rt2
B

?
= 0 (8.1.13)

where rt1
B and rt2

B are the two directions of the translational degrees of freedom. Otherwise,

the body is recursive. There are two variations of the recursive formulation used, indicated

105

by setting the slot to either the symbol t or fixed. The criterion for setting the slot is

based on the inertial properties of the body, as described in the next subsection.

Inertia Properties

Slots in the body object pertaining to inertia properties are summarized in Table

8.1.10. The table includes data provided by the analyst (as optional arguments for the

add-body macro) for the isolated rigid body element. For the purpose of performing the

dynamics analysis described in Section 8.4, the inertia properties of each body are

summarized in three slots: (1) the scalar mass (a scalar expression associated with the mass

slot), (2) the mass center, (a point associated with the cm-point slot), and (3) the inertia

dyadic (an expression associated with the inertia slot). In certain conditions, these three

inertia properties represent composite bodies, obtained by combining attributes of adjacent

bodies.

Table 8.1.10. Body slots related to inertia.

Slot Name Type Definition

cm-coordinates 3x1 array coordinates of rigid-body mass center.

cm-point point mass center of composite body.

inertia expression inertia dyadic of composite body.

inertia-matrix 3x3 array inertia matrix for rigid body.

mass expression mass of composite body.

massb expression mass of rigid body.

Data specific to the rigid body B are kept in the slots cm-coordinates, inertia-matrix,

and massb. The coordinates of the mass center, provided by the analyst, are converted into

the coordinate system of B and stored in the cm-coordinates slot. The inertia matrix for B

is kept in the inertia-matrix slot, and the mass of B is kept in the massb slot.

As each body is entered, an analysis is performed to set the inertia properties of the new

body and all bodies “up” the tree. The procedure, initiated when body B is added, goes as

follows:

1. A list is made of all children of B whose recursive-t slot is set to the symbol

fixed. This list is called the fixed children. (When applied to a body just added,

106

there are no children and this is a null list. However, the procedure is also used for

other bodies which do have children.)

2. The masses from the massb slot of B and the mass slots of the fixed children are

summed to form the composite mass of B, which is assigned to the mass slot of B.

That is,

mBc = mB + mbc∑
b

fixed
children

(8.1.14)

where mBc is the composite mass for B, and the sum covers the fixed children, with

the index b indicating each body that is a member of the list of fixed children of B.

In this summation (and all of the summations that follow in this procedure), the

mass used for bodies in the list of fixed children is the composite mass, from the

mass slot, as indicates with the superscript “bc.” However, for body B, the rigid-

body mass from the massb slot is used.

3. The coordinates of the composite mass are computed:

xi
Bc* =

xi
B* mB + xi

bc* mbc∑
b

fixed
children

 mBc
 (i = 1,2,3) (8.1.15)

where xi
B* is one of the three coordinates of the mass center of B and xi

bc* is the

corresponding coordinate of the composite mass of a fixed child of B, which has

been properly converted to the coordinate system of B via the convert-

coordinates function. The three coordinates of the composite mass center are

used to create a new point object, which is placed in the cm-point slot of B.

4. An inertia matrix for the composite body is constructed using the parallel axes

theorem, considering the masses of the fixed children (but not the inertia dyadics):

I11
Bc* = I11

B* + mb x2
b* – x2

Bc* 2 + x3
b* – x3

Bc* 2∑
b

B, fixed
children

I22
Bc* = I22

B* + mb x1
b* – x1

Bc* 2 + x3
b* – x3

Bc* 2∑
b

B, fixed
children

107

I33
Bc* = I33

B* + mb x1
b* – x1

Bc* 2 + x2
b* – x2

Bc* 2∑
b

B, fixed
children

I12
Bc* = I21

Bc* = I12
B* – mb x1

b* – x1
Bc* x2

b* – x2
Bc*∑

b

B, fixed
children

I13
Bc* = I31

Bc* = I13
B* – mb x1

b* – x1
Bc* x3

b* – x3
Bc*∑

b

B, fixed
children

I23
Bc* = I32

Bc* = I23
B* – mb x2

b* – x2
Bc* x3

b* – x3
Bc*∑

b

B, fixed
children

(8.1.16)

In the above equation set, the summations cover the fixed children of B and also the

rigid body B. For body B, the mass used for mb is the rigid-body mass (from the

massb slot). For the children of B, the mass mb is the composite mass (from the

mass slot)

5. The inertia matrix constructed in step 4 is made into a dyadic using the unit-vectors

of B:

I
Bc*

 = ∑
j=1

3
Iij
Bc* bibj∑

i=1

3
(8.1.17)

The dyadic is put in the inertia slot of the body.

6. The rotational category of B is determined. The inertia matrix from step 4 is used to

determine if B is a rotor. It is a rotor if all three of the following conditions are

satisfied: (a) the body uses the recursive formulation (that is, the recursive-r slot is

not NIL), (b) the composite inertia matrix is diagonal, and (c) the two moments of

inertia perpendicular to the axis of rotation are equal. If B is a rotor, the recursive-r

slot is set to the symbol rotor. Otherwise, the slot is set to T. If the slot is set to

rotor, the inertia dyadic is converted to the basis of the parent using the identity

I
Bc*

= a • I
Bc*

 • a (8.1.18)

Otherwise, the formulation obtained from eq 8.1.17 is kept.

108

7. The translational category of B is determined. The coordinates of the composite

mass from step 3 are used to determine if the mass of B is fixed in the coordinate

system of its parent. It is fixed if the recursive-t slot is not NIL and any one of the

following conditions is satisfied: (a) the composite mass is zero, (b) all three

coordinates are zero, or (c) the body has no translational degrees of freedom, one

rotational degree of freedom, and the only nonzero coordinate of the composite

mass center is along the rotation axis. If B is fixed, the recursive-t slot is set to the

symbol fixed. Otherwise, the slot is set T or left at NIL, depending its original

value.

8. Unless the parent of B is the inertial reference (N), the above procedure is repeated

for the parent.

The last step in the above procedure means that as each body is added to the tree, the

mass and inertia properties of all bodies “up” the tree are subject to adjustment.

Velocities

Velocity information in the body objects is used to support algebra functions such as

rot and vel. Slots related to velocity are listed in Table 8.1.11. Lists of generalized

speeds corresponding to those created for translational and rotational generalized

coordinates are created and put into the translation-speeds slot and the rotation-speeds slot.

Slots in the indexed-sym objects are set as was done for the generalized coordinates,

except that the symbol slots are set to “U” and “UP” instead of “Q” and “QP.” (And of

course, different names and units are put into the name and units slots of the indexed-

sym objects.)

Table 8.1.11. Body slots related to velocity.

Slot Name Type Definition

abs-v0 expression velocity of origin (point B0).

abs-w expression rotational velocity of body.

rotation-speeds list rotational generalized speeds for this body.

translation-speeds list translational generalized speeds for this body.

translational-speed-

directions

list directions corresponding to variables in

translation-speeds.

109

The directions associated with the speeds are not necessarily the same as those

associated with the coordinates. Based on the symbols in the recursive-r and recursive-t

slots, speeds for rotation and translation are defined using either a recursive formulation (in

which case the speeds are the simple derivatives of the generalized coordinates) or a

nonrecursive formulation (in which the speeds are defined in body-fixed directions).

Directions are determined for the translational speeds and put into lists kept in the slots

translational-speed-directions. The directions are defined as follows:

1. If the recursive-t slot is not NIL, then the list of speed directions is identical to the

list of vectors in the translation-directions slot.

2. If the recursive-t slot is NIL and the body has two translational degrees of freedom,

then the body has one rotational degree of freedom. The list of speed directions is

obtained by starting with the list of the three unit-vectors in the uvs slot of the

body, and then removing the unit-vector that is parallel with the body rotation axis

(that is, the first element of the list in the body-rotation-axes slot).

3. Otherwise, the recursive-t slot is NIL and the body has three translational degrees

of freedom. This list of directions is the list of unit-vectors fixed in the body,

obtained from the uvs slot.

The rules for rotational speeds are so simple that a corresponding list for rotational

speed directions is unnecessary.

The angular velocity of the body is determined as follows, based on the number of

rotational degrees of freedom (d.o.f.) of the body:

ωB
 =

ωA
(0 d.o.f.)

ωA
 + ur rrot

B (1 d.o.f.)

uo+1 b1 + uo+2 b2 + uo+3 b2 (3 d.o.f.)

(8.1.19)

(For the case of 1 d.o.f., ur is the generalized speed introduced for the rotational degree of

freedom. For the case of 3 d.o.f., o is an offset such that the three speeds introduced for

the rotational degrees of freedom are uo+1, uo+2, and uo+3.) The angular velocity is put

into the slot abs-w. This expression is not converted to any one basis, and can include

unit-vectors from many different bodies.

110

The translational velocity of the origin is determined as follows, based on whether or

not the body is recursive in translation. (It is recursive if the recursive-t slot is set to t or

fixed, and nonrecursive if the slot is set to nil.)

vB0 =

vA0 + ωA
 × rA0B0 + ui+o∑

i=1

Ntd
B

 rti
B (recursive)

ui+o∑
i=1

Ntd
B

 rtvi
B – ωB

 × rB0B* (nonrecursive) (8.1.20)

(The index o is an offset such that the speeds introduced to account for the translational

degrees of freedom are o+1, ... o+Ntd
B . For the nonrecursive case, the symbol rtvi

B

designates the directions of the translational speeds. The rationale for setting those

directions is presented in Section 8.4.) This expression is not converted to any one basis,

and can include unit-vectors from many different bodies.

With the velocity information kept in the body objects, functions such as rot and vel

are trivial to implement. The function (rot b) simply returns the expression from the

abs-w slot of the body b. The function (vel p) returns the expression

vP = vB0 + ωB
 × rB0P

(8.1.21)

where B is the body containing the point P and rB0P is the position vector going from the

origin of B to P.

The nonrecursive part of eq. 8.1.20 involves the position of the mass center of B.

However, the mass center is subject to change, depending on whether bodies are added

which have mass centers fixed in the coordinate system of B. Accordingly, eq. 8.1.21 is

reapplied to all bodies in the system whenever a new body is added.

8.2. Kinematical Analysis

The kinematical equations are n ordinary differential equations that relate the derivatives

of the generalized coordinates to known speeds. This set of equations is written below in

matrix form:

 S q = v (8.2.1)

Where S is an n × n matrix, q is a column array of length n containing the derivatives of

the generalized coordinates, and v is a column array of length n containing the known

speeds. Each row i in the arrays of eq. 8.2.1 is an equation developed by considering the

111

generalized coordinate qi. Depending on whether qi is a rotational or translational

coordinate, different methods are employed.

Rotational Speeds

Each body has one generalized coordinate introduced for each rotational degree of

freedom associated with the body. The angular velocity of the body, relative to its parent,

can be written in terms of the derivatives of the generalized (rotational) coordinates

introduced for the body:

ωBA
 = qo+j∑

j=1

Nrd
B

 rrj
B (8.2.2)

where Nrd
B is the number of rotational degrees of freedom introduced for B, qo+j is the

derivative of the generalized coordinate introduced for the jth rotation of the body (o is an

index offset), and rrj
B is the axis of rotation associated with qo+j.

Recall that for angular velocity,

ωBA
 = ωB

 – ωA
(8.2.3)

where ωB
 and ωA

 are obtained using the rot function.

A kinematical equation is obtained by equating eqs. 8.2.2 and 8.2.3, and dot-

multiplying both sides by a suitable vector. A particularly well-suited vector for

performing the dot product is rrj
B because it forces the diagonal elements of S to be unity for

the rows corresponding to rotational variables. For the ith generalized coordinate, qi,

introduced for a rotational degree of freedom, the kinematical equation is

qo+j∑
j=1

Nrd
B

 rrj
B • rr(i-o)

B = ωB
 – ωA

 • rr(i-o)
B (8.2.4)

In terms of the matrix equation, the elements of S for row i are

Sij =
rr(j-o)

B • rr(i-o)
B for j =o+1, ... o+Nrd

B

0 for all other j
(8.2.5)

And the ith element in v is

112

vi = ωB
 – ωA

 • rr(i-o)
B (8.2.6)

Translational Speeds

Each body has one generalized coordinate associated with each translational degree of

freedom of the body. The velocity of the body origin, B0, relative to the coordinate system

of A, can be written in terms of the derivatives of the generalized (translational) coordinates

introduced for the body:

vB0A = qo+j∑
j=1

Ntd
B

 rtj
B (8.2.7)

where vB0A is the velocity of B0 with respect to a coordinate system fixed in A, Ntd
B is the

number of translational degrees of freedom introduced for B, qo+j is the derivative of the

generalized coordinate introduced for the jth translation of the body (o is an index offset),

and rtj
B is the direction of the translation associated with qo+j.

The absolute velocity of B0, obtained with the function vel, can be written as:

vB0 = vA0 + vB0A + ωA
 × rA0B0 (8.2.8)

Rearranging, a second expression for vB0A is obtained:

vB0A = vB0 – vA0 – ωA
 × rA0B0 (8.2.9)

A kinematical equation is obtained for qi by equating eqs. 8.2.7 and 8.2.9, and dot-

multiplying both sides by rt(i-o)
B :

qo+j∑
j=1

Ntd
B

 rtj
B • rt(i-o)

B = vB0 – vA0 – ωA
 × rA0B0 • rt(i-o)

B (8.2.10)

In terms of the matrix equation, the elements of S for row i are

Sij =
rt(j-o)

B • rt(i-o)
B for j =o+1, ... o+Ntd

B

0 for all other j
(8.2.11)

And the ith element in v is

vi = vB0 – vA0 – ωA
 × rA0B0 • rt(i-o)

B (8.2.12)

113

This formulation guarantees that the diagonal elements of S corresponding to

translational coordinates are unity. Because the same was true for the rotational

coordinates, it follows that all diagonal elements of S are 1. Recall that a condition for the

uncoupling method presented in Chapter 7 was that the diagonal elements be non-zero.

The formulation here meets that condition, and also guarantees that, at most, only two off-

diagonal terms in each row are non-zero. (It has been found that the permutation technique

developed in section 7.2 offers no improvement, because S is is not subject to matrix fill

during the LUD analysis.)

The kinematical equations are derived after any constraint equations are added by the

analyst, and before any other analyses are performed on the system. The equations are

inspected and any references to nonholonomic speeds that were removed by a constraint (as

described in the next section) are “expanded” recursively, replacing the indexed-sym of

the nonholonomic speed with the expression from its exp slot. Thus, the kinematical

equations in the Fortran code include only parameters, generalized coordinates, and

independent speeds.

In the Fortran simulation code, the kinematical equations cause values to be computed

for the derivatives of the generalized coordinates. Because they are now “defined,”

expressions in following Fortran code can refer to these derivatives.

8.3. Constraint Analysis

Most of the constraints in the multibody system are accounted for in the joint

characterizations. Rather than starting with a fully unconstrained system and adding

constraints, we start with a fully constrained system and add degrees of freedom. For

holonomic systems that have a tree topology, no further constraint analysis is required.

However, if the system is subject to nonholonomic constraints (e.g., the examples in

sections 9.1 and 9.2), or if it contains one or more kinematical loops (e.g., the example in

section 9.3), then additional constraint equations are needed.

Nonholonomic Constraints

Dynamical degrees of freedom can be eliminated by the analyst by imposing

nonholonomic constraints.

114

Derivation of Constraint Coefficients

A constraint equation is a scalar expression constrained to be zero, having the form:

fs(q1,q2, ... qn,u1,u2, ... uν,t) = 0 (s=p+1,... ν) (8.3.1)

Each expression fs is associated with one speed, us, and is generally the result of a dot-

product between a velocity (angular or translational) and a unit-vector (e.g., see examples

in Sections 9.1 and 9.2). Such expressions are always linear with respect to generalized

speeds, although the coefficients can be nonlinear functions of generalized coordinates

and/or time. Thus, fs can be written in the form

fs =
∂fs

∂u1
 u1 +

∂fs

∂u2
 u2 + ... +

∂fs

∂uν
 uν + fs0

= fs1 u1 + fs2 u2 + ... fsν uν + fs0 (8.3.2)

where

fsi =
∂fs

∂ui
 fs0 = fs – fsi ui∑

i=1

ν
(8.3.3)

Recall that in Kane’s formulation, constraints are defined by scalar coefficients such

that nonholonomic speeds are written as linear combinations of independent speeds,

us = Asr∑
r=1

p

ur + bs (s = p+1, ... ν) (8.3.4)

At the time a constraint is applied, it is possible to solve for us, if us appears in fs. That

is, if

fss ≠ 0 (8.3.5)

then a replacement expression of us is

us =

–fs0 – fsi ui∑
i=1, i≠s

ν

fss
(8.3.6)

At the time a constraint is added with the add-constraint macro, the speeds are

renumbered such that the speed being eliminated is us, where s>p. A replacement

expression for us is obtained via the function solve-for and put into the exp slot of the

indexed-sym object that represents the variable us. The category slot is set to the symbol

nonholonomic.

115

Note that all generalized speeds, both independent and nonholonomic, appear in 8.3.2,

but only one nonholonomic speed (us) appears in eq. 8.3.4. Conversion from the form of

eq. 8.3.2 to that of eq. 8.3.4 cannot be done at the time a constraint is specified, because at

that time it is not known how many other constraints will be introduced later by the analyst.

That is, the expressions obtained by eq. 8.3.6 might include speeds that will later be

removed by additional constraints. However, from a different perspective, expressions

obtained previously might include the speed that was just eliminated, us. Accordingly,

when a constraint is added, all of the existing nonholonomic speeds are processed so that

any occurrences of us are replaced with the expression in eq. 8.3.6. By performing this

expansion when each constraint is added, it is certain that at all times the replacement

expression for each nonholonomic speed is a function only of time, generalized

coordinates, and independent speeds.

The preceding analysis is performed as each constraint is added, along with other

activities that were described in Section 8.1. The above analysis was described in this

section, rather than Section 8.1, to establish continuity with the analysis methods described

below. The constraint analysis continues after the kinematical equations have been written.

At that time, the coefficients referenced in eq. 8.3.4 are obtained:

Asr =
∂us

∂ur
bs = us – Asr∑

r=1

p

ur (8.3.7)

A third set of coefficients is also established:

cs = bs + urAsr∑
r=1

p

(8.3.8)

Selection of Nonholonomic Speeds

The preceding analysis is presented under the presumption that as each constraint is

applied, one formerly independent speed (us) has been chosen for “removal” (i.e.,

replacement with an expression involving the remaining independent speeds). The add-

constraint macro does in fact allow the analyst to choose the speed variable to remove.

However, the speed can also be chosen automatically by the macro. The criteria for

selecting a speed to eliminate are based on an inspection of the above equations.

The first criterion is that the expression fss must not be zero, because it appears in the

denominator of eq. 8.3.6. The AUTOSIM function constant-part is applied to each

partial derivative in eq. 8.3.2, and only speeds associated with partial derivatives that

116

include a constant component are considered. (Because most constant parameters are

represented by symbols, there is some faith here that nonzero parameter values are

provided by the end user of the simulation code. An option is provided for the analyst to

specify the speed to remove if he or she knows that some parameters are more likely than

others to never have zero values.)

Note that the coefficients Asr involve the partial derivative of the expression that

replaces us, and that the coefficients cs involve the derivatives of Asr. From eq. 8.3.6, we

see that the expression fss appears in every term in us. Thus, if fss has a derivative that is a

complicated expression, then the expressions obtained for the non-zero coefficients defined

in eqs. 8.3.7 and 8.3.8 will also be complicated. For this reason, the second criterion is

that the partial derivative of the constraint with respect to us should be a constant.

The replacement expression is more complicated than a symbol, and therefore speeds

that appear rarely in the system equations are prefered when choosing us. The nature of a

tree topology is such that variables introduced for bodies that have children are likely to

appear in expressions for the children when recursive formulations are employed.

Therefore, the third criterion is that the speed eliminated should correspond to a body with

no children. The speeds are numbered such that the highest indices correspond to bodies

with no children, whereas speeds with low indices correspond to bodies “up” the tree, with

children. Therefore, this criterion is applied by choosing the speed with the highest index

from the list of candidates.

The actual procedure for choosing a speed to eliminate is as follows:

1. The set of all independent speeds with non-zero constant-parts in the partial

derivatives of the constraint equation (fsi, i=1, ... ν) is formed. If this set is NIL, a

message is printed to the analyst and an automatic selection is not made.

Otherwise, the procedure continues.

2. From the set obtained in step 1, a subset is formed that includes only speeds

corresponding to constant partial derivatives of the constraint equation. However,

if this set is NIL, the set from step 1 is used.

3. The speed with the highest index that appears in the set formed in step 2 is chosen.

117

Kinematical Loops

Kinematical loops occur when a holonomic constraint links two bodies that do not have

a parent-child relationship.

Example: Four-Bar Linkage

To help describe the handling of loops, the four-bar linkage shown in Figure 8.3.1 is

used as an example. (This example will appear again in Section 9.3.) Suppose bodies A

and C are introduced with parent N, and B is introduced with A as its parent. Thus, the

tree appears as shown in Figure 8.3.2.

In this example, the pin joint

between B and C still needs to be

accounted for. To do this, one or

more constraint equations must be

written, based on the definition of

the joint. Call the location of point

P on body C point CP, and on

body B, point BP. The constraint

should state mathematically that

CP and BP coincide. Because the

state variables include both

coordinates and speeds, it is

necessary to state two facts about the joint: (1) the position between CP and BP is zero, and

(2) the velocity between CP and BP is zero.

The condition that no movement exists is

defined for forming expressions for the velocity

and position vectors between the two points, and

then dotting those vectors in appropriate directions.

The position vector between the two points can

be written as

0 = rBPCP = (L1 – L5) c1 –L1 a1 – L4 b2 + L5 n1 + L4 n2 (8.3.9)

N

C

B

A
(0, 0)

(L1, 0)

(L1, L4)(L5, L4) C

A B

B , C

00

0

PP

2

1

Figure 8.3.1. Four-bar linkage.

N
A
B

C

Figure 8.3.2. Tree for

linkage.

118

(The above expression is formulated in AUTOSIM using the pos function.) Dotting rBPCP

in the direction b1 yields the following scalar equation:

0 = rBPCP • b1

= –L1c2 + L5(c1c2 – s1s2) + L4(c2s1 + c1s2)

+ (L1 – L5) –s2(c3s1 – c1s3) + c2(c1c3 + s1s3) (8.3.10)

where sines and cosines are abbreviated as: ci ≡ cos(qi), si ≡ sin(qi), and q1, q2, and q3 are

generalized coordinates introduced for the angular rotations of bodies A, B, and C,

respectively.

The vel function is used to formulate an expression for the difference in velocity

between the two points,

0 = vBPCP = (L1 – L5)u3 c2 – L1u1 a2 + L4(u1 + u2) b1 (8.3.11)

where speeds u1, u2, and u3 are defined as the derivatives of q1, q2, and q3, respectively.

As before, a scalar constraint equation is obtained by dotting the above formulation with

b1:

0 = vBPCP • b1

= (L1 – L5) u3 c2 (c3s1 – c1s3) + s2 (c1c3 + s1s3)

– L1u1s2 + L4 (u1 + u2) (8.3.12)

On inspecting the above two constraint equations, it is clear that eq. 8.3.12 is well

suited to solving for a speed variable (e.g., u2) using the solution method of eq. 8.3.6.

However, it is just as clear that an algebraic solution for a coordinate with eq. 8.3.10 is

much more complicated.

Computational Methods

The constraints for displacement are almost unnecessary. Suppose that only two

constraint equations are used, and the constraints are treated as nonholonomic. Then, we

still have n generalized coordinates, computed by integrating the kinematical equations. We

also have p independent speeds, computed by integrating the dynamical equations. There

are just two minor problems with this formulation:

119

1. The initial values for all of the generalized coordinates are not known. Because

some of the coordinates are not independent, they must be assigned initial values

that satisfy the constraint equations.

2. The numerical integration involves some error that is very small, but which can

accumulate over a long simulation run to violate the displacement constraint by a

gradually increasing amount.

The approach taken is to treat the system as being nonholonomic, but to account for the

above two potential problems computationally.

Let the displacement constraint equations have the form

gs(q1,q2, ... qn, t) = 0 (s=π+1,... n) (8.3.13)

Each expression gs is associated with one coordinate, qs, and is generally the result of a

dot-product involving a displacement (angular or translational) and a unit-vector (e.g., eq.

8.3.10). Given a constraint of this generic form, the solution method used in eq. 8.3.6 for

the speed constraint is first attempted. If it fails (as is usually the case for constraints

defined from displacement equations), then numerical computational procedures are

formulated. Instead of replacing the coordinate qs with an exact analytical solution, qs is

categorized as a computed coordinate. The constraint equation gs is placed in the category

slot of the indexed-sym, where it is available for later writing computational procedures.

When a simulation run is started, initial values must be obtained for the computed

coordinates such that the constraint equations are satisfied. The computation method used

is a Newton-Raphson iteration, using an established algorithm for a set of nonlinear

simultaneous algebraic equations [93]. After all of the constraints have been entered by the

analyst, they are written as

gπ+i= 0 (i = 1, ... µ) (8.3.14)

The original constraint equations are available from the category slots of the computed

coordinates, and are used to write a subroutine called INITNR to compute (1) the µ values

of gs, and (2) the µ × µ Jacobian matrix, whose elements are defined as:

Jij = –
∂gπ+i

∂qπ+j
(i = 1, ...µ, j = 1, ...µ) (8.3.15)

120

The coefficients defined in eqs. 8.3.14 and 8.3.15 provide all of the information needed to

compute the correct initial values at the start of the simulation. Thus, the first potential

problem is solved. (See Section 9.3 and Appendix C for the subroutines generated by

AUTOSIM to perform the Newton-Raphson iteration.)

The second potential problem is that for long simulation runs, accumulated error in the

numerical integration can result in violation of the displacement constraints. The solution is

to include a correction of the form

qs ← qs –
gs

∂gs ∂qs

(8.3.16)

where the left arrow means “the value of on the left-hand side of the arrow (qs) is replaced

with the expression on the right-hand side of the arrow.” Note that if the constraint is

satisfied, then gs is zero and qs is not modified by the computation. Eq. 8.3.16 is applied

at each time step, so the correction is typically very small, accounting for integration error

over one time step. Interactions with other variables are numerically negligible and are not

included in the computation here. Note that the denominator of the correction term in eq.

8.3.16 is a diagonal element of the Jacobian matrix defined in eq. 8.3.15.

A restriction on eq. 8.3.16 is that the denominator of the correction term (i.e., the

Jacobian coefficient) must be nonzero. The current version of AUTOSIM does not

automatically generate IF-THEN blocks to check for such singularities. Hence, the

formulations can sometimes become singular. Generally, this is not a problem for

kinematical loops occuring in vehicle systems, where motions of links in suspensions are

limited to 20 or 30 degrees. (The singularity does not arise in steering systems, where

angles cover the full range.) However, for applications involving general mechanism

design, the possibility of a singularity should be considered. (A simple “fix” in the

simulation code is to skip the correction when the absolute value of the Jacobian coefficient

is smaller than some threshold, say, 10-10.)

The computation indicated in eq. 8.3.16 is obtained by the solve-for function when

an explicit expression cannot be obtained and the optional :numerical keyword

argument is given the value T. The expression is put into the exp slot of the indexed-

var and the category slot is set to the constraint expression gs.

Section 9.3 and Appendix C show examples of how these computations appear in the

simulation code.

121

Automatic Selection of Computed Coordinates

As was the case for the speeds, the above material was presented assuming an

independent coordinate had been chosen by the analyst to convert to a computed

coordinate. When used for constraints of displacement, the add-constraint macro

allows the analyst to choose the coordinates to remove, just as it does when used for a

constraint of speed. Also, the coordinate can also be chosen automatically. The criteria for

selecting an independent coordinate to eliminate are similar, but less stringent, than those

used for selecting speeds to eliminate.

First, the independent coordinates are checked, going from the coordinate with the

highest index to q1, to see if a coordinate exists whose partial derivative of gs includes a

constant part. The first one found is selected.

If the above search fails, then the independent coordinates are checked, again going

from the coordinate with the highest index to q1, to see if a coordinate exists whose partial

derivative of gs has a nominal value that is not zero. (The nominal value is the expression

obtained when all generalized coordinates are zero, and is obtained with the function

nominal.) If first one found is selected.

If the first criterion is satisfied, the Jacobian coefficients involving this computed

coordinate have a denominator that is highly unlikely to be zero. If the second is satisfied,

the coefficients are unlikely to be zero for configurations close to the nominal case. If both

of the above methods fail to select a coordinate, a message is printed to the analyst and the

constraint is not added. (To add the constraint, the analyst must choose the coordinate to

eliminate.)

The No-Movement Macro

Kinematical loops require that constraint equations be added in pairs: one for speed and

one for displacement. Given that there is some redundancy, it is essential that the two are

consistent. To ensure this, a macro no-movement is used to generate holonomic

constraints that eliminate motion of one point relative to another in some direction. The

macro has three arguments: point1, point2, and direction. It forms an expression for the

position vector between point1 and point2 (via the pos function) and dots the result with

direction to obtain a scalar displacement constraint. That constraint is applied with the

add-constraint function. Then, the macro forms a velocity vector between point1

122

and point2 (via the vel function) and dots the result with direction to obtain a speed

constraint that is also applied with the add-constraint function.

The no-motion macro is suitable for closing kinematical loops with the mathematical

equivalents of planar slider joints (no movement in one direction), linear slider joints (no

movement in two directions), pin joints (no movement in two directions), and ball joints

(no movement in three directions).

Redundant Constraints

The add-constraint function and the no-movementmacro do nothing if the

constraint equation is already satisfied. There is usually not a problem if the analyst tries to

apply too many constraints. For an example, see Section 9.2.

8.4. Dynamics Analysis

For a given multibody system, the minimal number of independent speeds is

determined solely by the number of degrees of freedom. Introducing new symbols to

match the number of degrees of freedom is a trivial exercise: they are variables called u1,

u2, ... up. However, deciding what those symbols represent physically is where modeling

judgement comes into play. Because the partial velocities are used so frequently in deriving

the equations of motion, their formulation is a primary factor in determining the complexity

of equations of motion for the system. Specifically, for each body,

• the nonholonomic partial central velocities are dotted with the forces acting on that

body,

• the nonholonomic partial angular velocities are dotted with the moments acting on

that body,

• an expression for the angular acceleration remainder is developed, dotted with the

inertia dyadic for the body, and the result is dotted with each nonholonomic partial

angular velocity, and

• an expression for the central acceleration remainder is developed and dotted with

each nonholonomic partial velocity for that body.

The nonholonomic partial angular and central velocities were defined in Chapter 6 as

linear combinations of the holonomic counterparts. Similarly, the nonholonomic angular

and central acceleration remainders were defined from holonomic expressions. The

123

previous section described how the coefficients needed to define nonholonomic

expressions are obtained from the constraints. Therefore, if the holonomic terms are

formulated, it will be simple to obtain the nonholonomic counterparts. Accordingly, this

section focuses on the holonomic terms.

Two approaches will be used for defining holonomic partial velocities:

1. Non-recursive — Generalized speeds are defined such that most of the partial

velocities and partial angular velocities for a body are either (1) zero, such that

associated dot products are also zero, or (2) identical to other partial velocities, such

that dot-products obtained for one partial velocity can be used again without further

computation. Zero partial velocities are obtained when speeds are defined

independently of other bodies, i.e. relative to the inertial reference. Identical partial

velocities are obtained when speeds are defined for directions that are parallel to

previously introduced speeds.

2. Recursive — Recursion is employed, such that expressions introduced for body B

include results already obtained for the parent body A. This is accomplished by

defining speeds associated with B relative to A.

Clearly, the two approaches conflict. In general, the first approach is preferred.

However, it can be used only under certain conditions.

Before developing expressions for the partial velocities and acceleration remainder, two

important algebraic considerations are discussed. These are (1) selection of a vector basis

and (2) the introduction of intermediate variables. Neither is of any consequence with

respect to the correctness of the equations of motion, but both are of great consequence

with respect to the efficiency of the simulation code that applies the equations of motion.

Vector Bases

A vector is an expression involving products of scalars and unit-vectors. A given

vector can be written in different ways, using alternative unit-vectors. A vector written

using only the three unit-vectors aligned along the axes of the coordinate system of body B

is said to be expressed in the basis of B. A vector written with no explicit trigonometric

functions is said (in this dissertation) to be expressed in native form. For example, consider

a system of two bodies A and B, where A rotates relative to N about an axis oriented in the

124

direction n1 and B rotates relative to A about an axis oriented in the direction a2. (In this

example, the axes of the coordinate systems of N, A, and B are aligned in the nominal

configuration. Thus, n1 coincides with a1 and a2 coincides with b2.) The angular velocity

of B is ωB
:

ωB
 = u1 n1 + u2 a2 (8.4.1)

This velocity vector can be dotted with a basis dyadic without changing its magnitude or

direction. That is,

ωB
 = ωB

 • n = ωB
 • a = ωB

 • b (8.4.2)

where

n = n1 n1 + n2 n2 + n3 n3

a = n1 n1 + a2 a2 + a3 a3

b = b1 b1 + a2 a2 + b3 b3 (8.4.3)

The expressions obtained by dotting the angular velocity with the three basis dyadics

are:

ωB
 = ωB

 • n = u1 n1 + u2c1n2 + u2s1n3

= ωB
 • a = u1 n1 + u2a2

= ωB
 • b = u1c2b1 + u2 a2 + u1s2b3 (8.4.4)

where c1 and s1 are the cosine and sine functions of the rotation angle between N and A,

and c2 and s2 are trigonometric functions for the angle between A and B.

In this example, the expression is simplest in the basis of A, being identical to the

native form of eq. 8.4.1. For more complicated systems, the native form cannot be

expressed in a single basis.

In the following material, the basis of each vector expression is a matter of concern.

The basis is indicated with a dot product with a basis dyadic, as shown in eq. 8.4.2. When

a basis is not specified, then the native form is retained.

125

Intermediate Variables

When the equations of motion are written into a Fortran program, it is intended that

each arithmetic operation be performed only once. An expression that appears more than

once is replaced with an intermediate variable, and the intermediate variable is used

subsequently. The replacement of an expression with an intermediate variable is made by

using the function intro-var-if-new. In the following material, the invocation of this

function is indicated by enclosing an expression with the symbols “«” and “».” For

example, the expression « ωB
 • b » is interpreted as: “take the dot product as indicated, then

invoke the intro-var-if-new function.” For the above example, the result would be

an expression similar to the following:

«ωB
 • b» ← z8 b1 + u2 a2 + z9 b3 (8.4.5)

where z8 and z9 are intermediate variables introduced for the expressions u1c2 and u1s2,

respectively. All expressions developed later involving « ωB
 • b » would include z8 and

z9, rather than u1c2 and u1s2.

The timing in the analysis at which intermediate variables are introduced is also a matter

of concern. Generally, intermediate variables are introduced whenever an expression is

formulated that is used in at least two products subsequently. (A “product” here means (1)

a vector dot product, (2) a vector cross product, or (3) the result of a scalar multiplication.)

After all of the equations of motion have been developed, they are processed

recursively with the intro-var-if-new function, to pick up any miscellaneous

opportunities to introduce intermediate variables. However, the best efficiency is obtained

by strategically introducing most of the intermediate variables as the analysis proceeds.

Initialization of Dynamics Analysis

The holonomic partial velocities and partial angular velocities are represented as arrays

of dimension ν. Because ν is not known until all bodies and constraint equations have

been entered by the analyst, the arrays are not formed until the system has been described

in its entirety. The analysis is then performed by traversing the tree from the top down,

such that the parent of each body B is analyzed before dealing with B. Given the design of

126

the body object, this form of tree traversal is very easy to implement. (Example Lisp code

for performing the traversal was presented in Section 5.2.)

The analysis of the topology tree begins with the inertial reference, N. The two arrays

of partial velocities and partial angular velocities associated with N are each filled with ν
zeros and put into the holo-wis and holo-v*is slots of the worksheet. That is,

v i
N* = ωi

N
 = 0, (i = 1, ... ν) (8.4.6)

Also, the angular velocity and angular acceleration remainder for N are set to zero:

αrem
N

 = ωN
 = 0 (8.4.7)

The central acceleration remainder is set to the negative acceleration due to gravity:

arem
N* = –g (8.4.8)

(If the analyst has not included gravity with the add-gravity macro, then the vector g

has a value of zero.)

The analysis is broken into two steps: rotational and translational. It will be seen that

expressions developed for the partial central velocities of body B can include the partial

angular velocities of B, and that the expression for the central acceleration remainder can

include the angular acceleration remainder. Therefore, the rotation analysis is performed

first.

Rotation Analysis

Four cases are considered for the rotation analysis: (1) a “general” recursive

formulation, (2) the special case of a rotor, in which the rotational inertial properties about

the mass center can be lumped with those of the parent body, (3) planar motions, and (4)

unconstrained rotation.

Except for case 2, it is desirable to have the angular velocity and angular acceleration

remainders of B expressed in the basis of B, because products taken with the inertia dyadic

are projected into the basis of B. (See eqs. 6.3.19 and 6.3.20.)

127

General Recursive Formulation

In the general recursive formulation, expressions are developed for incremental terms

that are added to expressions already developed for the parent of body B to obtain a new

expression for B.

The recursive formulations for angular velocity and acceleration will be used only when

the joint has zero or one rotational degree of freedom. Thus, the relative angular velocity of

B with respect to its parent A is

 AωB
 = ur rrot

B (8.4.9)

where ur is the derivative of the generalized coordinate associated with the joint rotation and

rrot
B is the axis of rotation. The angular velocity of body B is then

ωB
 = ωA

 • b + ωBA
(8.4.10)

The dot-product with b puts ωA
 into the basis of B. (The axis of rotation is already in the

basis of B.) Expanding the above in terms of partial angular velocities gives the following:

ωB
 = ui∑

i=1

ν
 ωi

A
 • b + ur rrot

B
(8.4.11)

By inspection,

ωi
B
 = ωi

A
 • b + ωi

BA
 (i = 1, ... ν) (8.4.12)

where

ωi
BA
 =

rrot
B for i = r

0 for i ≠ r
 (i = 1, ... ν) (8.4.13)

Recall the definition of the holonomic angular acceleration remainder (eq. 6.3.10):

αrem
B

 = ur
dωr

B

dt
 ∑
r=1

ν
(8.4.14)

substituting eq. 8.4.12 into 8.4.14 yields the following:

128

αrem
B

 = ∑
i=1

ν
 ui

dωi
A

dt
 + ur

drrot
B

dt

= αrem
A

 + ur
drrot

B

dt

= αrem
A

 + ur ω
A
 × rrot

B

= αrem
A

 + αrem
AB

= αrem
A

 • b + αrem
AB

(8.4.15)

where

αrem
AB

 = ur ωA
 × rrot

B

= ωA
 × ωBA

= ωA
 • b × ωBA

(8.4.16)

Formulation for a Rotor

Body B is classified as a rotor if it has one rotational degree of freedom, and the same

moment of inertia is obtained about any direction normal to the rotation axis. In this case

the inertia dyadic was formulated using unit-vectors from the parent. Expressions dotted

with the inertia dyadic are projected into the basis of the parent. Thus, expressions for

rotation are all obtained in the basis of the parent. That is,

ωB
 = ωA

 + ωBA
 • a (8.4.17)

ωi
B
 = ωi

A
 + ωi

BA
 • a (i = 1, ... ν) (8.4.18)

αrem
B

 = αrem
A

 + αrem
AB

 • a (8.4.19)

αrem
AB

 = ωA
 × ωBA

 • a (8.4.20)

where the incremental angular velocity and partial velocities are defined as before in eqs.

8.4.9 and 8.4.13.

129

The above formulation is more efficient than the general recursive formulation, because

transformations to the coordinate system of B are avoided when dealing with the rotational

dynamics of B. If B has no children, the sine and cosine of the rotation angle of B relative

to A do not in appear in the equations of motion unless they are required for a

force/moment-producing element or an output variable defined by the analyst.

Planar Motions

If a rigid body is constrained to planar motions, then all rotations occur about the

direction perpendicular to the plane of the motion, and the velocity vector of any point on

the body is always parallel to the plane.

In this case, the recursive formulation for angular velocity results in all nonzero partial

angular velocities being identical, namely the unit-vector normal to the plane. The cross-

product in eq. 8.4.20 is always zero, and therefore the acceleration remainder is zero. Both

of these forms are desirable, and therefore the general recursive formulation is well suited

for introducing partial angular velocities for bodies constrained to planar motions.

Three Rotational Degrees of Freedom

A general three-dimensional angular velocity can be completely described with three

independent speeds variables. When a body has three rotational degrees of freedom

relative to its parent, then the three generalized rotational speeds can be defined to

characterize the angular velocity without reference to any other bodies.

For ground and air vehicles, rotational speeds named roll rate (p), pitch rate (q), and

yaw rate (r) are defined about three axes fixed in the body. That is, for body axes b1, b2,

and b3, and rotational velocity ωB
, the three generalized speeds are defined as

p = ωB
 • b1 q = ωB

 • b2 r = ωB
 • b3 (8.4.21)

or,

ωB
 = p b1 + q b2 + r b3 (8.4.22)

This choice of variables leads to the simplest possible expression for angular velocity that

can be expressed in the basis of B. Also, a simple expression for angular acceleration is

obtained:

130

α B
 = dω B

dt

 = p b1 + q b2 + r b3 + p ω B
 × b1 + q ω B

 × b2 + r ω B
 × b3

= p b1 + q b2 + r b3 + p p b1 + q b2 + r b3 × b1

 + q p b1 + q b2 + r b3 × b2

 + r p b1 + q b2 + r b3 × b3

= p b1 + q b2 + r b3 + pr b2 – pq b3

– qr b1 + qpb3

+ rq b1 – rp b2

 = p b1 + q b2 + r b3 (8.4.23)

By inspecting eq. 8.4.22, we find three nonzero partial angular velocities: b1, b2, and

b3. Eq. 8.4.23 indicates that the angular acceleration remainder is identically zero.

Summary

Expressions developed in this analysis are stored in worksheet objects. Each body in

the system has an associated object, kept in its worksheet slot. Slots pertaining to the

rotation analysis are listed in Table 8.4.1. Slots such as w-a that include data copied from

the parent are set to the vector expressed in a basis appropriate for analyzing the current

body.

Table 8.4.1. Slots in body worksheet object pertaining to rotational

velocity and acceleration.

Slot Name Type Definition

w-a expression absolute angular velocity of A.

w-ab expression angular velocity of B relative to A.

w expression absolute angular velocity of B.

holo-wis-ab array incremental holonomic partial angular velocities of B.

holo-wis array holonomic partial angular velocities of B.

alpha-ab expression incremental holonomic angular acceleration remainder

for B.

alpha-rem expression holonomic angular acceleration remainder for B.

131

The expressions used to fill the slots are shown in Table 8.4.2. The recursive

formulation is given in three forms in the table, for zero and one rotational degree of

freedom, and for the case of a rotor. The nonrecursive formulation is used for bodies with

three rotational degrees of freedom. Note that replacement of expressions by intermediate

variables is also indicated in the table.

Table 8.4.2. Formulas pertaining to rotational velocity and acceleration.

Slot Symbol 0

d .o . f .

rotor 1 d .o . f . 3 d .o . f .

w-a ωA'
« ωA

• a » « « ωA
• a » • b »

w-ab ωBA ur rrot
B ur rrot

B

w ωB
ωA «ωA'

 + ωBA
» «ωA'

 + ωBA
» uo+1 b1 + uo+2 b2

 + uo+3 b3

holo-wis-

ab

ωi
BA rrot

B for i = r

0 for i ≠ r

rrot
B for i = r

0 for i ≠ r

holo-wis ωi
B

ωi
A « ωi

A
• a » + ωi

BA
« « ωi

A
• a » • b »

 + ωi
BA

bi-o i-o=1,2,3

0 otherwise

alpha-ab αrem
AB ωA'

 × ωBA ωA'
 × ωBA

alpha-rem αrem
B

αrem
A « αrem

A
 • a

+ αrem
AB

 »

« αrem
A

 • b

 + αrem
AB

 »

0

Translation Analysis

Four cases are considered for the translation analysis: (1) a “general” recursive

formulation, (2) the special case of a fixed mass, in which the mass center is in a location

fixed in the parent body, (3) unconstrained planar translation, and (4) unconstrained three-

dimensional translation.

In the remainder of this section, all mass centers refer to the composite body mass

center, stored as a point in the cm-point slot of the body.

General Recursive Formulation

In this formulation, the partial velocities and the acceleration of body B are defined

relative to corresponding terms in the parent A.

132

The absolute position of B* (the mass center of B) can be defined relative to the

position of A* (the mass center of parent A):

rB* = rA* + rA*B0 + rB0B* (8.4.24)

The derivative of this position gives the central velocity of B:

vB* = drB*

dt

= drA*

dt
 + drA*B0

dt
 + drB0B*

dt

= vA* + ωA
 × rA*B0 + vB0A + ωB

 × rB0B* + vB*B (8.4.25)

The first local velocity, vB0A , accounts for translational degrees of freedom of B between

the point BJ and B0:

vB0A = ∑
i=1

Ntd
B

 uo+j rtj
B (8.4.26)

where Ntd
B is the number of translational degrees of freedom for B, o is a constant offset

needed to map the index of the generalized speeds to the summation index j, and rtj
B is the

direction of the jth translation of the joint. The second local velocity, vB*B , is zero because

B* is fixed in the coordinate system of B. Thus, eq. 8.4.24 can be written as

vB* = vA* + ωA
 × rA*B0 + ∑

i=1

Ntd
B

 uo+j rtj
B + ωB

 × rB0B* (8.4.27)

By inspection, the partial velocities are written

v i
B* = v i

A* + v i
A*B* (8.4.28)

where the incremental partial velocity, v i
A*B*, is defined for two cases, corresponding to

(1) speeds introduced for translational degrees of freedom of the joint of B, and (2) all

other speeds.

v i
A*B* =

rtj
B

ωi
A
 × rA*B0 + ωi

B
 × rB0B*

 for i = o+j, j=1, ...Ntd
B

all other i
 (i = 1, ... ν) (8.4.29)

The holonomic central acceleration remainder was defined in eq.6.3.17 as:

133

arem
B* = ∑

i=1

ν
 ui

dv i
B*

dt
(8.4.30)

Combining eqs. 8.4.28 and 8.4.30 yields the following:

arem
B* = ∑

i=1

ν
 ui

dv i
A*

dt
 + ∑

i=1

ν
 ui

dv i
A*B*

dt

= arem
A* + ∑

i=1

ν
 ui

dv i
A*B*

dt

= arem
A* + arem

A*B*
(8.4.31)

where the incremental central acceleration remainder, arem
A*B*, is defined as:

arem
A*B* = ∑

i=1

ν
 ui

dv i
A*B*

dt

 = ∑
i=1

ν
 ui d

dt
ωi

A
 × rA*B0 + ωi

B
 × rB0B* + ∑

i=1

Ntd
B

 uo+j
drtj

B

dt

=

αrem
A

 × rA*B0 + ωA
 × vA*B0 + αrem

B
 × rB0B* + ωB

 × vB0B*

+ ∑
i=1

Ntd
B

 uo+j ωA
 × rtj

B

=

αrem
A

 × rA*B0 + ωA
 × ωA

 × rA*B0 + ∑
i=1

Ntd
B

 uo+j rtj
B

+ αrem
B

 × rB0B* + ωB
 × ωB

 × rB0B* + ∑
i=1

Ntd
B

 uo+j ωA
 × rtj

B

=

αrem
A

 × rA*B0 + ωA
 × ωA

 × rA*B0 + αrem
B

 × rB0B*

 + ωB
 × ωB

 × rB0B* + 2∑
i=1

Ntd
B

 uo+j ωA
 × rtj

B

Knowing that

αrem × r + ω × ω × r = αrem × b + ω × ω × b • r (8.4.33)

134

a dyadic is defined to clarify the recursion inherent in eq. 8.4.32,

arot
B = αrem

B
 × b + ωB

 × ωB
 × b (8.4.34)

Then, eq. 8.4.32 can be expressed more simply, as

arem
A*B* = arot

A • rA*B0 + arot
B • rB0B* + 2∑

i=1

Ntd
B

 uo+j ωA
 × rtj

B (8.4.35)

Recall that the effect of a uniform gravitational field is accounted for by subtracting the

acceleration due to gravity from the acceleration remainder. Due to the recursive nature of

8.4.31, the acceleration remainder for B will properly include the effect of gravity if it was

included in the acceleration remainder of A. Thus, it is only necessary to explicitly subtract

the gravity acceleration term (1) in the acc-rem slot of the body of the inertial reference,

and (2) in the acc-rem slot for bodies that are nonrecursive in translation.

Upon inspecting eqs. 6.3.19 and 6.3.20, showing the uses made of the partial central

velocities and central acceleration remainder, we see that expressions appearing in the

dynamical equations that are contributed from the analysis of body B are (1) the dot

products of the partial velocities with each other, (2) the dot products of the partial

velocities with the acceleration remainder, and (3) the dot products of the partial velocities

with forces acting on B. The terms in the partial velocities and acceleration remainders

occur naturally in the bases of A and B. Dot products of vectors are simplest if the vectors

are both expressed in the same basis, and therefore the partial velocities and acceleration

remainders are converted to the basis of B after they are formulated.

There is a special case in which simpler expressions are obtained when the partial

velocities are not expressed in the basis of B. This occurs when both v i
A*B* and v j

A*B* are

zero. In this case, the two partial velocities v i
B* and v j

B* are identical to the corresponding

partial velocities of the parent. Also, their dot product is the same as the one obtained for

the parent. Obviously, it is more efficient in the simulation code to use an existing dot

product as opposed to computing a new one. (Generally, incremental partial central

velocities are zero when the corresponding generalized speed was introduced to account for

a translational degree of freedom in a joint.)

135

To locate partial velocities that are unchanged from the unfixed parent, a slot in the

body is set to an array of length ν that contains bodies in which the partial velocities were

last changed.

Formulation for a Fixed Mass

When the center of mass of body B is fixed in the coordinate system of the parent (i.e.,

the recursive-t slot is set to the symbol fixed), then the mass was lumped with that of the

parent. When the dynamical equations are formulated, the mass used for B is zero.

Therefore, partial central velocities and the acceleration remainder are not needed to form

the dynamical equations. However, the recursive formulation presented above requires that

these terms be defined for the parent body, even if the parent is classified as being fixed.

Therefore, the general recursive analysis is applied to a fixed body if it has children. If the

body does not have children, the partial velocities and acceleration remainder are set to

zero.

One change in the above formulation is made when the either the body or the parent is

fixed. That is, the point used for the mass center is the origin. This is done so that the

position vector rB0B* is identically zero.

Planar Motions

In general, expressions for the position, velocity, and acceleration of the center of mass

of a body undergoing planar motions involve both directions in the coordinate system of

the plane. If the body has two translational degrees of freedom, a nonrecursive formulation

is used so that the central velocity and central acceleration are formulated only in terms of

the two new speeds. If the body has zero or one translational degree of freedom, it is not

possible to develop expressions for central acceleration that do not involve the velocity and

angular velocity of the parent body. Thus, the above recursive formulation is used when

the body has zero or one translational degree of freedom.

There are two obvious choices for defining speeds when the body has two translational

degrees of freedom: (1) use body-based directions, or (2) use inertial directions. First,

consider the body-based option. The speeds are defined as:

u = vB* • b1 v = vB*• b2 (8.4.36)

or,

136

vB* = u b1 + v b2 (8.4.37)

There are but two nonzero partial velocities here: b1 and b2. The central acceleration

remainder is

arem
B* = ∑

i=1

ν
 ui

dv i
B*

dt
 – g

= udb1
dt

 + vdb2
dt

 – g

= u ωB
 × b1 + v ωB

 × b2 – g

= ωB
 × vB*– g (8.4.38)

(Note that acceleration due to gravity is added to the acceleration remainder when a

nonrecursive formulation is used.)

Next, consider speeds defined for the inertial reference:

ut1 = vB* • n1 ut2 = vB*• n2 (8.4.39)

or,

vB* = ut1 n1 + ut2 n2 (8.4.40)

Here, the two nonzero partial velocities are n1 and n2. The central acceleration

remainder is g :

arem
B* = ∑

i=1

n

 ui
dv i

B*

dt
 – g

= ut1
dn1
dt

 + ut2
dn2
dt

 – g

= –g (8.4.41)

On the basis of simplifying the central acceleration remainder, the choice of inertial

directions is better than body-fixed directions. However, for vehicle systems, there are

often advantages in defining speeds using body-based directions. For one thing, forces

and moments acting on a vehicle are usually directed relative to the body-based coordinate

system. Thus, the dot-products between active forces and partial velocities are simpler

when the partial velocities are fixed relative to the body. Another consideration is that

137

constraints are commonly applied that are most naturally described using body-fixed

directions. For example, forward speed is often set to a constant. Therefore, body-fixed

directions are used in this work.

When a body has two translational degrees of freedom and is constrained to planar

motions, the recursive-t slot is set to NIL. The directions of the translational speeds are the

two unit-vectors of the body that are not the rotation axis for its one rotational degree of

freedom. Those two unit-vectors were put in a list assigned to the slot translational-speed-

directions at the time the body was added.

Three Degrees of Freedom in Translation

If body B has three translational degrees of freedom, then generalized speeds can be

introduced so that the velocity and acceleration of the center of mass depend only on those

speeds. As before (for the planar system, with a body with two translational degrees of

freedom), the generalized speeds can be defined relative to body-based directions or inertial

directions. Again, because ground vehicles are the type of multibody system being

considered, body-based directions are preferred. The speeds are defined as:

u = vB* • b1 v = vB*• b2 w = vB*• b3 (8.4.42)

or, conversely

vB* = u b1 + v b2 + w b3 (8.4.43)

The central acceleration remainder is

arem
B* = ∑

i=1

ν
 ui

dv i
B*

dt
 – g

= udb1
dt

 + v db2
dt

+ w db3
dt

 – g

= u ωB
 × b1 + v ωB

 × b2 + w ωB
 × b3 – g

= ωB
 × vB* – g (8.4.44)

138

Summary

As with the rotation analysis, results of the translation analysis are kept in a worksheet

object. Slots pertaining to the translation analysis are listed in Table 8.4.3. The

expressions used to fill the slots are shown in Table 8.4.4. Note that the conversion to the

basis of the current body B is performed by dotting expressions with the basis dyadic, b,

as was done for the rotational expressions. For the partial central velocities, the same

approach is taken, namely, that partial velocities of A are dotted with b and added to the

incremental expressions to get the partial velocities of B. However, for the acceleration

remainder, the incremental expression arem
A*B* is most conveniently left in a mixed basis,

involving unit vectors from both A and B. Only after the full acceleration remainder for B

is obtained (arem
B) is is the conversion made to the basis of B.

Table 8.4.3. Slots in body worksheet object pertaining to translational

velocity and acceleration.

Slot Name Type Definition

acc-ab expression incremental holonomic central acceleration remainder

for B.

acc-dyadic expression dyadic with rotational component of incremental

acceleration remainder.

acc-rem expression holonomic central acceleration remainder for B.

holo-v*is array holonomic partial central velocities of B.

holo-v*is-ab array incremental holonomic partial central velocities of B.

holo-v-bodies array bodies in which corresponding holonomic partial

velocities were last modified.

ra*b0 expression position vector going from A* to B0.

Form Dynamical Equations

Once the terms in Tables 8.4.2 and 8.4.4 are obtained for all bodies, it is

straightforward to finish the analysis to obtain the dynamical equations. Specifically, the

following steps are taken for each body B:

1. The constraint coefficients, derived in Section 8.3, are combined with the

holonomic partial velocities (angular and central) and acceleration remainders

(angular and central) to define the nonholonomic partial velocities and

139

nonholonomic acceleration remainders (angular and central). The equations from

Sections 6.2 and 6.3 are repeated here for reference:

ωr
B
 = ωr

B
 + Asr∑

s=p+1

ν
 ωs

B

(r = 1, ... p) (8.4.45)

v r

B*
 = v r

B* + Asr∑
s=p+1

ν
 vs

B* (r = 1, ... p) (8.4.46)

αrem
B

 = αrem
B

 + ωs
B
 cs∑

s=p+1

ν

(8.4.47)

Table 8.4.4. Formulas pertaining to translational velocity and acceleration.

Slot Symbol nonrecursive recursive

ra*b0 rA*B0 « rA*B0 »

ωB'
« ωB

• b » « ωB
• b »

holo-v*is-ab
v i

A*B* rtj
B for i = o+j, j=1, ...Ntd

B

 « ωi
A
 • a » × rA*B0

 + « ωi
B
 • b » × rB0B* otherwise

holo-v*is v i
B*

bi-o

0

i is
translation
d.o.f. of B
otherwise

« v i
A* + v i

A*B* • b »

acc-dyadic arot
B

« αrem
B

 • b × b

+ ωB'
 × ωB'

 × b »

« αrem
B

 • b × b

+ ωB'
 × ωB'

 × b »

acc-ab arem
A*B*

arot
A • rA*B0 + arot

B • rB0B*

+ 2∑
i=1

Ntd
B

 uo+j « ωA
• a » × rtj

B

acc-rem arem
B

«ωB'
 × « v i

B*∑
i=1

ν
»

– g • b»

« arem
A* + arem

A*B* • b »

Note: If B is fixed, the origin (B0) is used for B*. If A is fixed, the origin (A0) is used

for A*

140

arem
B*

 = arem
B* + vs

B* cs∑
s=p+1

ν
(8.4.48)

2. The mass matrix is formed:

Mij = ∑
B

all bodies

 ωj
B
 • « I

B*
 • ωi

B
 » +

v j
B*

 • « v i
B*

mB »
or

« v j
B*

 • v i
B*

 »mB

(8.4.49)

Two strategies are shown above for introducing intermediate variables for the

second term, depending on the bodies referenced in the nonholo-v-bodies slot of B.

If either of the bodies is B, indicating that the partial velocities v i
B*

 or v j
B*

 for B is

different than the corresponding partial velocity for A, than the upper strategy is

taken. However, if both bodies from the nonholo-v-bodies slot are not B, then the

dot product of the two partial velocities was used when processing the parent. The

lower strategy causes the dot product obtained before to be used again. Note that

the caret symbol “^” appears over the partial velocities, indicating that they are taken

from the body in which they were introduced.

3. The force array is formed:

fi =

« Tt
B∑

t=1

NB,T

 » • ωi
B
 – « αrem

B
 • I

B*
 + ωB

 × I
B*

 • ωB
 » • ωi

B

+ « Ff
B ∑

f=1

NB,F

 » • v i
B*

 – arem
B* • « v i

B*
 mB »

∑
B

all bodies

(8.4.50)

The summation of moments is performed by going through the list of all moment

objects in the system, inspecting the body1 and body2 slots to see if either contains

B. If B is in the body1 slot, the moment is applied with a positive magnitude. If B

is in the body2 slot, the moment is applied with a negative magnitude. The same

thing is done with a list of all forces in the system. However, if B matches one of

the slots in the force object, the force is accounted for (1) in translation by direct

inclusion in the force summation, and (2) in rotation, by taking the moment of the

force about the mass center of B, defined as

T = rB*P × F (8.4.51)

141

where T is the torque of the moment couple, rB*P is a position vector going from

the mass center of B to the point from the point1 slot of the force object, and F

is the product of the magnitude (from the exp slot) and the direction (from the dir

slot) of the force, with the appropriate sign (positive if B was in the body1 slot,

negative if B was in the body2 slot.) Note that the partial velocity dotted with the

applied forces is expressed in its original basis (as indicated with the caret), which

is either B or a body up the tree from B.

After traversing the tree and performing the above three tasks, a complete set of implicit

dynamical equations exists of the form

 M u = f (8.4.52)

The symbolic method presented in Chapter 7 is used to uncouple these equations.

8.5 Write Fortran Program

Upon completion of the analysis of the multibody system, the equations of motion are

stored in several eqs objects. The variables that will appear in simulation code are

contained in declaration objects. (Each declaration contains (1) a list of variable

names, (2) a data type such as REAL or INTEGER, and (3) a subroutine in the simulation

code that will be written such as DIFEQN or OUTPUT in which the variables are used.)

As bodies, forces, constraint equations, auxiliary subroutines, and output variables were

entered by the analyst, the arguments were scanned and all symbols contained in

expressions were added to a list assigned to a Lisp global variable. Thus, all of the

information needed to write a complete simulation code is available.

Before the program is written, the equations are inspected to determine which variables

and parameters are actually needed to compute (1) derivatives in the equations of motion,

and (2) output variables. First, all symbols (syms and indexed-syms) pertaining to the

multibody system are “hidden” by setting the hide slot to the value 0. Then, the

validate-exp function defined in Section 5.4 is applied to (1) the output variables, (2)

the arguments of external subroutines introduced by the analyst, (3) derivatives of the

generalized coordinates, and (4) derivatives of the independent speeds. Through recursion,

validate-exp encounters every expression that contributes to the above four groups of

values that must be computed in the simulation code. When validate-exp encounters a

sym or indexed-sym, it increments the value in the hide slot. All symbols with a value

of zero in the hide slot were not needed, and will not be included in the Fortran program.

142

Next, the equations are inspected recursively a second time, to search for intermediate

variables that are used but once. These are indexed-sym objects with the symbol slot

set to “Z” and the hide slot set to 1. When such an object is encountered, the expression

containing the indexed-sym is modified. The indexed-sym is expanded by

replacing it with the expression it originally replaced. (That expression is obtained from its

exp slot.) Also, the hide slot of the indexed-sym is set to zero, so that it will not appear

in the Fortran program. This expansion process is also recursive, to ensure that all “Z”

inermediate variables that appear only once are removed.

After the above analysis of the program code, the equations of motion for the multibody

system are stored such that only expressions that are proven to be necessary are printed.

The list of symbols is inspected. A sym is identified as a required parameter if its hide

slots is not zero and the const-or-var slot is set to the symbol const.

The above validation and expansion activities are performed automatically upon

completion of the dynamics analysis. The analyst can then view the equations of motion,

the required parameters, and the constants that are precomputed. To generate a simulation

code, the function write-sim is invoked. This function generates a completely self-

contained Fortran program whose general design was presented in Chapter 4. It generates

source code by four techniques:

1. conventional “write” statements are used to print strings containing lines of source

code (in Lisp, the format function is used),

2. special write functions are used to print commonly occuring statements, such as

comments, subroutine declarations, and END statements,

3. data objects that represent simulation code (e.g., eqs and declaration objects)

are simply printed, and

4. existing text files are merged into the source code. About 600 lines of code, spread

over nineteen files, are copied into the appropriate parts of the simulation code

generated by AUTOSIM. These files are commonly called “include files.”

Appendices B and C contain simulation codes generated by AUTOSIM, which can be

studied by the interested reader.

143

Although the simulation code is presently generated in the Fortran language, the same

basic method would be used to generate code in other languages, such as C, ADA,

ADSIM, etc. To generate code in a different target language, it is necessary to change the

above four techniques as follows:

1. the strings printed by Lisp format statements must be changed to equivalent

statements in the new target language,

2. the special write functions must be extended to print analogous statements in the

target language (for example, the function write-comment would be modified to

precede each line with the comment character of the target language, rather than the

letter “C” as is done in Fortran),

3. the print functions for the AUTOSIM data objects must be modified so that the

objects are printed in the syntax of the target language, and

4. text files corresponding to the existing Fortran “include files” must be written in the

target language.

The bulk of the simulation code is generated by the second and third techniques. Thus,

most of the simulation code can be generated in a different language just by changing a few

selected print functions.

8.6 Summary

The entire analysis of the multibody system is performed in the five steps that have just

been detailed. The process is now summarized to put into perspective the procedures and

rules that have been presented.

1. Describe System. The analyst describes the objects comprising the multibody

system using a small set of AUTOSIM macros. As each rigid body is introduced

by the analyst, a body object is automatically created and the following steps are

performed:

a. symbols are created for generalized coordinates and speeds.

b. a coordinate system with three unit-vectors is defined for the body.

c. a direction cosine matrix is generated (eqs. 8.1.4 — 8.1.11).

144

d. the body is classified for rotational analyses as (i) nonrecursive if it has

three rotational degrees of freedom, (ii) a rotor if it satisfies critera described

in Section 8.1, or (iii) general recursive in all other cases.

e. the body is classified for translational analyses as (i) nonrecursive if it has

three translational degrees of freedom, or two translational degrees of

freedom and eq. 8.1.13 is satisfied, (ii) “fixed” if the (composite) mass is

fixed in the coordinate system of the parent, or (iii) general recursive in all

other cases.

f. an analysis is conducted to create “composite bodies” that include the

masses of bodies classified as “fixed masses.” In this analysis, the inertia

dyadic, the (composite) mass, and the (composite) mass center of each body

“up” the tree from the new body is established (eqs. 8.1.14 — 8.1.18).

g. an expression is derived for the rotational velocity of the body (eq. 8.1.19).

h. an expression is derived for the absolute velocity of the origin (eq. 8.1.20).

Because the speeds are sometimes defined relative to the mass centers,

which were possibly modified in step (f), this analysis is re-applied to every

body in the system.

Points of interest on rigid bodies are identified by the analyst, and corresponding

point objects are created by the add-point macro.

Active forces and moments are described, and corresponding force and moment

objects are created. A gravitational field can be defined. (Gravity is added at this

stage simply by setting a global called *acceleration-due-to-gravity*.)

Additional equations are generated for nonholonomic constraints and closed

kinematical loops using the add-constraint and no-movement macros. As

each constraint is added, the state variables are searched for the “best” independent

variable to eliminate and one is selected automatically. An expression is derived to

replace the selected variable. Speeds are usually converted from “independent” to

“nonholonomic” categories. Coordinates are usually converted from “independent”

to “computed” categories. Details are provided at the beginning of Section 8.3

(eqs. 8.3.1 through 8.3.6, and eqs. 8.3.13 through 8.3.16).

145

Output variables, auxiliary variables, and external subroutines are also described by

the analyst. A system of units can be selected, and default numerical values can be

provided for any parameters that appear in expressions.

2. Kinematical Analysis. After the system has been specified, implicit kinematical

equations are formed (eqs. 8.2.1 through 8.2.12). They are solved symbolically to

obtain explicit expressions for the derivatives of the generalized coordinates (eqs.

7.1.5 through 7.1.9). The explicit equations are put into an eqs structure.

3. Constraint Analysis. Three sets of scalar coefficients are derived from expressions

formulated for the nonholonomic speeds in step 1 (eqs. 8.3.7 and 8.3.8).

4. Dynamics Analysis. Terms needed for Kane’s equations are formulated and kept in

worksheet objects associated with each body. The following steps are performed:

a. an array of ν holonomic partial angular velocities is formed for each body.

The elements are defined according to the formulations in Table 8.4.2.

b. the holonomic angular acceleration remainder is formed, again according to

the formulations in Table 8.4.2.

c. an array of ν holonomic partial central velocities is formed for each body.

The elements are defined according to the formulations in Table 8.4.4.

Also, an array of “native” bodies is defined that is used to determine the

body in which the partial velocity was last changed.

d. the holonomic central acceleration remainder is formed according to the

formulations in Table 8.4.4.

e. the nonholonomic partial angular and central velocities, and the

nonholonomic angular and central acceleration remainders are formulated

(eqs. 8.4.45 through 8.4.48).

f. the mass matrix is formed (eq. 8.4.49)

g. the forces and moments acting on each body are added, and terms involving

the acceleration remainders are subtracted. The results are dotted with

partial velocities to form the force array (eq. 8.4.50)

h. the mass matrix is inspected for zeros, and the independent speeds are

ordered. The mass matrix, the force array, and the independent speeds are

permuted as described in Section 7.2. Then, the simultaneous equations are

146

solved symbolically to obtain explicit expressions for the derivatives of the

independent speeds (eqs. 7.1.5 through 7.1.9). The explicit equations are

put into an eqs structure.

5. Write Fortran Program. The equations are inspected to determine the parameters

needed to describe the system. Also, eqs objects with the equations of motion are

manipulated as described in Section 5.3 and 8.5 to remove unnecessary code.

Finally, a complete simulation code is written in Fortran that (1) reads input

parameters, (2) simulates the multibody system, and (3) generates an output file

with predicted time histories of output variables. The equations of motions are

written into the simulation code by printing the eqs structures with the kinematical

and dynamical equations.

147

9. EXAMPLES

This Chapter presents analyses of six multibody systems to illustrate how the methods

developed in Chapters 5 through 8 are applied using the AUTOSIM software. Also,

several of the examples were used to help validate the correctness of the equations and to

compare the numerical efficiency of the equations generated by AUTOSIM with equations

obtained by other methods.

The first three examples cover three types of forces and constraints. Section 9.1

discusses a three-dimensional vehicle handling model, consisting of two rigid bodies and

forces and moments due to gravity, tires, and the vehicle suspension. This system is a

simple example of the sort of ground vehicle model that motivated this work, and it is

described in great detail. Section 9.2 presents the analysis of a system subject to extensive

nonholonomic constraints. It is a cart whose wheels are subject to the constraints of no-

rolling and no-slip. Section 9.3 illustrates how a closed kinematical loop is treated for a

system similar to an automotive suspension. It is a four-bar linkage and a strut spring-

damper element. These three examples are systems that have been analyzed before, either

by hand or through the use of generalized numerical simulation codes. Prior to this work,

however, such analyses have not been possible with automated symbolic multibody

programs.

Three other examples are included for systems that can also be analyzed by existing

symbolic multibody programs, and have been. They are provided to compare the

efficiency of the simulation code generated by AUTOSIM with codes generated by alternate

methods. Two of these are spacecraft vehicles and the third is a robot manipulator.

Each section is organized as follows: first, the model is described. Second, the

AUTOSIM inputs necessary to obtain a simulation code are presented. Third, results are

shown, in the form of time history plots and summaries of the computation needed to solve

the equations of motion. Finally, selected portions of the analysis are presented to illustrate

the methods developed in previous chapters.

A short summary of the AUTOSIM commands is provided in Appendix A. It may be

helpful in understanding the AUTOSIM inputs that are listed in the examples. Also,

148

complete Fortran listings for the systems discussed in sections 9.1 and 9.3 are provided in

Appendices B and C.

9.1. Passenger Car Handling Model

The model developed here has been used for over 30 years to simulate automobile

handling response to driver steer inputs. Although the model is relatively simple, it has

been shown to predict steering responses that closely match measurements from the test

track [114]. For this example, the objective of the simulation is to obtain time histories of

the yaw rate and the lateral acceleration of the body mass center in response to a step

change in the steer angle of the front wheels.

The Vehicle Model

When driving an automobile on a smooth surface at a constant speed, motions of the

sprung mass (the vehicle body) can be described fairly completely with a “roll axis”

concept. Both the front and rear suspensions possess a suspension roll axis, defined as the

axis about which the unsprung mass rotates when it is subjected to a torque about a

longitudinal axis. Further, a roll center for the suspension is defined as the intersection of

the suspension roll axis with the vertical plane through the centers of the two wheels on

either side of the car. Finally, a vehicle roll axis is defined by connecting the roll centers of

the front and rear suspension. A side force applied to the body of the car along the roll axis

causes no body roll. When the sprung mass is subjected to a side force that does not pass

through the roll axis, it rolls about that axis. This concept is illustrated in Figure 9.1.1.

Front Roll
Center

Rear Roll
Center
o Vehicle Roll Axis

o

Mass
Center

Figure 9.1.1. Roll axis in a passenger car.

Vehicles with rear axles and independent front suspensions generally have roll axes that

run approximately through the center of the rear axle (a foot or so above the ground), and

through a point near the ground at the mid-point of the front wheels. That is, the roll axis

is tilted slightly down going from the rear to the front.

149

With a roll-axis model, all of the suspension properties are lumped into just a few

parameters, namely,

1. inclination angle of the roll axis (determined by link lengths and locations),

2. torsional stiffness that resists roll of the sprung mass relative to the wheels

(determined by suspension spring elements and their locations), and

3. torsional damping of roll motions (determined by shock absorber elements, friction

elements, and the locations of such elements).

The above parameters can be computed from a detailed description of the suspension

kinematics and the locations of the springs and dampers. Alternatively, they are often

measured directly with special laboratory facilities that permit the “ground” to be rolled with

respect to the vehicle body [133].

This vehicle model includes two rigid bodies: a sprung mass and an unsprung mass.

The sprung mass includes the vehicle body and drive train, portions of the suspensions,

and a portion of the front wheels. The unsprung mass includes the rear wheels, portions of

the rear suspension, and portions of the front suspension and front wheels.

The vehicle responds to forces and moments generated by deforming the tires. The tire

deformation is characterized by two variables: slip angle (α) and inclination angle (γ), also

called camber. Both are shown in Figure 9.1.2 based on definitions established by the

Society of Automotive Engineers (SAE) [1]

A simple tire model, valid for small deflections that occur under normal highway

driving, defines side force (Fy) and aligning moment (Mz) as follows:

Fyf = Cαf αf + Cγ f γf Fyr = Cαr αr (9.1.1)

Mzf = CΜ f αf Mzr = CΜ r αr (9.1.2)

In the above equations, the subscripts f and r indicate front and rear tires, and the

coefficients (Cαf, Cγ f, etc.) are summed for two tires on the left- and right-hand sides of

the vehicle. No camber effect is shown for the rear, because the camber is negligible for a

vehicle with a solid rear axle. The slip angle at the front includes a steer angle that is the

“input” control to the system. The slip angle at the rear includes a steer proportional to the

vehicle roll, as defined by a linear “roll-steer” coefficient determined by suspension

kinematics. Similarly, the camber angle at the front is proportional to the vehicle roll, with

a “camber roll coefficient” also determined by suspension kinematics.

150

γ — Inclination Angle

X' — Direction of

Wheel Heading

Y'

Tractive Force — F x

Z', Normal Force — F

XM

Z

ZM

Lateral Force — Fy

YM

 Ω — Spin Velocity,
T — Wheel Torque

Direction of Wheel Travel

α — Slip Angle

Spin Axis

Figure 9.1.2. Tire geometry.

Gravity acts on the sprung mass, causing an overturning moment due to the lateral

movement of the mass center when the sprung mass rolls. A restoring moment is

generated by the suspension springs about the roll axis. Roll motions are damped by the

shock absorbers, which also apply a moment about the roll axis.

The vehicle model concept has now been developed. To generate a simulation code,

this concept is described to the AUTOSIM program so the appropriate data objects are

created to represent the system in the computer.

AUTOSIM Inputs

The description of the system in this case includes both (1) the multibody system, and

(2) the specific output variables of interest.

151

The Multibody System

This multibody system is comprised of three bodies: the inertial reference N, a non-

rolling body NRB, and a rolling body RB. Points and coordinate systems for the system

are indicated in Figure 9.1.3. The coordinate system of the inertial reference has its origin

in the plane of the road, with axes defined according to the SAE convention [1]. The X, Y,

and Z axis directions are defined by the unit-vectors [n1], [n2], and [n3], where the unit-

vector [n3] points down1.

Center of
mass of RB

Center of mass of NRB
and origin of RB

H

CE

1
2

3

1

2 31

2
3

Fy1

Mz1Mz2

Fy2

L

Roll axis

Point "FRONT"
fixed in NRBOrigin of NRB

THETAR

origin of N

Figure 9.1.3. Points and dimensions for example vehicle model.

A direct description of the model is provided as an AUTOSIM input in Figure 9.1.4.

The listing in this figure will be discussed at length over the next several pages.

Each input in the figure is a Lisp “form,” following the rules and syntax of Lisp, as

summarized in Appendix A.

At the start of an AUTOSIM analysis session, the multibody system is composed of a

single body object N, the inertial reference, and a single point o, the origin of the

coordinate system of N. The inputs in the figure “build” the computer representation of the

multibody system, adding one component at a time with macros such as add-body,

add-point, add-line-force, and add-moment.

1 In AUTOSIM unit-vectors are written enclosed with square brackets.

152

(add-body nrb :name "non-rolling body"
 :translate (1 2)
 :parent-rotation-axis 3
 :cm-coordinates #(0 0 !"-hra"))

(add-body rb :parent nrb :name "rolling body"
 :body-rotation-axes 1
 :parent-rotation-axis #(!"cos(thetar)" 0 !"sin(thetar)")
 :joint-coordinates #(0 0 !"-hra")
 :cm-coordinates #(ce 0 !"-h")
 :inertia-matrix #2a((Ixx 0 Ixz)
 (0 Iyy 0)
 (Ixz 0 Izzr)))

(add-constraint !"dot(vel(nrb0),[nrb1]) - speed")

(add-point front :name "front axle point"
 :body nrb
 :coordinates #(L 0 0))

(setf roll !"angle([nrb2],[rb2],[rb1])")
(setf alphaf !"angle([nrb1], vel(front), [nrb3]) - steer")
(setf alphar !"angle([nrb1], vel(nrb0), [nrb3]) - krs2 * #roll")

(add-gravity)

(add-line-force fy1 :name "Side force, front axle"
 :magnitude !"CA1 * #alphaf + CG1 * CCOEF1 * #roll"
 :point1 front
 :direction [nrb2])

(add-line-force fy2 :name "Side force, rear axle"
 :magnitude !"CA2 * #alphar"
 :point1 nrb0 :direction [nrb2])

(add-moment mz1 :name "Aligning moment, front axle"
 :direction [n3]
 :magnitude !"CAM1 * #alphaf" :body1 nrb)

(add-moment mz2 :name "Aligning moment, rear axle"
 :direction [n3]
 :magnitude !"CAM2 * #alphar" :body1 nrb)

(add-moment rollm :name "roll moment from suspension"
 :direction [rb1]
 :magnitude
 !"-Kroll * #roll - Croll* dot([nrb1], (rot(rb) - rot(nrb)))"
 :body1 rb :body2 nrb)

Figure 9.1.4. Description of car model in AUTOSIM.

The first add-body macro in Figure 9.1.4 describes several attributes of the first body

added to the system. The arguments to the macro have the following meanings: (1) the

symbol for the new body is NRB, (2) a more descriptive name to use in documentation is

“non-rolling body,” (3) NRB has two translational degrees of freedom relative to the

153

inertial reference, in the directions of axes 1 and 2 ([n1] and [n2]), (4) NRB has a single

rotational degree of freedom about axis 3 ([n3]), and (5) the center of mass of NRB is a

distance HRA above the ground. Default values are set for arguments not specified. For

example, the parent body is set to N, as an alternative was not indicated. (Default values

for all optional arguments are listed in Appendix A.)

Because the SAE axis convention specifies the Z axis ([n3]) pointing down,

coordinates for heights above the ground are entered as negative expressions. This is not

mandatory, but is done here so that the user of the simulation code will specify positive

numbers for all dimensions. Expressions that are more complex than numbers or symbols

are entered using a convention called the F-string. An F-string is an exclamation mark

followed by a string containing a Fortran-style expression. (More information about the

syntax is provided in Appendix A.) The negative symbol is an expression (a product of -1

and the symbol hra), and therefore an F-string was used in the add-body macro.

The second add-body macro in the input names the new body RB. Further, it

indicates that (1) NRB is the parent body, (2) the descriptive name of RB is “rolling body,”

(3) there is a single rotational degree of freedom, aligned with axis 1 of the coordinate

system of RB, [rb1], (4) the rotation axis is oriented in the direction whose coordinates (in

the frame of the parent NRB) are (COS(THETAR), 0, SIN(THETAR)) (that is, the vehicle

roll axis is inclined down from axis 1 by an angle “THETAR” towards axis 3), (5) the

origin of the coordinate system of RB is located at coordinates (0, 0, –HRA) in the

coordinate system of NRB, (6) the center of mass is located at coordinates (CE, 0, –H) in

the coordinate system of RB, and (7) the inertia matrix for RB is

IXX 0 IXZ
0 IYY 0

IXZ 0 IZZR .

(The symbol for yaw inertia, IZZR, includes the letter ‘R’ to indicate that it applies to the

rolling body.)

The macro add-constraint is used to specify that the forward speed is constant.

Although we will see later that it is easy to find the name of the variable introduced by

AUTOSIM for the forward speed, it is not necessary to have this information to specify the

constraint. In the input, the velocity of the origin of body NRB is obtained with the

function vel(nrb0). The forward component is obtained by dotting the velocity with

the forward direction of the vehicle, [nrb1], with the expression

154

dot(vel(nrb0),[nrb1]). The macro add-constraint requires an expression

that is constrained to be zero. Thus, the relationship

dot(vel(nrb0),[nrb1]) = speed (9.1.3)

is expressed in the form

0 = dot(vel(nrb0),[nrb1]) – speed (9.1.4)

for use with the add-constraint macro.

The macro add-point is used to define a point called front at which the front tire

force is applied. (See Figure 9.1.3.)

Lisp symbols are used to store expressions developed for the roll angle (roll) and the

slip angles for the front and rear axle centers (alphaf and alphar). The Lisp macro

setf is used to assign expressions to the symbols, and the expressions are used in

subsequent macros by preceding the symbol name with the character ‘#’ (see Appendix A

for details of the syntax). That is, when “#roll” appears in an expression, it indicates

that we want to include the expression assigned to the Lisp symbol roll rather than a

parameter called roll.

The front slip angle is defined as the angle between the velocity of a point where the

wheel plane intersects the ground, and the angle of the wheel (see Figure 9.1.2). For this

example, the angle between the velocity of a point and the forward direction of the vehicle

is obtained with the angle function, and the steer angle of the wheel relative to the body is

subtracted from that.

The macro add-gravity applies a gravitational force to all bodies that can move in

the direction of the constant gravitational field, [n3]. (This direction is the default, but

can be replaced for systems that do not follow the SAE convention.)

The macros add-line-force and add-moment are used to define tire forces and

moments. The first add-line-force macro defines how a side force from the two

front tires is generated and applied to the vehicle. The macro indicates that: (1) the force is

called FY1, (2) the name is “Side force, front axle,” (3) the magnitude of the force is

specified with an F-string that closely matches the definition from eq. 9.1.1, (4) the line of

action passes through the point front and acts on the body associated with that point, and

(5) the direction of the force is [nrb2]. Because a second point was not provided as an

optional argument, the force is assumed to act from N. Note that the F-string for the

magnitude refers to the Lisp variables alphaf and roll, defined above.

155

The second add-line-force adds the side force at the rear axle and is very similar

in form to the first add-line-force macro.

The first add-moment macro indicates that (1) the moment is called MZ1, (2) the

name is “Aligning moment, front axle,” (3) the moment is applied about the direction [n3]1,

(4) the amplitude of the moment is the expression from eq. 9.1.2, and (5) the moment is

applied to body NRB. Because the optional second body is not mentioned, the default N is

assumed. The second add-moment macro is very similar to the first.

The third add-moment macro applies a sum of the moments generated by all of the

suspension springs and dampers about the roll axis. Because this moment acts between

two bodies, an optional argument is used to specify that the second body is NRB. Note

that the expression for the amplitude includes a dot product written as: “dot([nrb1],

(rot(rb) - rot(nrb)).” This subexpression, which gives the rotation rate, might

be written in conventional vector notation as:

nrb1 • ωRB
 – ωNRB

(9.1.5)

The description of the multibody system is now complete.

Small Terms

The formulation developed above for this vehicle model makes no use of engineering

judgements regarding the significance of various terms in the equations. It will be shown

later that the equations are much more complicated than they need to be, because some of

the terms are always negligible. That is, terms caused by the nonlinearities contribute no

insight to the system, nor do they improve the fidelity of the model. Given that a simple

linear tire model is used, the vehicle model is valid only for moderate steering inputs,

resulting in lateral acceleration levels of 0.3 g’s or less. Also, we are interested mainly in

highway speeds. This means that the contribution of the forward speed to the velocities of

points in the system is much greater than contributions from any other speed variables,

such as lateral speed, yaw rate, or roll rate. In other words, the yaw rate and lateral

velocity are “small” with respect to the forward speed, even thought the yaw angle and X

1 One could also identify the vertical direction as [nrb3]. When a direction is used to define axes of

more than one coordinate system (e.g., N and NRB), AUTOSIM recognizes alternate names for the
associated uv.

156

and Y position variables are not small. The roll angle is limited to a few degrees, which is

also “small.”

Figure 9.1.5 shows how the input is modified to declare that the above variables are

“small.” When the rolling body is added, an additional keyword is used to specify that the

rotational degree of freedom involves a small angle. This instructs AUTOSIM to declare

the associated generalized coordinate and generalized speed variables as small. Also, an

additional input is used to declare that the yaw rate and the side velocity are small. The

declaration is made this way, rather than with optional keywords in add-body (as was

done for the roll angle), because the yaw angle is not small, nor is the generalized

coordinate associated with the Y-position of the vehicle.

(add-body rb :parent nrb :name "rolling body"
 :body-rotation-axes 1
 :parent-rotation-axis #(!"cos(thetar)" 0 !"sin(thetar)")
 :joint-coordinates #(0 0 !"-hra")
 :cm-coordinates #(ce 0 !"-h")
 :inertia-matrix #2a((Ixx 0 Ixz)
 (0 Iyy 0)
 (Ixz 0 Izzr))
 :small-angles (t))

(small (dot (rot nrb) '[n3]) (dot (vel nrb0) '[nrb2]))

Figure 9.1.5. Inputs for “small” variables.

Specification of Output Variables

Before developing equations of motion, the analyst should define output variables of

interest. (After all, the purpose of the simulation code is to compute output variables.)

Using the F-string and the various AUTOSIM algebra functions, it is possible to define

almost any position or motion variable of interest with a macro called add-out. The

analyst has at his or her disposal all of the points introduced automatically, any points

added by the analyst, and directions defined in all of the coordinate systems of the system.

In this example, output variables are defined for lateral acceleration, yaw rate, front and

rear slip angles, and all forces and moments.

157

[rb2]

dplane([rb2], [n3]

[n3]

RB*

Roll Axis

Roll Angle

Forward Direction

Figure 9.1.6. Definition of direction for lateral acceleration.

The lateral acceleration computed by the simulation code should match the measurement

made with an accelerometer on a “stabilized platform.” The instrument is mounted on a

platform that is kept level using servomotors controlled with gyroscopic sensors, so that

lateral acceleration measurements are made without the influence of gravity. This means

that the lateral acceleration is not in the direction of the body-fixed coordinate system [rb2]

(the body rolls such that the dot product between [rb2] and [n3] is not zero). The lateral

direction is shown in Figure 9.1.6, and is defined mathematically in the first input Lisp

form in Figure 9.1.7. The written description is interpreted as follows: (1) the laterally-

oriented unit-vector fixed in the body ([rb2]) is projected onto the ground plane

(perpendicular to [n3]), using the dplane function, and (2) the direction of that projection

is obtained with the dir function. That direction, lying parallel to the ground plane, is

dotted with the acceleration vector for the sprung mass to obtain the scalar acceleration

variable that is given the short name “Ay” and the long name “Lateral Acceleration.” Also,

the body associated with the variable is RB and the units of the variable are “length/time2”

(entered as “L/T**2”).

158

(add-out !"dot(dir(dplane([rb2],[n3])), dxdt(vel(rbcm)))"
 "Ay"
 :long-name "Lateral Acceleration"
 :body rb :units !"l/t**2")

(add-out !"dot(rot(nrb), [n3])" "r"
 :long-name "Yaw Rate" :body nrb :units !"a/t")

(add-out alphaf "alpha f"
 :long-name "Front slip angle"
 :body nrb
 :units a
 :gen-name "Slip Angle")

(add-out alphar "alpha r"
 :long-name "Rear slip angle"
 :body nrb
 :units a
 :gen-name "Slip Angle")

(add-forces-to-output)
(add-moments-to-output)

Figure 9.1.7. Specification of output variables.

The yaw rate is defined as the dot product of the rotation of NRB and the unit-vector

[n3]. The slip angles had previously been assigned to the Lisp symbols alphaf and

alphar, so they are easily added. The forces and moments are added with the macros

add-forces-to-output and add-moments-to-output.

Now that the output variables have been defined, the analysis is performed with the

form (dynamics) and a simulation code is generated with the form (write-sim).

(These last two macros are not shown in the figures.)

Parameter Identification

At the end of the analysis, each symbol that has been introduced, either explicitly by the

analyst, or automatically by one of the macros, is checked to see if it actually appears in the

equations of motion in the simulation code. Those symbols that do appear are considered

parameters if they are known to be constants. (Symbols are known to be constants if they

were not introduced by AUTOSIM as state variables and were not declared by the analyst

with the add-variables macro.) Values are needed for all parameters in order for the

simulation code to run. Accordingly, an INPUT subroutine is generated in Fortran to read

values for these parameters when the simulation code is executed. Also, an ECHO

subroutine is created in Fortran so that values that applied for the run can be written as an

output file when the simulation is run. The list of input parameters obtained by this process

159

can be viewed by the analyst to help confirm that the system is properly described. The list

for the example is shown in Table 9.1.1.

Note that some of the symbols that were shown in earlier printouts do not appear. For

example, only one of the inertia symbols introduced for NRB (NRBI33) has any influence

on the dynamic behavior of the system. Also, the height of the roll axis, HRA, has no

effect and is left out.

Most of the units were correctly determined. The exceptions were two coefficients that

were multiplied together: CG1 and CCOEF1. Although the units of their product can be

deduced (lb/deg), there is not enough information provided to determine the units of the

individual coefficients. (GC1 normally has units of lb/deg and CCOEF is dimensionless.)

Because the parameters are the main interface to the end user, it is important that they be

familiar if the simulation code is to be “easy” to use. Additional inputs to AUTOSIM used

to fine-tune the parameters in the system are shown in Figure 9.1.8.

Macros set-units and set-name were developed to override the default units and

names. Also, alternate units systems can be set with functions in-lb and mks.

The simulation code is written such that all parameters have default values. Those

parameters not mentioned by name in the input file are left at their default values.

Appropriate default values can be specified by the analyst for each parameter with the

macro set-defaults. A user not familiar with the model can use the simulation code

without specifying parameter values if all of the parameters have been assigned reasonable

default values by the analyst with the set-defaults macro. The echo file produced by

the simulation code shows all of the parameters, their numerical values, their names, and

their units. The echo file created with the default values used for the simulation results

shown above is listed in Appendix B along with the complete source code.

160

Table 9.1.1. Parameters identified for the car model, with names and units

deduced from context.

Parameter Definition

CA1: coefficient in term in negative Side force, front axle (lb/deg)

CA2: coefficient in Side force, rear axle (lb/deg)

CAM1: coefficient in Aligning moment, front axle (in-lb/deg)

CAM2: coefficient in Aligning moment, rear axle (in-lb/deg)

CCOEF1: coefficient in term in negative Side force, front axle (?)

CE: coordinate of center of mass of the rolling body in dir 1 (in)

CG1: coefficient in term in negative Side force, front axle (?)

CROLL: coefficient in term in negative roll moment from suspension (in-lb-s/d)

H: negative coordinate of center of mass of the rolling body in dir 3 (in)

IPRINT: number of time steps between output printing (counts)

IXX: moment of inertia of RB (in-lb-s2)

IXZ: product of inertia of RB (in-lb-s2)

IYY: moment of inertia of RB (in-lb-s2)

IZZR: moment of inertia of RB (in-lb-s2)

KROLL: coefficient in term in negative roll moment from suspension (in-lb/deg)

KRS2: coefficient in term in coefficient in Aligning moment, rear axle (-)

 L: coordinate of front axle point in dir 1 (in)

 NRBI33: moment of inertia of NRB (in-lb-s2)

 NRBM: mass of NRB (lbm)

 RBM: mass of RB (lbm)

 SPEED: argument to ATAN in term in coefficient in Aligning moment, rear axle

(in/s)

 STEER: term in coefficient in Aligning moment, front axle (deg)

 STEP: simulation time step (sec)

 STOPT: simulation stop time (sec)

 THETAR: angle in parent-rot axis for RB, coord #3 (deg)

161

(setf *multibody-system-name* "Example no. 1")

(in-lb)

(set-units ca1 !"f/a" ca2 !"f/a" cam1 !"l*f/a" cam2 !"l*f/a" krs2 1
 thetar a steer a Kroll !"l*f/a" croll !"t*L*f/a" cg1 !"f/a"
 ccoef1 1 speed !"l/t")

(set-defaults ca1 -444 ca2 -428 cam1 1080 cam2 1000 cg1 78 ce 63.4
 krs2 -.016 ixx 5580 iyy 12000 izzr 37080 izznr 1285
 ixz 0 KROLL 6211 croll 212 ccoef1 .82 h 15.48 l 125.5
 nrbm 704 rbm 3831 speed 968 steer 1 thetar 5.1
 step .025 iprint 2 stopt 2)

(set-name ca1 "front cornering stiffness"
 ca2 "rear cornering stiffness"
 ce "distance from rear axle to sprung mass c.g."
 ccoef1 "prop. of body roll resulting in front wheel camber"
 cam1 "front aligning moment coefficient"
 cam2 "rear aligning moment coefficient"
 cg1 "front camber stiffness"
 croll "torsional damping rate for the vehicle body in roll"
 h "height of sprung mass c.g. above roll axis"
 kroll "torsional spring rate for the vehicle body in roll"
 krs2 "roll-steer coefficient for rear axle"
 L "wheelbase"
 steer "Steer angle at road"
 thetar "inclination angle of roll axis"
 speed "forward speed")

Figure 9.1.8. Inputs to specify characteristics of system parameters.

Results

Two versions of the model were developed earlier: a full nonlinear model, and one in

which most of the variables were identified by the analyst as “small.” The equations

obtained with “small” variables were compared to equations obtained manually and were

found to agree. Numerical results from both versions are shown to agree.

Numerical Results

Time histories from the simulation codes are compared in Figures 9.1.9 and 9.1.10.

They show that the small angle assumptions have a negligible effect on the predicted

responses to a step steer input of 1.0 degree. The complete simulation code for the system

analyzed with small variables is included in Appendix B.

162

Model with “small” variables

full nonlinear model

0 .5 1 1.5 2

Time - sec

5x10
-2

.1

.15

.2

.25

.3

Lateral Acceleration - g's

Figure 9.1.9. Step responses of two models in lateral acceleration.

0 .5 1 1.5 2

Time - sec

0

2

4

6

8

Yaw Rate - deg/s

Model with “small” variables

full nonlinear model

Figure 9.1.10. Step responses of two models in yaw rate.

The output files created by the simulation codes are in a format called “ERD files” that

are used at UMTRI [102]. Automated post-processing software is available, including a

plotter that performs scaling and labeling automatically and which has a graphical interface

163

that permits the engineer to select variables for plotting simply by clicking a mouse [105].

For example, Figure 9.1.11 shows the screen display when the channels are selected.

Figure 9.1.11. Use of automated plotter to view simulation results.

Computational Efficiency

Two simulations were developed above: (1) with the full, nonlinear representation of

the rigid-body kinematics, and (2) with several speeds and one angle declared “small.” The

number of arithmetic operations in the Fortran code generated by AUTOSIM to compute

the derivatives of the state variables for each case is shown in Table 9.1.2. Also, a third

case is shown in which additional settings were made that disabled the automatic

introduction of new symbols for each force and moment, and for the intermediate Z

variables. For this simple system, the best efficiency was obtained without the use of these

intermediate variables. Code generated in this case has been reported elsewhere [103].

(The improvement arises because it is possible to combine many of the terms contained in

the FORCEM and Z expressions. For more complicated systems, this is generally not

true.)

164

Table 9.1.2. Performance comparisons between three simulation codes.

The effects of some of the basic algebraic simplification methods built into AUTOSIM

have also been explored with this model. It was found that when no intermediate variables

were introduced at all, that about three times as many arithmetic operations were required.

Further, when the naturally factored form of the AUTOSIM expressions was changed to

the expanded form that has been used in the NEWEUL formulation, a total of 878

multiplications, divides, and function calls were required. The difference between the

“best” and “worst” cases is nearly a factor of 50 [103].

Analysis Details

Now that the routine use of AUTOSIM to generate simulation code has been seen,

details of the analysis are presented that may or may not be of interest to the analyst.

At any stage of the analysis, the computer representation of the multibody system can

be inspected by the analyst. Printouts obtained in this way are shown below to illustrate

the types of expressions that are introduced and manipulated as the automated analysis

progresses.

The body object created to represent the non-rolling body is printed in Table 9.1.3,

showing the values associated with some of the slots. Most of the values were obtained by

the first add-body macro.

Generalized coordinates and generalized speeds were introduced, a direction cosine

matrix was developed, and expressions were obtained for the rotational velocity and the

velocity of the origin of the coordinate system. Because this body has one rotational degree

of freedom, one of the unit-vectors ([n3]) is from the parent body. Note that several

symbols were generated automatically. Lacking any information about mass and inertia,

the add-body macro introduced the symbol NRBM for the mass of the body, and six

symbols (NRBI11, NRBI12, NRBI13, NRBI22, NRBI23, and NRBI33) for the moments

and products of inertia. Those are used, in turn, to build an expression for the inertia

Version of simulation code adds and

subtracts

multiplies, divides,

and function calls

Full, nonlinear simulation. 67 108

Simulation with “small” variables. 24 36

Most efficient, with no FORCEM or Z arrays. 15 19

165

dyadic. The printout used to prepare the table was generated after the next body was

introduced, as evidenced by the list (RB) in the children slot.

Table 9.1.3. Data associated with slots of body NRB.

 Summary of body: NRB

 parent: N

 level: 1

 children: (RB)

 name: Non-Rolling Body

 mass: NRBM

 inertia: (NRBI33*([N3].[N3]) + NRBI13*([NRB1].[N3]) +

NRBI13*([N3].[NRB1]) + NRBI23*([N3].[NRB2]) +

NRBI23*([NRB2].[N3]) + NRBI11*([NRB1].[NRB1])

+ NRBI12*([NRB2].[NRB1]) +

NRBI12*([NRB1].[NRB2]) +

NRBI22*([NRB2].[NRB2]))

 unit-vectors: #([NRB1] [NRB2] [N3])

 translation-coordinates: (Q(1) Q(2))

translation-speeds: (U(1) U(2))

 rotation-coordinates: (Q(3))

 rotation-speeds: (U(3))

 rotation-directions: ([N3])

 translation-directions: ([N1] [N2])

 joint-pos: (Point O: Body N: #(0 0 0): fixed origin)

 cm-pos: (Point NRBCM: Body NRB: #(0 0 -HRA): center of mass

of the non-rolling body)

 abs-w: U(3)*[N3]

 abs-vj: (U(1)*[NRB1] + U(2)*[NRB2])

 cos matrix: #(COS(Q(3)) SIN(Q(3)) 0)

#(-SIN(Q(3)) COS(Q(3)) 0)

#(0 0 1.0)

The definitions of the state variables can be printed for inspection by the analyst. The

summaries printed by AUTOSIM are shown in Table 9.1.4. Note that both names and

units were generated for all of the variables. The equations of motion are derived for any

166

set of units in which conversions are not needed to apply kinematic analysis or Newton’s

laws. Thus, angles in the equations necessarily have units of radians. However, if the

units system chosen by the analyst involves units that require conversions, such as for

angles (deg), mass (lbm), acceleration (g’s), and so forth, the simulation code generated by

AUTOSIM performs the necessary conversions when input data are read and when output

data are written. Thus, from the perspective of the end user, the units of the variables and

parameters are those shown in listing such as Table 9.1.4. (The units conversions can be

found in the subroutines INPUT, ECHO, and OUTPUT, listed in Appendix B.)

Table 9.1.4. Printed summary of state variables.

Generalized Coordinates

Q(1): Translation of NRB relative to the fixed origin along [n1]. (in)

Q(2): Translation of NRB relative to the fixed origin along [n2]. (in)

Q(3): Rotation of the non-rolling body relative to the inertial reference about axis #3. (deg)

Q(4): Rotation of the rolling body relative to the non-rolling body about axis #1. (deg)

Generalized Speeds (before add-constraint macro is used)

U(1): Abs. trans. speed of NRB along axis 1. (in/s)

U(2): Abs. trans. speed of NRB along axis 2. (in/s)

U(3): Abs. rotation of NRB, axis 3. (deg/s)

U(4): Rotation of RB relative to NRB, axis 1. (deg/s)

The generalized speeds U(1) and U(2) are not derivatives of the generalized

coordinates, but are instead defined as “quasi-coordinates” parallel to body axes. This is

according to the rules established in Section 8.1 and 8.4 for bodies with two translational

degrees of freedom that are constrained to planar motions.

Table 9.1.4 was obtained after the second body was added, but before the constraint

was defined. After the constraint is added, the system has only three degrees of freedom.

The macro add-constraint removes a dynamical degree of freedom by changing

slot values in the indexed-sym object that represents a generalized speed, and then

renumbering the remaining speeds. In the example, the forward vehicle speed, initially

printed as “U(1)” is selected as the best generalized speed to remove. The macro solves for

U(1) and determines that the constraint is satisfied when the U(1) is replaced with the

parameter speed. Accordingly, it changes the const-or-var slot to const, the dxdt slot to

167

0, the exp slot to speed, and the i slot to 0. The renumbering is performed by changing

the i slot in all indexed-sym objects that represent generalized speeds. After

renumbering, the speeds appear as shown in Table 9.1.5. The table also includes a

summary of the nonholonomic constraint equations (there is but one in this example).

Table 9.1.5. Summary of generalized speeds after constraint is added.

Generalized Speeds (After add-constraint macro is used)

U(1): Abs. trans. speed of NRB along axis 2. (in/s)

U(2): Abs. rotation of NRB, axis 3. (deg/s)

U(3): Rotation of RB relative to NRB, axis 1. (deg/s)

Constraints

Abs. trans. speed of NRB along axis 1.: SPEED

Printing of expressions is performed recursively, with every type of object having an

associated print function. If an object is changed such that it prints differently, all

expressions containing that object will also print with the “updated” form. Thus, all

expressions that contain the generalized speed originally named “U(2)” will now print that

object as “U(1).”

Because AUTOSIM freely renames objects, the analyst must be careful when referring

to state variables by name. The possibility of naming the wrong variable can be eliminated

by referring to the variable as an expression involving positions, angle, velocities, and

rotational velocities of bodies and points in the system, as was done in this example.

After the forces and moments are entered, they can be viewed also. Table 9.1.6 shows

the summary of the forces printed by AUTOSIM. (The equations are shown later.)

Once the system is described to AUTOSIM, the equations of motion are derived by a

function named dynamics. The analysis proceeds automatically as follows.

First, the size of the system is determined so that matrices can be introduced to store

indexed variables such as partial velocities and constraint coefficients. The kinematical

equations are derived by the method presented in Section 8.2. Next, constraint coefficients

are computed. For this example, these analyses are very simple and not discussed further.

168

(The most complicated kinematical equations are generated in the two spacecraft models.

The constraint analysis is examined in detail for the four-bar linkage example.)

The dynamical analysis is performed in several stages. The tree is traversed from top to

bottom so that expressions can be derived and put into worksheets associated with each

body.

Table 9.1.6. Listing of forces and moments.
Forces

(RBW: gravity force on the rolling body: Expression = RBM*GEES: Direction = [n3]. Acts on the
rolling body from the inertial reference through center of mass of the rolling body)

(FY1: Side force, front axle: Expression = FORCEM(1): Direction = [nrb2]. Acts on the non-rolling
body from the inertial reference through front axle point)

(FY2: Side force, rear axle: Expression = FORCEM(2): Direction = [nrb2]. Acts on the non-rolling
body from the inertial reference through coord. origin of the non-rolling body)

Moments

(MZ1: Aligning moment, front axle: Expression = -FORCEM(3): Direction = [n3]. Acts on the non-
rolling body from the inertial reference)

(MZ2: Aligning moment, rear axle: Expression = FORCEM(4): Direction = [n3]. Acts on the non-
rolling body from the inertial reference)

(ROLLM: roll moment from suspension: Expression = -FORCEM(5): Direction = [rb1]. Acts on
the rolling body from the non-rolling body)

Tables 9.1.7 and 9.1.8 show the contents of the worksheets created for two of the

body objects in this example. (Body N also has a worksheet in which all expressions are

zero.)

The slots in the tables are defined in Section 8.4 for the worksheet object. All of the

expressions in the worksheet are either vectors or dyadics, as indicated by the presence of

unit-vectors.

Note that there are four holonomic partial velocities and three nonholonomic partial

velocities. Recall that in Kane’s convention for manually analyzing nonholonomic

systems, independent speeds are numbered from 1 to p and dependent speeds are

numbered from p+1 to n. However, the holonomic arrays retain the ordering they had

before any nonholonomic constraints were applied, which is generally not in accordance

with Kane’s convention. Numbering of dependent speeds is of no importance because the

169

dependent speeds, having been replaced by expressions involving independent speeds, do

not appear anywhere in the equations.

Table 9.1.7. Dynamics worksheet for the non-rolling body.

Worksheet for body: NRB

 recursive-r: T

 recursive-t: NIL

 w: U(2)*[N3]

 wis-a array: (0, 0, 0, 0)

 wis-ab array: (0, [N3], 0, 0)

 wis array: (0, [N3], 0, 0)

 nhwis array: (0, [N3], 0)

 alpha-rem: 0

 alpha-ab: 0

 nh-alpha-rem: 0

 ra*b0: 0

 v*is array: ([NRB2], 0, 0, [NRB1])

 v*is bodies: (NRB, NRB, NRB, NRB)

 nhv*is array: ([NRB2], 0, 0)

 nhv*is bodies: (NRB, NRB, NRB)

 acc-rem: (-Z(18)*[NRB1] + Z(19)*[NRB2])

 nh-acc-rem: (-Z(18)*[NRB1] + Z(19)*[NRB2])

 acc-dyadic: -(U(2)**2*([NRB2].[NRB2]) +

U(2)**2*([NRB1].[NRB1]))

In this example, the dependent speed was originally named U(1). Hence, the first

element in each of the holonomic arrays corresponds to this speed. In this example, the

nonholonomic partial velocities are identical to the holonomic equivalents, except that

elements corresponding to the dependent speed are eliminated.

Note that intermediate variables appear in many of the expressions. During the

dynamics analysis, intermediate variables are introduced liberally to prevent the expressions

from growing too large. (The intermediate variables and constants are defined later.)

170

Table 9.1.8. Dynamics worksheet for the rolling body.

Worksheet for body: RB

 recursive-r: T

 recursive-t: T

 w: (Z(7)*[RB2] + Z(8)*[RB3] + Z(12)*[RB1])

 wis-a array: (0, (PC(4)*[RB1] + Z(10)*[RB2] + Z(11)*[RB3]), 0, 0)

 wis-ab array: (0, 0, [RB1], 0)

 wis array: (0, (PC(4)*[RB1] + Z(10)*[RB2] + Z(11)*[RB3]),

[RB1], 0)

 nhwis array: (0, (PC(4)*[RB1] + Z(10)*[RB2] + Z(11)*[RB3]),

[RB1])

 alpha-rem: (Z(16)*[RB2] -Z(17)*[RB3])

 alpha-ab: (-U(3)*Z(7)*[RB3] + U(3)*Z(8)*[RB2])

 nh-alpha-rem: (Z(16)*[RB2] -Z(17)*[RB3])

 ra*b0: 0

 v*is-a array: ([NRB2], 0, 0, [NRB1])

 v*is-ab array: (0, (-H*Z(10)*[RB1] -CE*Z(10)*[RB3] + (PC(5) +

 : CE*Z(11))*[RB2]), H*[RB2], 0)

 v*is array: ((C(4)*[RB2] -S(4)*[RB3]), (Z(13)*[RB2] -Z(14)*[RB3]

-Z(15)*[RB1]), H*[RB2], (PC(2)*[RB1] -

PC(4)*S(4)*[RB2] -PC(4)*C(4)*[RB3]))

 v*is bodies: (NRB, RB, RB, NRB)

 nhv*is array: ((C(4)*[RB2] -S(4)*[RB3]), (Z(13)*[RB2] -Z(14)*[RB3]

-Z(15)*[RB1]), H*[RB2])

 nhv*is bodies: (NRB, RB, RB)

 acc-rem: (Z(23)*[RB2] + Z(24)*[RB3] -(PC(2)*Z(18) + H*(Z(16)

+ Z(20)) + CE*(Z(22) + Z(8)**2))*[RB1])

 acc-ab: -(H*(Z(16) + Z(20))*[RB1] -CE*-(Z(16) -Z(20))*[RB3] -

CE*(Z(7)*Z(12) -Z(17))*[RB2] + H*Z(7)*Z(8)*[RB2] +

CE*(Z(22) + Z(8)**2)*[RB1] -H*(Z(21) +

Z(22))*[RB3])

 nh-acc-rem: (Z(23)*[RB2] + Z(24)*[RB3] -(PC(2)*Z(18) + H*(Z(16)

+ Z(20)) + CE*(Z(22) + Z(8)**2))*[RB1])

171

After all of the slots in the worksheet objects are set, the mass matrix and the force

array are created and filled with zeros. Then, the tree is traversed one more time and the

contribution from each body is added to the arrays. After this traversal, the symbolic

equation solver is employed to derive a series of equations that defines the derivatives of

the generalized speeds.

The equations of motion for the nonlinear system are printed in Figures 9.1.12 through

9.1.14, exactly as generated by AUTOSIM. The Fortran code in Figure 9.1.12 is for

precomputing constants. The code for computing derivatives of state variables is in

Figures 9.1.13 and 9.1.14. (The corresponding code for the case in which some variables

are “small” is in Appendix B.)

PC(1) = CG1*CCOEF1
PC(2) = COS(THETAR)
PC(3) = CROLL*COS(THETAR)
PC(4) = SIN(THETAR)
PC(5) = H*SIN(THETAR)
PC(6) = RBM*GEES
PC(7) = (IXX -IYY)
PC(8) = (IYY -IZZR)
PC(9) = (IXX -IZZR)
PC(10) = IXZ*SIN(THETAR)
PC(11) = IXX*SIN(THETAR)
PC(12) = H*RBM

PC(13) = (RBM + NRBM)
PC(14) = H*RBM*GEES*COS(THETAR)
PC(15) = (RBM*H**2 + IXX)
PC(16) = 1.0/PC(13)
PC(17) = PC(2)**2
PC(18) = H*PC(17)
PC(19) = CE*PC(2)
PC(20) = H*PC(2)
PC(21) = PC(11)*PC(4)
PC(22) = (NRBI33 + PC(21))
PC(23) = PC(6)*PC(4)
PC(24) = PC(6)*PC(2)

Figure 9.1.12. Fortran code for precomputing constants.

In these figures, most of the expressions involve either elements of the array Z or the

array PC. The ‘Z’ variables are intermediate variables introduced for redundant variable

expressions. The ‘PC’ variables are expressions involving constants that can be

precomputed before the numerical integration loop is started.

Note that the solution for the accelerations (the variables in the Fortran array UP) are

recursive. The equation for UP(1) includes Z(35) and Z(36), which are the values for

UP(3) and UP(2).

Recall from Chapter 5 that all unused code is removed, and that every ‘Z’ variable is

referenced at least twice. Z variables that appear but once are replaced with the original

expressions.

172

C Equations of motion, from subroutine DIFEQN
C
C Each derivative evaluation requires 108 multiply/divides, 69
C add/subtracts, and 6 function/subroutine calls.
C
 S(3) = SIN(Q(3))
 S(4) = SIN(Q(4))
 C(3) = COS(Q(3))
 C(4) = COS(Q(4))
C
C
C Kinematical equations
C
 QP(1) = (SPEED*C(3) -U(1)*S(3))
 QP(2) = (U(1)*C(3) + SPEED*S(3))
 QP(3) = U(2)
 QP(4) = U(3)
C
C define expression for Side force, front axle
C
 Z(1) = (STEER -ATAN2((L*U(2) + U(1)), SPEED))
 FORCEM(1) = (PC(1)*Q(4) -CA1*Z(1))
C
C define expression for Side force, rear axle
C
 Z(2) = (-KRS2*Q(4) + ATAN2(U(1), SPEED))
 FORCEM(2) = CA2*Z(2)
C
C define expression for Aligning moment, front axle
C
 FORCEM(3) = CAM1*Z(1)
C
C define expression for Aligning moment, rear axle
C
 FORCEM(4) = CAM2*Z(2)
C
C define expression for roll moment from suspension
C
 FORCEM(5) = (KROLL*Q(4) + PC(3)*U(3))

Figure 9.1.13. First part of Fortran code for computing derivatives of

state variables.

173

C Dynamical equations
C
 Z(3) = PC(2)*U(2)*S(4)
 Z(4) = PC(2)*U(2)*C(4)
 Z(5) = PC(4)*U(2)
 Z(6) = PC(2)*S(4)
 Z(7) = PC(2)*C(4)
 Z(8) = (U(3) + Z(5))
 Z(9) = (PC(5) + CE*Z(7))
 Z(10) = CE*Z(6)
 Z(11) = H*Z(6)
 Z(12) = U(3)*Z(4)
 Z(13) = U(3)*Z(3)
 Z(14) = U(2)*U(1)
 Z(15) = SPEED*U(2)
 Z(16) = Z(4)*Z(8)
 Z(17) = Z(8)**2
 Z(18) = Z(3)**2
 Z(19) = (-H*Z(3)*Z(4) + CE*(Z(3)*Z(8) -Z(13)) + Z(15)*C(4) +
 & PC(4)*Z(14)*S(4))
 Z(20) = -(CE*(Z(12) -Z(16)) -H*(Z(17) + Z(18)) -PC(4)*Z(14)*C(4)
 & + Z(15)*S(4))
 Z(21) = IXZ*Z(4)
 Z(22) = (Z(3)*(PC(8)*Z(4) -IXZ*Z(8)) + IXZ*Z(13))
 Z(23) = RBM*Z(11)
 Z(24) = RBM*Z(10)
 Z(25) = RBM*Z(9)
 Z(26) = IXZ*Z(7)
 Z(27) = (-NRBM*Z(15) + FORCEM(1) + FORCEM(2) -RBM*(Z(19)*C(4)
 & -Z(20)*S(4)))
 Z(28) = (-PC(23)*Z(11) -Z(6)*(IYY*Z(12) -IXZ*Z(17) + Z(4)
 & *(PC(9)*Z(8) + Z(21))) + Z(7)*(IZZR*Z(13) + Z(3)
 & *(PC(7)*Z(8) + Z(21))) + PC(4)*Z(22) -(PC(2)*Z(14) + H
 & *(Z(12) + Z(16)) + CE*(Z(18) + Z(4)**2))*Z(23) +
 & Z(20)*Z(24) -Z(19)*Z(25) + L*FORCEM(1) -FORCEM(3) +
 & FORCEM(4) + PC(24)*(-Z(10)*C(4) + Z(9)*S(4)))
 Z(29) = (Z(25)*C(4) + Z(24)*S(4))
 Z(30) = PC(12)*C(4)
 Z(31) = (PC(11) + PC(12)*Z(9) + Z(26))
 Z(32) = PC(16)*Z(29)
 Z(33) = PC(16)*Z(30)
 Z(34) = (PC(22) + IYY*Z(6)**2 + (PC(10) + IZZR*Z(7))*Z(7) +
 & Z(11)*Z(23) + Z(10)*Z(24) + Z(9)*Z(25) + PC(4)*Z(26)
 & -Z(29)*Z(32))
 Z(35) = (Z(31) -Z(29)*Z(33))/Z(34)
 Z(36) = (Z(31) -Z(30)*Z(32))
 Z(37) = Z(27)*Z(32)
 Z(38) = -(PC(12)*Z(19) -Z(22) + Z(27)*Z(33) + Z(35)*(Z(28)
 & -Z(37)) + FORCEM(5) -PC(14)*S(4))/(PC(15) -Z(30)*Z(33)
 & -Z(35)*Z(36))
 Z(39) = (Z(28) -Z(37) -Z(36)*Z(38))/Z(34)
 UP(3) = Z(38)
 UP(2) = Z(39)
 UP(1) = PC(16)*(Z(27) -Z(30)*Z(38) -Z(29)*Z(39))

Figure 9.1.14. Continuation of Fortran code for computing derivatives of

state variables.

174

9.2 Four-Wheeled Cart

The example described in this section illustrates how typical nonholonomic constraints

are handled. Also, it shows how masses and inertias are combined into composite bodies.

Figure 9.2.1. Four-wheeled cart.

Model Description

A cart with four wheels and a steered front axle is shown in Figure 9.2.1. Dimensions,

bodies, and reference points are defined in Figure 9.2.2. The cart rolls without slipping on

a smooth flat surface. The front axle steers about a point F0 that is located slightly in front

of the axle, and which is shown by a black dot in Figure 9.2.2. The cart is pushed from

rest by a constant force applied to the point B0, in a direction oriented along the longitudinal

axis of the cart, [b1]. Given an initial steer angle (nominally, 0.25 radian), the objective of

175

the simulation is to study the motions of the cart over the first few seconds, to determine

characteristics of the response.

TRK2

L1

CMF1

CMB1

EPS

1

2
LRW LFW

RFWRRW

B

F

FB*B

LRW , LRW* LFW , LFW*

RRW , RRW* RFW ,RFW*0

0

0

0

0

0F*

Figure 9.2.2. Bodies, reference points, and dimensions for cart.

The inspiration for this model is a “Rocket Car” system analyzed by Ge and Cheng [28]

as an example of a system with a variable mass. The system shown is used in as an

example in a course taught at The University of Michigan1. Equations of motion for the

system as shown have been derived previously and used to compute time responses of

some of the variables.

The constraints imposed by the condition that the wheels roll without slipping are

described mathematically in two ways: (1) the forward velocity of each wheel center must

equal the spin of the wheel multiplied by its radius, and (2) the lateral velocity of each

wheel center is zero. That is, for arbitrary wheel W, whose center point is W*,

vW* • w 1 = ΩR (9.2.1)

where w 1 is a unit-vector oriented along the centerline of the wheel, Ω is the spin of the

wheel, and R is its radius. Also,

vW* • w 2 = 0 (9.2.2)

where w 2 is a unit-vector oriented along the spin axis.

1 Course notes for “Computational Mechanics,” Aero 541, taught by Prof. D. Greenwood.

176

AUTOSIM Description

The rigid-body information from Figure 9.2.2 is entered into AUTOSIM as shown in

Figure 9.2.3.

The first Lisp form introduces the body B of the cart with two translational degrees of

freedom and one rotation. That is, it is free to move in the plane normal to [n3]. The

second form introduces the front axle F. Body B is its parent, and F is able to rotate about

axis 3 relative to B. Note that because the dimensions in the figure are defined relative to

the spin axis of the front wheels, rather than the pivot point for the front axis, the first

coordinate for the center of mass is not a parameter, but the expression “-eps + cmf1.”
(add-body b :name "body of cart" :translate (1 2)
 :parent-rotation-axis 3
 :cm-coordinates #(cmb1 0 0))

(add-body f :parent b
 :name "front axle"
 :parent-rotation-axis 3
 :cm-coordinates #(!"-eps + cmf1" 0 0)
 :joint-coordinates #(L1 0 0))

(add-body lrw :parent b :name "left-rear wheel"
 :parent-rotation-axis 2
 :joint-coordinates #(0 !"-trk2" 0)
 :inertia-matrix #(it ia it) :mass mw)

(add-body rrw :parent b :name "right-rear wheel"
 :parent-rotation-axis 2
 :joint-coordinates #(0 trk2 0)
 :inertia-matrix #(it ia it) :mass mw)

(add-body lfw :parent f :name "left-front wheel"
 :parent-rotation-axis 2
 :joint-coordinates #(!"-eps" !"-trk2" 0)
 :inertia-matrix #(it ia it) :mass mw)

(add-body rfw :parent f :name "right-front wheel"
 :parent-rotation-axis 2
 :joint-coordinates #(!"-eps" trk2 0)
 :inertia-matrix #(it ia it) :mass mw)

(add-line-force F :point1 b0 :direction [b1])

Figure 9.2.3. AUTOSIM description of cart example.

The next four entries define the four wheels. The rear two wheels have B as their

parent body, and the front two wheels have F as their parent. Because all four wheels have

the same mass and inertia properties, the mass and inertia matrices are explicitly identified

177

in the inputs. Also, note that the inertia properties are summarized by two moments of

inertia: one about the spin axis (IA) and one about any axis normal to the spin axis (IT).

The force that pushes the cart is described very simply, since it is a constant F.1

Next, the nonholonomic constraints are entered, as shown in figure 9.2.4. The

nonslipping condition for each wheel can be used to generate two constraint equations, one

based on eq. 9.2.1 and one based on eq. 9.2.2. Thus, eight constraints are entered in the

figure. (Two of these are redundant, however. If one wheel on an axle is constrained to

have zero lateral velocity, the other wheel on that axle is also constrained. However, if the

analyst does not realized this, an entry such as that shown in the figure can be handled. It

will be seen later that the redundant constraints are ignored by AUTOSIM.)

;; constrain spin of wheels to define zero longitudinal slip

(add-constraint !"r*dot([b2], (rot(rrw) - rot(b)))
 - dot(vel(rrw0),[b1])")
(add-constraint !"r*dot([b2], (rot(lrw) - rot(b)))
 - dot(vel(lrw0),[b1])")
(add-constraint !"r*dot([f2], (rot(rfw) - rot(f)))
 - dot(vel(rfw0),[f1])")
(add-constraint !"r*dot([f2], (rot(lfw) - rot(f)))
 - dot(vel(lfw0),[f1])")

;; define zero lateral velocity for each wheel

(add-constraint !"dot([b2], vel(rrw0))")
(add-constraint !"dot([b2], vel(lrw0))")
(add-constraint !"dot([f2], vel(rfw0))")
(add-constraint !"dot([f2], vel(lfw0))")

Figure 9.2.4. AUTOSIM description of nonholonomic constraints for cart

example.

The remainder of the AUTOSIM input, shown in Figure 9.2.5, defines the yaw rate of

the body, the steer rate for the front axle, and all generalized coordinates as output variables

to be generated by the simulation code. The figure also lists inputs that set the units system

to be metric (mks), and default values for the parameters of the system.

1 Although the same symbol (F) is used for both a force and a body, there is no conflict in AUTOSIM

because the symbol for a body does not appear in the equations of motion.

178

;; define output variables

(add-out !"dot([n3], rot(b))" "r"
 :long-name "yaw rate" :body b :units !"a/t")
(add-out !"dot([n3], (rot(f) - rot(b)))" "deldot"
 :body f :long-name "steer rate" :units !"a/t")
(add-coordinates-to-output)

(dynamics)
(MKS)
(setf *multibody-system-name* "Cart--Example #2")

(set-defaults BM 20 FM 5 BI33 12 FI33 .5 TRK2 .5 L1 1.5 CMB1 .5
 CMF1 .02 EPS .1 R .2 MW 1 IT .01 IA .02 F 100)

Figure 9.2.5. AUTOSIM description of cart output variables and parameter

values.

Results

The complete list of output variables (obtained with the plotter [105]) is shown in Table

9.2.1.

Table 9.2.1. List of output channels generated by simulation code for cart.
 0 - : Time - sec
 1 - r : yaw rate - rad/s
 2 - deldot : steer rate - rad/s
 3 - Q(1) : Trans. of B0 rel. to O, dir=[n1] - m
 4 - Q(2) : Trans. of B0 rel. to O, dir=[n2] - m
 5 - Q(3) : Rot. of B rel. to N, axis #3 - rad
 6 - Q(4) : Rot. of F rel. to B, axis #3 - rad
 7 - Q(5) : Rot. of LFW rel. to F, axis #2 - rad
 8 - Q(6) : Rot. of RFW rel. to F, axis #2 - rad
 9 - Q(7) : Rot. of LRW rel. to B, axis #2 - rad
 10 - Q(8) : Rot. of RRW rel. to B, axis #2 - rad

179

Body Of Cart

Front Axle

0 .5 1 1.5 2 2.5 3

Time - sec

-.5

-.4

-.3

-.2

-.1

0

.1

.2

Angular Speed - rad/s

Figure 9.2.6. Transient responses of yaw rate and steer rate.

The time histories of the yaw rate and the steer rate are shown in Figure 9.2.6 From

the list of output variables, the yaw angle and steer angle are seen to be named Q(3) and

Q(4). The time histories for these variables are shown in Figure 9.2.7.

180

Body Of Cart

Front Axle

0 .5 1 1.5 2 2.5 3

Time - sec

-5x10
-2

0

5x10
-2

.1

.15

.2

.25

Rotation - rad

Figure 9.2.7. Transient responses of yaw angle and steer angle.

The above numerical results were compared with numerical results obtained using

equations that were formulated manually, and were found to agree.

The complete parameter list, produced as an echo file by the simulation code, is shown

in Table 9.2.2.

181

T
ab

le
 9

.2
.2

.
 P

ar
am

et
er

 v
al

u
es

 a
n

d
 i

n
it

ia
l

co
n

d
it

io
n

s
fo

r
ca

rt
.

*

P
A
R
A
M
E
T
E
R

V
A
L
U
E
S

B
I
3
3

1
2
.
0
0
0
0

m
o
m
e
n
t

o
f

i
n
e
r
t
i
a

o
f

B

(
k
g
-
m
2
)

B
M

2
0
.
0
0
0
0

m
a
s
s

o
f

B

(
k
g
)

C
M
B
1

.
5
0
0
0
0
0

c
o
o
r
d
i
n
a
t
e

o
f

c
e
n
t
e
r

o
f

m
a
s
s

o
f

t
h
e

b
o
d
y

o
f

c
a
r
t

i
n

d
i
r

1

(
m
)

C
M
F
1

0
.
2
0
0
0
0
0
E
-
0
1

n
e
g
a
t
i
v
e

t
e
r
m

i
n

n
e
g
a
t
i
v
e

c
o
o
r
d
i
n
a
t
e

o
f

c
e
n
t
e
r

o
f

m
a
s
s

o
f

t
h
e

f
r
o
n
t

a
x
l
e

i
n

d
i
r

1

(
m
)

E
P
S

.
1
0
0
0
0
0

n
e
g
a
t
i
v
e

c
o
o
r
d
i
n
a
t
e

o
f

a
t
t
a
c
h
m
e
n
t

p
o
i
n
t

f
o
r

t
h
e

r
i
g
h
t
-
f
r
o
n
t

w
h
e
e
l

i
n

d
i
r

1

(
m
)

F

1
0
0
.
0
0
0

F

(
N
)

F
I
3
3

.
5
0
0
0
0
0

m
o
m
e
n
t

o
f

i
n
e
r
t
i
a

o
f

F

(
k
g
-
m
2
)

F
M

5
.
0
0
0
0
0

m
a
s
s

o
f

F

(
k
g
)

I
A

0
.
2
0
0
0
0
0
E
-
0
1

m
o
m
e
n
t

o
f

i
n
e
r
t
i
a

o
f

R
F
W

(
k
g
-
m
2
)

I
P
R
I
N
T

5
.
0
0
0
0
0

n
u
m
b
e
r

o
f

t
i
m
e

s
t
e
p
s

b
e
t
w
e
e
n

o
u
t
p
u
t

p
r
i
n
t
i
n
g

(
c
o
u
n
t
s
)

I
T

0
.
1
0
0
0
0
0
E
-
0
1

m
o
m
e
n
t

o
f

i
n
e
r
t
i
a

o
f

R
F
W

(
k
g
-
m
2
)

L
1

1
.
5
0
0
0
0

c
o
o
r
d
i
n
a
t
e

o
f

a
t
t
a
c
h
m
e
n
t

p
o
i
n
t

f
o
r

t
h
e

f
r
o
n
t

a
x
l
e

i
n

d
i
r

1

(
m
)

M
W

1
.
0
0
0
0
0

m
a
s
s

o
f

R
F
W

(
k
g
)

R

.
2
0
0
0
0
0

N
I
L

(
m
)

S
T
E
P

0
.
2
0
0
0
0
0
E
-
0
1

s
i
m
u
l
a
t
i
o
n

t
i
m
e

s
t
e
p

(
s
e
c
)

S
T
O
P
T

3
.
0
0
0
0
0

s
i
m
u
l
a
t
i
o
n

s
t
o
p

t
i
m
e

(
s
e
c
)

T
R
K
2

.
5
0
0
0
0
0

c
o
o
r
d
i
n
a
t
e

o
f

a
t
t
a
c
h
m
e
n
t

p
o
i
n
t

f
o
r

t
h
e

r
i
g
h
t
-
f
r
o
n
t

w
h
e
e
l

i
n

d
i
r

2

(
m
)

*

I
N
I
T
I
A
L

C
O
N
D
I
T
I
O
N
S

Q
(
1
)

.
0
0
0
0
0
0

T
r
a
n
s
l
a
t
i
o
n

o
f

B
0

r
e
l
a
t
i
v
e

t
o

t
h
e

f
i
x
e
d

o
r
i
g
i
n

a
l
o
n
g

[
n
1
]
.

(
m
)

Q
(
2
)

.
0
0
0
0
0
0

T
r
a
n
s
l
a
t
i
o
n

o
f

B
0

r
e
l
a
t
i
v
e

t
o

t
h
e

f
i
x
e
d

o
r
i
g
i
n

a
l
o
n
g

[
n
2
]
.

(
m
)

Q
(
3
)

.
0
0
0
0
0
0

R
o
t
a
t
i
o
n

o
f

t
h
e

b
o
d
y

o
f

c
a
r
t

r
e
l
a
t
i
v
e

t
o

t
h
e

i
n
e
r
t
i
a
l

r
e
f
e
r
e
n
c
e

a
b
o
u
t

a
x
i
s

#
3
.

(
r
a
d
)

Q
(
4
)

.
2
5
0
0
0
0

R
o
t
a
t
i
o
n

o
f

t
h
e

f
r
o
n
t

a
x
l
e

r
e
l
a
t
i
v
e

t
o

t
h
e

b
o
d
y

o
f

c
a
r
t

a
b
o
u
t

a
x
i
s

#
3
.

(
r
a
d
)

Q
(
5
)

.
0
0
0
0
0
0

R
o
t
a
t
i
o
n

o
f

t
h
e

l
e
f
t
-
f
r
o
n
t

w
h
e
e
l

r
e
l
a
t
i
v
e

t
o

t
h
e

f
r
o
n
t

a
x
l
e

a
b
o
u
t

a
x
i
s

#
2
.

(
r
a
d
)

Q
(
6
)

.
0
0
0
0
0
0

R
o
t
a
t
i
o
n

o
f

t
h
e

r
i
g
h
t
-
f
r
o
n
t

w
h
e
e
l

r
e
l
a
t
i
v
e

t
o

t
h
e

f
r
o
n
t

a
x
l
e

a
b
o
u
t

a
x
i
s

#
2
.

(
r
a
d
)

Q
(
7
)

.
0
0
0
0
0
0

R
o
t
a
t
i
o
n

o
f

t
h
e

l
e
f
t
-
r
e
a
r

w
h
e
e
l

r
e
l
a
t
i
v
e

t
o

t
h
e

b
o
d
y

o
f

c
a
r
t

a
b
o
u
t

a
x
i
s

#
2
.

(
r
a
d
)

Q
(
8
)

.
0
0
0
0
0
0

R
o
t
a
t
i
o
n

o
f

t
h
e

r
i
g
h
t
-
r
e
a
r

w
h
e
e
l

r
e
l
a
t
i
v
e

t
o

t
h
e

b
o
d
y

o
f

c
a
r
t

a
b
o
u
t

a
x
i
s

#
2
.

(
r
a
d
)

U
(
1
)

.
0
0
0
0
0
0

A
b
s
.

t
r
a
n
s
.

s
p
e
e
d

o
f

B
*

a
l
o
n
g

a
x
i
s

1
.

(
m
/
s
)

U
(
2
)

.
0
0
0
0
0
0

A
b
s
.

t
r
a
n
s
.

s
p
e
e
d

o
f

B
*

a
l
o
n
g

a
x
i
s

2
.

(
m
/
s
)

182

Analysis Details

This system was included in part to show details in the analysis of a system with

extensive nonholonomic constraints. Also, the dynamics analysis is of interest because

significant modeling simplifications involving the wheels are possible.

The Constraint Analysis

Each add-constraint form nominally removes one degree of freedom by changing

a generalized speed from an “independent speed” to a “nonholonomic speed.” When a

degree of freedom is removed, a description of the variable that is eliminated is printed on

the screen together with the replacement expression. However, when the constraint is

already identically zero, AUTOSIM merely prints a message to this effect. To show this,

the add-constraint forms are shown again in Figure 9.2.8, along with the responses.

The inputs are shown in boldface type and the AUTOSIM responses are shown in

plainface.

Six of the add-constraint forms result in the removal of generalized speeds. The

replacement expressions involve remaining independent speeds. In two cases, the

constraint is already satisfied as a consequence of previously introduced constraints.

The current generalized speeds and nonholonomic constraint equations can be viewed at

any stage of the analysis. Tables 9.2.3 through 9.2.5 list the speeds and constraints at

three stages of the analysis: (1) before any constraints are removed, (2) after the first four

constraints are added, and (3) after all constraints are added.

183

;; constrain spin of wheels to be zero-slip

(add-constraint !"r*dot([b2], (rot(rrw) - rot(b)))
 - dot(vel(rrw0),[b1])")
Replace Rot. of RRW relative to B, axis 2.
-(TRK2*U(3) -U(1))/R

(add-constraint !"r*dot([b2], (rot(lrw) - rot(b)))
 - dot(vel(lrw0),[b1])")
Replace Rot. of LRW relative to B, axis 2.
(TRK2*U(3) + U(1))/R

(add-constraint !"r*dot([f2], (rot(rfw) - rot(f)))
 - dot(vel(rfw0),[f1])")
Replace Rot. of RFW relative to F, axis 2.
(-TRK2*(U(3) + U(4)) + U(1)*C(4) + ((L1 -CMB1)*U(3) + U(2))*S(4))/R

(add-constraint !"r*dot([f2], (rot(lfw) - rot(f)))
 - dot(vel(lfw0),[f1])")
Replace Rot. of LFW relative to F, axis 2.
(TRK2*(U(3) + U(4)) + U(1)*C(4) + ((L1 -CMB1)*U(3) + U(2))*S(4))/R

;; define zero sideslip for axles

(add-constraint !"dot([b2], vel(rrw0))")
Replace Abs. rot. of B, axis 3.
U(2)/CMB1

(add-constraint !"dot([b2], vel(lrw0))")
"Constraint equation is already zero."

(add-constraint !"dot([f2], vel(rfw0))")
Replace Rot. of F relative to B, axis 3.
-(U(2)/CMB1 -(L1*U(2)*C(4)/CMB1 -U(1)*S(4))/EPS)

(add-constraint !"dot([f2], vel(lfw0))")
"Constraint equation is already zero."

Figure 9.2.8. AUTOSIM responses to constraint definitions.

Table 9.2.3. Generalized speeds before any constraints are added.
 U(1): Abs. trans. speed of B* along axis 1. (m/s)
 U(2): Abs. trans. speed of B* along axis 2. (m/s)
 U(3): Abs. rot. of B, axis 3. (rad/s)
 U(4): Rot. of F relative to B, axis 3. (rad/s)
 U(5): Rot. of LFW relative to F, axis 2. (rad/s)
 U(6): Rot. of RFW relative to F, axis 2. (rad/s)
 U(7): Rot. of LRW relative to B, axis 2. (rad/s)
 U(8): Rot. of RRW relative to B, axis 2. (rad/s)

184

Table 9.2.4. Generalized speeds and constraints, after four constraints are

added.
 U(1): Abs. trans. speed of B* along axis 1. (m/s)
 U(2): Abs. trans. speed of B* along axis 2. (m/s)
 U(3): Abs. rot. of B, axis 3. (rad/s)
 U(4): Rot. of F relative to B, axis 3. (rad/s)

Rot. of LFW relative to F, axis 2.: (TRK2*(U(3) + U(4)) + U(1)*C(4)
 + ((L1 -CMB1)*U(3) + U(2))*S(4))/R
Rot. of RFW relative to F, axis 2.: (-TRK2*(U(3) + U(4)) + U(1)*C(4)
 + ((L1 -CMB1)*U(3) + U(2))*S(4))/R
Rot. of LRW relative to B, axis 2.: (TRK2*U(3) + U(1))/R
Rot. of RRW relative to B, axis 2.: -(TRK2*U(3) -U(1))/R

Table 9.2.5. Generalized speeds and constraints, after all constraints are

added.
 U(1): Abs. trans. speed of B* along axis 1. (m/s)
 U(2): Abs. trans. speed of B* along axis 2. (m/s)

Abs. rot. of B, axis 3.: U(2)/CMB1
Rot. of F relative to B, axis 3.: -(U(2)/CMB1 -(L1*U(2)*C(4)/CMB1
 -U(1)*S(4))/EPS)
Rot. of LFW relative to F, axis 2.: (TRK2*(U(2)/CMB1 + -(U(2)/CMB1
 -(L1*U(2)*C(4)/CMB1 -U(1)*S(4))/EPS)) + U(1)*C(4) + ((L1
 -CMB1)*U(2)/CMB1 + U(2))*S(4))/R
Rot. of RFW relative to F, axis 2.: (-TRK2*(U(2)/CMB1 + -(U(2)/CMB1
 -(L1*U(2)*C(4)/CMB1 -U(1)*S(4))/EPS)) + U(1)*C(4) + ((L1
 -CMB1)*U(2)/CMB1 + U(2))*S(4))/R
Rot. of LRW relative to B, axis 2.: (TRK2*U(2)/CMB1 + U(1))/R
Rot. of RRW relative to B, axis 2.: -(TRK2*U(2)/CMB1 -U(1))/R

Note that in the intermediate stage (Table 9.2.4) some of the constraints include the

speeds U(3) and U(4), which are subsequently removed. In the later stage (Table 9.2.5) ,

those constraint equations have been updated so that the only speeds referenced are the two

remaining generalized speeds, U(1) and U(2).

The Dynamics Analysis

In this example, the four wheels have mass centers that cannot move relative to the

coordinate system of their parent (the parent is B for the rear wheels and F for the front

ones). Further, the moment of inertia of each wheel is the same about any axis normal to

the spin axis. Thus, the wheels fit the special cases identified in Chapter 8 for “fixed

masses” and “rotors.”

Because the four wheels were classified as “fixed masses,” their masses were lumped

with the inertia properties of their parents (bodies B and F). Table 9.2.6 lists all of the

point objects created for the system. Note that for bodies B and F, two points were

185

created for the center of mass. One (e.g., BCMB) applies to the mass center of the body

alone. The other (e.g., BCM) applies to a composite mass and includes the mass

properties of all children that are “fixed masses” (e.g., bodies LRW and RRW).

Table 9.2.6. Points in the cart example.

Points Description

Point B0: Body B: #(0 0 0): coord. origin of the body of cart

Point BCM: Body B: #(BM*CMB1/(BM + 2.0*MW) 0 0): center of mass of B

Point BCMB: Body B: #(CMB1 0 0): center of mass of the body of cart

Point F0: Body F: #(0 0 0): coord. origin of the front axle

Point FCM: Body F: #(-FM*(EPS -CMF1)/(FM + 2.0*MW) 0 0): center of mass

of F

Point FCMB: Body F: #(-(EPS -CMF1) 0 0): center of mass of the front axle

Point FJ: Body B: #(L1 0 0): attachment point for the front axle

Point LFW0: Body LFW: #(0 0 0): coord. origin of the left-front wheel

Point LFWCM: Body LFW: #(0 0 0): center of mass of LFW

Point LFWJ: Body F: #(-EPS -TRK2 0): attachment point for the left-front wheel

Point LRW0: Body LRW: #(0 0 0): coord. origin of the left-rear wheel

Point LRWCM: Body LRW: #(0 0 0): center of mass of LRW

Point LRWJ: Body B: #(0 -TRK2 0): attachment point for the left-rear wheel

Point O: Body N: #(0 0 0): fixed origin

Point RFW0: Body RFW: #(0 0 0): coord. origin of the right-front wheel

Point RFWCM: Body RFW: #(0 0 0): center of mass of RFW

Point RFWJ: Body F: #(-EPS TRK2 0): attachment point for the right-front wheel

Point RRW0: Body RRW: #(0 0 0): coord. origin of the right-rear wheel

Point RRWCM: Body RRW: #(0 0 0): center of mass of RRW

Point RRWJ: Body B: #(0 TRK2 0): attachment point for the right-rear wheel

The body object for B is shown in Table 9.2.7, after the constraints have been applied.

As mentioned before, the inertia properties apply to a composite body comprised of bodies

B, LRW and RRW. Hence, the mass slot of B contains the combined mass, the inertia slot

contains an inertia dyadic that includes the effects of the wheel masses, and the cm-point

slot contains a point with the center of mass of the composite body. Also, the two

translation speeds U(1) and U(2) are defined as scalar values of the velocity of the mass

center of the composite body. Hence, the velocity vector in the abs-v0 slot is derived from

the mass center of the composite body.

186

Table 9.2.7. Slots in body B .

 Summary of body: B

 parent: N

 recursive-r: T

 recursive-t: NIL

 level: 1

 children: (F LRW RRW)

 Name: Body Of Cart

 mass: (BM + 2.0*MW)

 inertia: (... + (BI33 + BM*((1 -BM/(BM +

2.0*MW))*CMB1)**2 +

MW*(2.0*(BM*CMB1)**2/(BM + 2.0*MW)**2 +

2.0*TRK2**2))*([N3].[N3]))

 unit-vectors: #([B1] [B2] [N3])

translation-coordinates: (Q(1) Q(2))

translation-speeds: (U(1) U(2))

rotation-coordinates: (Q(3))

 rotation-speeds: ((BM + 2.0*MW)*U(2)/BM/CMB1)

rotation-directions: ([N3])

translation-directions: ([N1] [N2])

 joint-pos: (Point O: Body N: #(0 0 0): fixed origin)

 cm-pos: (Point BCM: Body B: #(BM*CMB1/(BM + 2.0*MW) 0

0): center of mass of B)

 abs-w: (BM + 2.0*MW)*U(2)/BM/CMB1*[N3]

 abs-v0: -((BM*CMB1*(BM + 2.0*MW)*U(2)/BM/CMB1/(BM +

2.0*MW) -U(2))*[B2] -U(1)*[B1])

 cos matrix: #(C(3) S(3) 0)

 : #(-S(3) C(3) 0)

 : #(0 0 1.0)

After the constraints are applied, the entire system has only two independent speeds:

U(1) and U(2). The yaw rate, originally designated U(3), was removed. The replacement

expression appears everywhere the symbol U(3) originally appeared, such as in the listing

of Table 9.2.7 for the rotation-speeds slot and the abs-w slot.

187

Table 9.2.8. Slots in body LRW

 Summary of body: LRW

 parent: B

 recursive-r: ROTOR

 recursive-t: FIXED

 level: 2

 children: NIL

 Name: Left-Rear Wheel

 mass: MW

 inertia: (IT*([B1].[B1]) + IA*([B2].[B2]) + IT*([N3].[N3]))

 unit-vectors: #([LRW1] [B2] [LRW3])

rotation-coordinates: (Q(7))

 rotation-speeds: (((BM + 2.0*MW)*TRK2*U(2)/BM/CMB1 + U(1))/R)

rotation-directions: ([B2])

 joint-pos: (Point LRWJ: Body B: #(0 -TRK2 0): attachment point for

the left-rear wheel)

 cm-pos: (Point LRWCM: Body LRW: #(0 0 0): center of mass of

LRW)

 abs-w: ((BM + 2.0*MW)*U(2)/BM/CMB1*[N3] + ((BM +

2.0*MW)*TRK2*U(2)/BM/CMB1 + U(1))/R*[B2])

 abs-v0: ((TRK2*(BM + 2.0*MW)*U(2)/BM/CMB1 + U(1))*[B1]

-(BM*CMB1*(BM + 2.0*MW)*U(2)/BM/CMB1/(BM +

2.0*MW) -U(2))*[B2])

 cos matrix: #(COS(Q(7)) 0 -SIN(Q(7)))

 : #(0 1.0 0)

 : #(SIN(Q(7)) 0 COS(Q(7)))

Table 9.2.8 shows the slots in the body object created by the add-body macro for

the left-rear wheel, LRW. Here also, the speed introduced for the rotational degree of

freedom has been removed, and is replaced with an expression involving the two

independent speeds. Because the wheel is categorized as a rotor, the inertia dyadic is

written using unit-vectors of the parent.

188

Two worksheet objects are shown to illustrate how the partial velocities and

acceleration remainders are defined for this system. Table 9.2.9 shows the worksheet for

body B and Table 9.2.10 shows the worksheet for body LRW.

Table 9.2.9. Worksheet for body B of cart.

Worksheet for body: B

 recursive-r: T

 recursive-t: NIL

 w: QP(3)*[N3]

 wis-a array: (0, 0, 0, 0, 0, 0, 0, 0)

 wis-ab array: (0, 0, [N3], 0, 0, 0, 0, 0)

 wis array: (0, 0, [N3], 0, 0, 0, 0, 0)

 nhwis array: (0, (BM + 2.0*MW)/BM/CMB1*[N3])

 alpha-rem: 0

 alpha-ab: 0

 nh-alpha-rem: 0

 ra*b0: 0

 v*is array: ([B1], [B2], 0, 0, 0, 0, 0, 0)

 v*is bodies: (B, B, B, B, B, B, B, B)

 nhv*is array: ([B1], [B2])

 nhv*is bodies: (B, B)

 acc-rem: -(-Z(12)*[B2] + Z(13)*[B1])

 nh-acc-rem: -(-Z(12)*[B2] + Z(13)*[B1])

 acc-dyadic: -(QP(3)**2*([B2].[B2]) + QP(3)**2*([B1].[B1]))

For all bodies, there are eight holonomic partial angular and central velocities, and two

nonholonomic counterparts. For this system, it so happens that the two independent

speeds were originally numbered U(1) and U(2), so they never changed indices as the

constraints were added. For body B, the holonomic and nonholonomic partial velocities

are identical. However, holonomic partial angular velocities differ from the nonholonomic

ones, because the rotational speed of B (originally U(3)) was removed by a constraint.

Body LRW is identified as being recursive with respect to both rotation and translation.

Further, it is identified as a “fixed mass” for the translational part of the analysis, and as a

“rotor” for the rotational part. Note that all unit-vectors that appear in the various terms

189

shown in Table 9.2.10 are based in either bodies N or B. That is, none of the terms are

defined in the basis of LRW. The equations of motions are kept simpler than they might be

otherwise, by not transforming any vectors into the coordinate system of LRW. Also, all

of the quantities used in the translational analysis are assigned to zero, since the mass of

RRW was accounted for in the analysis of B.

Table 9.2.10. Worksheet for body RRW of cart.

Worksheet for body: RRW

 recursive-r: ROTOR

 recursive-t: FIXED

 w-a: QP(3)*[N3]

 w-ab: (U(1) -(BM +

2.0*MW)*TRK2*U(2)/BM/CMB1)/R*[B2]

 w: (QP(3)*[N3] + QP(8)*[B2])

 wis-a array: (0, 0, [N3], 0, 0, 0, 0, 0)

 wis-ab array: (0, 0, 0, 0, 0, 0, 0, [B2])

 wis array: (0, 0, [N3], 0, 0, 0, 0, [B2])

 nhwis array: (1.0/R*[B2], (-(BM +

2.0*MW)*TRK2/R/BM/CMB1*[B2] + (BM +

2.0*MW)/BM/CMB1*[N3]))

 alpha-rem: -PC(8)*(U(1) -Z(8))*QP(3)*[B1]

 alpha-ab: -(U(1) -(BM +

2.0*MW)*TRK2*U(2)/BM/CMB1)*QP(3)/R*[B1]

 nh-alpha-rem: -PC(8)*(U(1) -Z(8))*QP(3)*[B1]

 v*is array: (0, 0, 0, 0, 0, 0, 0, 0)

 v*is bodies: (B, B, B, B, B, B, B, B)

 nhv*is array: (0, 0)

 nhv*is bodies: (B, B)

 acc-rem: 0

 nh-acc-rem: 0

190

Equations of Motion

The equations of motion for this system are shown in Figures 9.2.8, 9.2.9 and 9.2.10.

There is an interesting use of intermediate variables in the listings here. Without the

nonholonomic constraints, the kinematical equations for generalized coordinates Q(3)

through Q(8) would simply be of the form:

QP(3) = U(3)
QP(4) = U(4)
QP(5) = U(5)
QP(6) = U(6)
QP(7) = U(7)
QP(8) = U(8)

However, the speeds U(3) through U(8) were eliminated as independent variables. Hence,

more complicated kinematical equations appear, which are essentially statements of the

constraint equations. Later, when a dependent speed might normally appear (e.g., in an

acceleration remainder), the derivatives QP(3) through QP(8) are likely to appear. For

example, they appeared in expressions for angular velocity and angular acceleration

remainder in the listing of the worksheet of body RRW in Table 9.2.9.

191

 PC(1) = 2.0*MW
 PC(2) = (BM + 2.0*MW)
 PC(3) = (BM + 2.0*MW)/BM/CMB1
 PC(4) = (L1 -BM*CMB1/(BM + 2.0*MW))
 PC(5) = (1 + (BM + 2.0*MW)*(L1 -BM*CMB1/(BM + 2.0*MW))/BM/CMB1)
 PC(6) = 1.0/EPS
 PC(7) = TRK2/EPS
 PC(8) = 1.0/R
 PC(9) = (BM + 2.0*MW)*TRK2/BM/CMB1
 PC(10) = (FM + 2.0*MW)
 PC(11) = (2.0*MW*EPS + FM*(EPS -CMF1))/(FM + 2.0*MW)
 PC(12) = (2.0*MW*EPS + FM*(EPS -CMF1))/(FM + 2.0*MW)/EPS
 PC(13) = (1 -(2.0*MW*EPS + FM*(EPS -CMF1))/(FM + 2.0*MW)/EPS)
 PC(14) = (1 + (BM + 2.0*MW)*(L1 -BM*CMB1/(BM +
 & 2.0*MW))/BM/CMB1)/EPS
 PC(15) = (FI33 + FM*(-EPS + CMF1 + (2.0*MW*EPS + FM*(EPS
 & -CMF1))/(FM + 2.0*MW))**2 + MW*(2.0*(EPS -(2.0*MW*EPS +
 & FM*(EPS -CMF1))/(FM + 2.0*MW))**2 + 2.0*TRK2**2))/EPS
 PC(16) = (1 + (BM + 2.0*MW)*(L1 -BM*CMB1/(BM + 2.0*MW))/BM/CMB1)
 & *(FI33 + FM*(-EPS + CMF1 + (2.0*MW*EPS + FM*(EPS
 & -CMF1))/(FM + 2.0*MW))**2 + MW*(2.0*(EPS -(2.0*MW*EPS +
 & FM*(EPS -CMF1))/(FM + 2.0*MW))**2 + 2.0*TRK2**2))/EPS
 PC(17) = IA/R
 PC(18) = IT/EPS
 PC(19) = IA*(1 + (BM + 2.0*MW)*(L1 -BM*CMB1/(BM +
 & 2.0*MW))/BM/CMB1)/R
 PC(20) = IT*(1 + (BM + 2.0*MW)*(L1 -BM*CMB1/(BM +
 & 2.0*MW))/BM/CMB1)/EPS
 PC(21) = 2.0*IA/R
 PC(22) = (BM + 2.0*MW + (2.0*IT + BI33 + BM*((1 -BM/(BM +
 & 2.0*MW))*CMB1)**2 + MW*(2.0*(BM*CMB1)**2/(BM +
 & 2.0*MW)**2 + 2.0*TRK2**2) + 2.0*IA*TRK2**2/R**2)*(BM +
 & 2.0*MW)**2/(BM*CMB1)**2)
 PC(23) = (BM + PC(1))
 PC(24) = PC(23)/BM/CMB1
 PC(25) = BM*CMB1/PC(23)
 PC(26) = (L1 -PC(25))
 PC(27) = PC(23)*PC(26)/BM/CMB1
 PC(28) = (1 + PC(27))
 PC(29) = 2.0*PC(18)
 PC(30) = (PC(15) + PC(29))
 PC(31) = PC(5)*PC(17)
 PC(32) = PC(3)*PC(11)
 PC(33) = PC(3)*PC(4)
 PC(34) = PC(11)*PC(14)
 PC(35) = (1 + PC(33) -PC(34))
 PC(36) = (1 + PC(33))
 PC(37) = 2.0*PC(20)
 PC(38) = (PC(16) + PC(37))
 PC(39) = PC(5)*PC(8)
 PC(40) = PC(5)*PC(6)
 PC(41) = PC(6)*PC(30)
 PC(42) = PC(8)*PC(21)
 PC(43) = PC(8)*PC(17)
 PC(44) = (PC(2) + PC(42))

Figure 9.2.8. Constants that are precomputed for the cart.

192

C Equations of Motion
C ===================
C Each derivative evaluation requires 94 multiply/divides, 48
C add/subtracts, and 4 function/subroutine calls.
C
 C(3) = COS(Q(3))
 C(4) = COS(Q(4))
 S(3) = SIN(Q(3))
 S(4) = SIN(Q(4))
C
C Kinematical equations
C
 QP(1) = U(1)*C(3)
 QP(2) = U(1)*S(3)
 QP(3) = PC(3)*U(2)
 Z(1) = U(2)*C(4)
 Z(2) = U(1)*S(4)
 Z(3) = (PC(5)*Z(1) -Z(2))
 Z(4) = PC(6)*Z(3)
 QP(4) = (Z(4) -QP(3))
 Z(5) = U(1)*C(4)
 Z(6) = PC(7)*Z(3)
 Z(7) = PC(5)*U(2)*S(4)
 QP(5) = PC(8)*(Z(5) + Z(6) + Z(7))
 QP(6) = PC(8)*(Z(5) -Z(6) + Z(7))
 Z(8) = PC(9)*U(2)
 QP(7) = PC(8)*(U(1) + Z(8))
 QP(8) = PC(8)*(U(1) -Z(8))

Figure 9.2.9. Kinematical equations for the cart.

The equations shown here are significantly more complex than those developed by Ge

and Cheng [28]. Neglecting the variable mass, their equations of motion require only 34

multiplications. The reason for this is that the “rocket car” had a front axle with no offset

from the steer point. That is, the mass center of the axle coincided with the steer point.

Also, the steer point was located along the spin axis of the front wheels. The input to

AUTOSIM was modified to match the description in [28], and interesting results were

obtained. First, it was found to be necessary to change the relationship between the steered

front axle and the car body, such that the axle was the parent of the body. This ensured

that the constraint equations were non-singular.

The independent speeds defined by AUTOSIM were the forward velocity and yaw rate

of the steered axle. (Ge and Cheng used the forward velocity of the steered axle, and the

steer rate of the axle.) The AUTOSIM formulation had the same efficiency (34

multiplications), but one of the dynamical equations is trivial: UP(2) = 0. (U(2) is the

symbol for the yaw rate of the front axle.) The equations of motion obtained by Ge and

193

Cheng can be transformed to show the same thing, but it is not obvious from a casual

inspection of the equations.

C
C Dynamical equations
C
 Z(9) = PC(13)*S(4)
 Z(10) = PC(35)*C(4)
 Z(11) = PC(36)*S(4)
 Z(12) = U(1)*QP(3)
 Z(13) = U(2)*QP(3)
 Z(14) = (Z(13) + PC(4)*QP(3)**2)
 Z(15) = (PC(11)*Z(4)**2 -Z(14)*C(4) + Z(12)*S(4))
 Z(16) = (Z(5) + Z(7))*QP(4)
 Z(17) = PC(10)*C(4)
 Z(18) = PC(10)*Z(9)
 Z(19) = PC(10)*Z(11)
 Z(20) = PC(10)*Z(10)
 Z(21) = PC(7)*S(4)
 Z(22) = (-Z(21) + C(4))
 Z(23) = PC(7)*C(4)
 Z(24) = (Z(23) + S(4))
 Z(25) = -(-PC(31)*U(2)*Z(22) + PC(17)*U(1)*Z(24))*QP(4)
 Z(26) = PC(19)*Z(24)
 Z(27) = (Z(21) + C(4))
 Z(28) = (-Z(23) + S(4))
 Z(29) = -(-PC(31)*U(2)*Z(27) + PC(17)*U(1)*Z(28))*QP(4)
 Z(30) = PC(19)*Z(28)
 Z(31) = PC(30)*Z(16)
 Z(32) = (PC(12)*Z(16) + Z(12)*C(4) + Z(14)*S(4))
 Z(33) = (F + PC(2)*Z(13) -Z(15)*Z(17) -PC(8)*(Z(22)*Z(25) +
 & Z(27)*Z(29)) + Z(18)*Z(32) -PC(6)*Z(31)*S(4))
 Z(34) = (PC(44) + Z(9)*Z(18) + PC(43)*(Z(22)**2 + Z(27)**2) +
 & Z(17)*C(4) + PC(41)*S(4)**2)
 Z(35) = PC(38)*C(4)
 Z(36) = (Z(9)*Z(20) -PC(8)*(Z(22)*Z(26) + Z(27)*Z(30))
 & -Z(19)*C(4) + PC(6)*Z(35)*S(4))
 Z(37) = Z(36)/Z(34)
 Z(38) = (-PC(2)*Z(12) -Z(15)*Z(19) -PC(39)*(Z(24)*Z(25) +
 & Z(28)*Z(29)) -Z(20)*Z(32) + Z(33)*Z(37) +
 & PC(40)*Z(31)*C(4))/(PC(22) + Z(11)*Z(19) + Z(10)*Z(20) +
 & PC(39)*(Z(24)*Z(26) + Z(28)*Z(30)) -Z(36)*Z(37) +
 & PC(40)*Z(35)*C(4))
 UP(2) = Z(38)
 UP(1) = (Z(33) + Z(36)*Z(38))/Z(34)

Figure 9.2.10. Dynamical equations for the cart.

194

9.3. Four-bar Linkage with Spring

The example described in this section illustrates (1) how closed kinematical loops are

handled, (2) the use of alternative coordinate systems in the input description, and (3) use

of a “strut” force element.

Model Description

The system is comprised of a four-bar linkage with a strut, shown in Figure 9.3.1. In

this figure, the coordinates of key points are shown using a global coordinate system

fixed in N. The system has three

bodies, A, B, and C. However,

all mass is lumped in body B.

Bodies A and C are massless links

and there is a spring/damper

combination that is fixed between

two points. (The spring/damper

strut is shown as a simple spring.)

The system is subject to a uniform

gravitational field. The system is

planar. The coordinates of points

of joint locations, the mass center

of B, and the points of attachment

of the spring are shown for the

nominal configuration.

The simulation will be used to obtain time histories of the angles of the three bodies, the

trajectory of the mass center of B, and the force produced by the strut.

AUTOSIM Description

The complete description of the system is shown in Figure 9.3.2. The first three input

macros define the three rigid bodies, A, B, and C. The optional arguments :mass,

:inertia-matrix, :body-rotation-axes, :joint-coordinates, and

:cm-coordinates were used in previous examples and should be familiar by now.

The next two macros, add-point, should also be familiar. An additional optional

argument named :coordinate-system is used in most of these macros. This

N

C

B

A
(0, 0)

(L1, 0)

(L1, L2)

(L1, L3)

(L1, L4)(L5, L4)

(L6, L7)

C

A

B

B , C

S

S

0

0

0

1

2

PP

B*
2

1

g

Figure 9.3.1. Four-bar linkage.

195

argument is used to specify an alternative coordinate system for coordinates provided to the

macro. In this example, it is used for the add-body and add-point macros to indicate

that coordinates are in the coordinate system of N. Thus, the global coordinates shown in

Figure 9.3.1 are provided directly as arguments.

(add-body a :mass 0
 :inertia-matrix 0
 :body-rotation-axes 3)

(add-body b :parent a
 :body-rotation-axes 3
 :joint-coordinates #(L1 0 0)
 :cm-coordinates #(L1 L3 0)
 :coordinate-system n)

(add-body c :mass 0
 :inertia-matrix 0
 :body-rotation-axes 3
 :joint-coordinates #(L5 L4 0)
 :coordinate-system n)

(add-point bp :name "b-point"
 :body b
 :coordinates #(L1 L4 0)
 :coordinate-system n)

(add-point cp :name "c-point"
 :body c
 :coordinates #(L1 L4 0)
 :coordinate-system n)

(no-movement bp cp [b1])
(no-movement bp cp [c2])

;; add gravity and strut force

(add-gravity
 :direction !"-[n2]")

(add-point s1:body b
 :name "strut pt 1"
 :coordinates #(L1 L2 0)
 :coordinate-system n)

(add-point s2 :body n
 :name "strut pt 2"
 :coordinates #(L6 L7 0))

(add-strut f :name "strut"
 :magnitude
 !"-k*(x - x0) - v*d"
 :point1 s1 :point2 s2)

;; describe output variables

(add-out !"-fm(f)" "F" :body b
 :long-name "strut force")

(add-out !"dot([n1], pos(bcm))" "B*
X" :body b

 :long-name
 "X coordinate of B*")

(add-out !"dot([n2], pos(bcm))"
 "B* Y" :body b
 :long-name
 "Y coordinate of B*")

(add-coordinates-to-output)

(add-out !"q(1) + q(2)" "B-angle"
 :long-name
 "angle of B rel. to N"
 :body b)

(mks)
(set-defaults L1 .5 l2 .1 l3 .2
 l4 .3 l5 .1 L6 .3 L7 .5
 k 10000 d 10
 bm 10 bi33 1
 step .005 stopt 1 iprint 5)

Figure 9.3.2. Description of kinematics of four-bar linkage.

The closed kinematical loop is described by declaring that there is no movement

between two points: one in body B and one in C. First, the two points are defined with

add-point macros, and called BP and CP. Then, the no-movement macro is used

twice to add the constraints. The directions of the constraints ([b1] and [c2]) were chosen

with the rotational speeds of B and C in mind, such that the new constraints would not

duplicate constraints inherent in other joint kinematics. The component of the velocity of

196

point BP due to the rotational speed of B is in the direction [b1], and the component of the

velocity of point CP due to the rotational speed of C is in the direction of [c2]. On the other

hand, the component of the velocity of BP in direction [b2] is the same as the component of

the velocity of B0 in direction [b2], and has no relationship whatsoever to the rotational

speed of B. (Depending on the orientation of the bodies, it may or may not be related to

other generalized speeds.) No matter how the bodies in the system are oriented,

coefficients obtained for speed constraints defined for the directions [b1] and [c2] are

nonsingular.

The macros add-gravity and add-strut apply forces due to gravity and the

strut, respectively. The add-strut macro is used for a force whose direction changes

as needed so that the force passes through two known points. The magnitude of the force

is provided as an expression with the keyword :magnitude. Three dummy variables

can appear in the expression, and all three are used in the example: (1) the symbol x is

replaced by an expression for the distance between the two points, (2) the symbol x0 is

replaced by a constant expression for the nominal distance between the two points, and (3)

the symbol v is replaced by an expression for the speed between the two points, along line

connecting the points. Because the spring force is proportional to the distance (x - x0),

the free spring length is the nominal length. That is, when the system is oriented as drawn

in Figure 9.3.1, the spring produces zero force.

Next, output variables are defined. The simulation code will include the strut force, the

coordinates of the mass center of B, the generalized coordinates of the system, and the

absolute rotation angle of B.

Results

Time history plots are shown in Figures 9.3.3 through 9.3.6 for two sets of initial

conditions: (1) the nominal configuration, and (2) the lower link rotated down by an angle

of 0.5 radian. In the first case, the orientation is initially trivial to compute, because it

exactly matches the drawing of figure 9.3.1. It is not in equilibrium, however, because the

spring is not producing a tensile force to balance the weight of B. In the second case, the

initial values of the angles of bodies B and C must be computed to maintain the constraints.

197

Q(1) (angle of A)

Q(2) (angle of B rel. to A)

Q(3) (angle of C)

B-angle (absolute)

0 .2 .4 .6 .8 1
Time - sec

-6x10-2

-4x10
-2

-2x10
-2

0

2x10
-2

4x10-2

6x10
-2

Rotation - rad

Figure 9.3.3. Time histories of rotation angles for nominal initial

conditions.

Q(1) (body A)

Q(2) (body B rel. to A)

Q(3) (body C)

B-angle (absolute angle)

0 .2 .4 .6 .8 1

Time - sec

-.8

-.6

-.4

-.2

0

.2

.4

.6

Rotation - rad

Figure 9.3.4. Time histories of rotation angles for displaced initial

conditions.

198

nominal initial conditions

Body A initially rotated 0.5 rad down

0 .2 .4 .6 .8 1

Time - sec

-1500

-1000

-500

0

500

1000

1500

2000

2500

strut force - N

Figure 9.3.5. Time histories of strut force.

The model was validated by running a similar model through the DADS program. To

simplify the representation in DADS, the model was modified to include nonzero mass and

inertia values for bodies A and C. When a corresponding simulation code was generated

with AUTOSIM (i.e., with bodies A and C having nonzero masses and moments of inertia)

the results from DADS and the simulation code generated by AUTOSIM agreed.

Analysis Details

This system involves several analysis methods that were not used in previous

examples. First, the coordinates of points in the system were all provided in the global

coordinate system. When the AUTOSIM inputs were processed, the coordinates of each

point were converted to the coordinate system of the body containing the point. This can

be seen by viewing all of the points in the systems, shown in Table 9.3.1.

The state variables and constraint equations are shown in Table 9.3.2. The constraints

applied by the no-movement macros reduce the number of degrees of freedom to one: the

rotational speed of body A. Also, two of the coordinates are classified as “computed

coordinates,” rather than as “independent coordinates.”

199

0 .1 .2 .3 .4 .5

X coordinate of B* - m

-.1

0

.1

.2

.3

.4

Y coordinate of B* - m

Figure 9.3.6. Trajectory of mass center of body B.

Table 9.3.1. Points defined for four-bar linkage.

Point: Description

Point O: Body N: #(0 0 0): fixed origin

Point A0: Body A: #(0 0 0): coord. origin of A

Point BJ: Body A: #(L1 0 0): attachment point for B

Point B0: Body B: #(0 0 0): coord. origin of B

Point BCMB: Body B: #(0 L3 0): center of mass of B

Point BCM: Body B: #(0 L3 0): center of mass of B

Point CJ: Body N: #(L5 L4 0): attachment point for C

Point C0: Body C: #(0 0 0): coord. origin of C

Point BP: Body B: #(0 L4 0): B-point

Point CP: Body C: #((L1 -L5) 0 0): C-point

Point S1: Body B: #(0 L2 0): strut pt 1

Point S2: Body N: #(L6 L7 0): strut pt 2

200

Table 9.3.2. State variables and speed constraints for four-bar linkage.

Generalized Coordinates:

 Q(1): Rotation of A relative to the inertial reference about axis #3. (rad)

 Q(2): Rotation of B relative to A about axis #3. (rad)

 Q(3): Rotation of C relative to the inertial reference about axis#3. (rad)

Independent Speeds:

 U(1): Abs. rot. of A, axis 3. (rad/s)

Nonholonomic Constraints:

Rot. of B relative to A, axis 3.: -U(1)*(1 -L1*(S(2) -(L1 -L5)*(C(3)*(C(1)*C(2)**2 -

C(2)*S(1)*S(2)) + C(2)*(C(2)*S(1) + C(1)*S(2))*S(3))*(S(2)*(C(1)*C(3) +

S(1)*S(3)) + C(2)*(C(3)*S(1) -C(1)*S(3)))/(L1 -L5 -(L1 -L5)*(S(2)*(C(1)*C(3)

+ S(1)*S(3)) + C(2)*(C(3)*S(1) -C(1)*S(3)))**2))/L4)

Abs. rot. of C, axis 3.: L1*U(1)*(C(3)*(C(1)*C(2)**2 -C(2)*S(1)*S(2)) +

C(2)*(C(2)*S(1) + C(1)*S(2))*S(3))/(L1 -L5 -(L1 -L5)*(S(2)*(C(1)*C(3) +

S(1)*S(3)) + C(2)*(C(3)*S(1) -C(1)*S(3)))**2)

The simulation code, listed in Appendix C, includes several subroutines that are not

written for the other examples in this chapter. After the input data are read, the main

program calls the subroutine MNEWT to solve the multiple equation set for the initial

conditions using a Newton-Raphson iteration. The subroutine MNEWT in turn solves

multiple linear equations with subroutines LUDCMP and LUBKSB. The algorithms used

are fairly standard (the subroutines were adopted from listings provided in []). The

subroutine INITR, generated by AUTOSIM, computes the constraint errors for the system

and the Jacobian coefficients to define the linear equations solved by LUDCMP and

LUBKSB.

A section of the code in the subroutine INITNR is shown in Figure 9.3.7. Each of the

two constraint equations has an error function (BETA) that is zero when the constraint is

satisfied. The Jacobian (ALPHA) provides the partial derivative of each error function with

respect to a computed variable. In this subroutine, the independent variable is called Q(1),

just as it is elsewhere in the simulation code. However, the two computed variables,

normally called Q(2) and Q(3), are called X(1) and X(2) in this subroutine. (The change in

names is made to accommodate the subroutine MNEWT that computes candidate values of

the computed coordinates.)

201

 BETA(1) = (-L1*COS(X(1)) + L4*(COS(X(1))*SIN(Q(1)) +
 & COS(Q(1))*SIN(X(1))) + L5*(COS(Q(1))*COS(X(1))
 & -SIN(Q(1))*SIN(X(1))) + (L1 -L5)*(-SIN(X(1))
 & *(COS(X(2))*SIN(Q(1)) -COS(Q(1))*SIN(X(2))) + COS(X(1))
 & *(COS(Q(1))*COS(X(2)) + SIN(Q(1))*SIN(X(2)))))
 ALPHA(1,1) = -(-L5*(COS(X(1))*SIN(Q(1)) + COS(Q(1))*SIN(X(1))) +
 & L4*(COS(Q(1))*COS(X(1)) -SIN(Q(1))*SIN(X(1))) +
 & L1*SIN(X(1)) -(L1 -L5)*(SIN(X(1))*(COS(Q(1))*COS(X(2)) +
 & SIN(Q(1))*SIN(X(2))) + COS(X(1))*(COS(X(2))*SIN(Q(1))
 & -COS(Q(1))*SIN(X(2)))))
 ALPHA(1,2) = -(L1 -L5)*(COS(X(1))*(COS(X(2))*SIN(Q(1))
 & -COS(Q(1))*SIN(X(2))) + SIN(X(1))*(COS(Q(1))*COS(X(2)) +
 & SIN(Q(1))*SIN(X(2))))
 BETA(2) = -(L5*SIN(X(2)) -L4*(COS(X(2)) + SIN(X(1))
 & *(COS(X(2))*SIN(Q(1)) -COS(Q(1))*SIN(X(2))) -COS(X(1))
 & *(COS(Q(1))*COS(X(2)) + SIN(Q(1))*SIN(X(2)))) + L1
 & *(COS(X(2))*SIN(Q(1)) -COS(Q(1))*SIN(X(2))))
 ALPHA(2,1) = -L4*(SIN(X(1))*(COS(Q(1))*COS(X(2)) +
 & SIN(Q(1))*SIN(X(2))) + COS(X(1))*(COS(X(2))*SIN(Q(1))
 & -COS(Q(1))*SIN(X(2))))
 ALPHA(2,2) = (L5*COS(X(2)) + L4*(SIN(X(2)) + SIN(X(1))
 & *(COS(Q(1))*COS(X(2)) + SIN(Q(1))*SIN(X(2))) + COS(X(1))
 & *(COS(X(2))*SIN(Q(1)) -COS(Q(1))*SIN(X(2)))) -L1
 & *(COS(Q(1))*COS(X(2)) + SIN(Q(1))*SIN(X(2))))

Figure 9.3.7. Jacobian matrix (ALPHA) and error function (BETA) used to

compute initial conditions for four-bar linkage.

The computer code shown in Figure 9.3.7 is obviously not optimized in the same

fashion as the Fortran code appearing elsewhere in the simulation code. The Newton-

Raphson iteration is performed only once in each simulation run, as part of the

initialization. Thus, the numerical efficiency of this code has a negligible effect on the

efficiency of the simulation code as a whole.

The computed initial conditions are written in the echo file, made for each simulation

run. The simulation run that generated the data plotted in in Figures 9.3.3 through 9.3.6

produced the echo file shown in Table 9.3.3.

After the initialization, constraints on the coordinates are handled largely by the

inclusion of constraints on the corresponding speeds in the formulation of the dynamical

equation. However, to avoid violating a constraint due to accumulated integration error, a

correction is made each time the subroutine DIFEQN is called. The code that “corrects” the

computed coordinates is listed in Figure 9.3.8. The purpose of the code is to correct the

values of the variables Q(2) and Q(3), which are both shown in boldface.

202

Table 9.3.3. Echo file for 4-bar linkage with displaced initial conditions.
PARSFILE
Echo file created by:
4-bar linkage simulation program.
Version created December 11, 1989 by AUTOSIM

TITLE Default parameter values

* Input File: echo ic
* Run was made 13:02 on Dec 11, 1989

* PARAMETER VALUES

BI33 1.00000 moment of inertia of B (kg-m2)
BM 10.0000 mass of B (kg)
D 100.000 coefficient in term in strut (N-sec/rad/m)
IPRINT 1.00000 no. of time steps between printing (counts)
K 10000.0 stiffness coefficient in term in strut (N/m)
L1 .500000 coord. of attachment point for B in dir 1 (m)
L2 .100000 coordinate of strut pt 1 in dir 2 (m)
L3 .200000 coordinate of center of mass of B in dir 2 (m)
L4 .300000 coordinate of b-point in dir 2 (m)
L5 .100000 coord. of attachment point for C in dir 1 (m)
L6 .300000 coordinate of strut pt 2 in dir 1 (m)
L7 .500000 coordinate of strut pt 2 in dir 2 (m)
STEP 0.500000E-02 simulation time step (sec)
STOPT 1.00000 simulation stop time (sec)

* INITIAL CONDITIONS

Q(1) -.500000 Rotation of A relative to the inertial reference about
axis #3. (rad)

Q(2) .563473 Rotation of B relative to A about axis #3. (rad)
Q(3) -.644491 Rotation of C relative to the inertial reference about

axis #3. (rad)
U(1) .000000 Abs. rot. of A, axis 3. (rad/s)

END

The corrections made by the code in Figure 9.3.8 are recursive. That is, the new

values of Q(2) and Q(3) are computed by adjusting the values that were provided by

numerically integrating their derivatives. If there were no error in the numerical integration,

then the correction terms Z(21) and Z(41) would be zero. With the second-order numerical

integration method used in Appendix C, the error is typically on the order of 10-6 radian.

By using the correction technique illustrated in the above listing, acceptable accuracy is

obtained with simple integration algorithms and single precision variables.

203

Z(1) = L5*S(3)
Z(2) = C(3)*S(1)
Z(3) = C(1)*S(3)
Z(4) = (Z(2) -Z(3))
Z(5) = Z(4)*S(2)
Z(6) = C(1)*C(3)
Z(7) = S(1)*S(3)
Z(8) = (Z(6) + Z(7))
Z(9) = Z(8)*C(2)
Z(10) = (Z(5) -Z(9) + C(3))
Z(11) = L4*Z(10)
Z(12) = L1*Z(4)
Z(13) = (Z(1) -Z(11) + Z(12))
Z(14) = L5*C(3)
Z(15) = Z(8)*S(2)
Z(16) = Z(4)*C(2)
Z(17) = (Z(15) + Z(16) + S(3))
Z(18) = L4*Z(17)
Z(19) = L1*Z(8)
Z(20) = (Z(14) + Z(18) -Z(19))
Z(21) = Z(13)/Z(20)
Z(22) = (-Q(3) + Z(21))
Q(3) = -Z(22)

Z(23) = L1*C(2)
Z(24) = C(1)*C(2)
Z(25) = S(1)*S(2)
Z(26) = (Z(24) -Z(25))
Z(27) = L5*Z(26)
Z(28) = C(2)*S(1)
Z(29) = C(1)*S(2)
Z(30) = (Z(28) + Z(29))
Z(31) = L4*Z(30)
Z(32) = (-Z(5) + Z(9))
Z(33) = PC(1)*Z(32)
Z(34) = (Z(23) -Z(27) -Z(31) -Z(33))
Z(35) = L4*Z(26)
Z(36) = L5*Z(30)
Z(37) = L1*S(2)
Z(38) = (Z(15) + Z(16))
Z(39) = PC(1)*Z(38)
Z(40) = (Z(35) -Z(36) + Z(37) -Z(39))
Z(41) = Z(34)/Z(40)
Q(2) = (Q(2) + Z(41))

Figure 9.3.8. Correction of integration error in computed coordinates Q(2)

and Q(3) for four-bar linkage.

Forces

F: strut: Expression = FORCEM(1): Direction = -(L7/SQRT(L6*(L6-L1*C(1) +

L2*(C(2)*S(1) + C(1)*S(2))) + L2*(L2 + L6*(C(2)*S(1) +C(1)*S(2)) -L1*S(2) -

L7*(C(1)*C(2) -S(1)*S(2))) + L1*(L1 -L6*C(1)-L7*S(1) -L2*S(2)) + L7*(L7 -

L1*S(1) -L2*(C(1)*C(2)-S(1)*S(2))))*[N2] + L6/SQRT(L6*(L6 -L1*C(1) +

L2*(C(2)*S(1) +C(1)*S(2))) + L2*(L2 + L6*(C(2)*S(1) + C(1)*S(2)) -L1*S(2) -

L7*(C(1)*C(2) -S(1)*S(2))) + L1*(L1 -L6*C(1) -L7*S(1) -L2*S(2)) +L7*(L7 -

L1*S(1) -L2*(C(1)*C(2) -S(1)*S(2))))*[N1] -L2/SQRT(L6*(L6-L1*C(1) +

L2*(C(2)*S(1) + C(1)*S(2))) + L2*(L2 + L6*(C(2)*S(1) +C(1)*S(2)) -L1*S(2) -

L7*(C(1)*C(2) -S(1)*S(2))) + L1*(L1 -L6*C(1)-L7*S(1) -L2*S(2)) + L7*(L7 -

L1*S(1) -L2*(C(1)*C(2)-S(1)*S(2))))*[B2] -L1/SQRT(L6*(L6 -L1*C(1) +

L2*(C(2)*S(1) +C(1)*S(2))) + L2*(L2 + L6*(C(2)*S(1) + C(1)*S(2)) -L1*S(2) -

L7*(C(1)*C(2) -S(1)*S(2))) + L1*(L1 -L6*C(1) -L7*S(1) -L2*S(2)) +L7*(L7 -

L1*S(1) -L2*(C(1)*C(2) -S(1)*S(2))))*[A1]).

Acts on B from the inertial reference through strut pt 1 and strut pt 2

Figure 9.3.9 Force object created to represent strut.

204

One final note about this example is that it includes a force-producing component that

involves complicated algebraic expressions. The add-strut macro shown in Figure

9.3.2 creates the force object listed in Figure 9.3.9.

9.4. “Spacecraft #1”

A spacecraft model with 10 degrees of freedom is described in the SD/FAST Users

Manual [5]. That model was analyzed with AUTOSIM to determine how the simulation

codes produced using the methods described in this dissertation compare with those

produced by SD/FAST in terms of efficiency and agreement of the predicted variables.

Also, this example illustrates how external subroutines are incorporated into the simulation

codes generated by AUTOSIM.

Model Description

The spacecraft is composed of three rigid bodies and one flexible body modeled as a

rigid body with a u-joint. The rigid bodies are the main body of the craft, called the bus

and designated body B, a camera (body D), and a supporting shaft called a clock (body C).

The flexible member is called the boom (massless body E and body F). Figure 9.4.1

shows a sketch of the rigid bodies, reference points, and dimensional parameters.

B*, Bo

DoL6

L3
2

3

1

Axis directions
for N, B, C, E, F

2
3 1

Axis
directions

for D

Bus, B

Clock, C

Camera, D

L1

L5

L2
C*

Eo,Fo

L8L7

Boom, F

F*

D*

Co

Figure 9.4.1. Sketch of bodies in Spacecraft #1.

205

The flexibility of the boom is modeled with a two-degree of freedom hinge, with

torsional stiffness KB and torsional damping rate BB in the directions 1 and 3.

Movements of the clock and camera are controlled. The controller is modeled as

applying a torque through a massless element with torsional stiffness KCLOCK and

torsional damping rate BCLOCK to the clock. The torque applied to the camera is also

through a massless element with the same stiffness and damping properties as used for the

clock.

The object of the simulation is to simulate a “slew maneuver” in which the clock and

camera are moved from initial values of 4 and -0.5 radians, respectively, to final values of

3.75 and -0.4 radians, over a ten-second interval. A Fortran subroutine, based on the

example in [5], is listed in the left-hand column of Figure 9.4.2. The simulation code

should include this subroutine to obtain the control signals.

SUBROUTINE CMD(T, CLKCMD, CAMCMD)
IF (T .LT. 1.) THEN
 CLKCMD = 4.
 CAMCMD = -.5
ELSE IF (T .LT. 11.) THEN
 CLKCMD = 4. -.025*(T-1.)
 CAMCMD = -.5 + .01*(T-1.)
ELSE
 CLKCMD = 3.75
 CAMCMD = -.4
END IF
RETURN

FUNCTION THRUST(T, AXIS, ERROR)
INTEGER AXIS
REAL DBAND, TMIN, FIRE(3), TOFF(3)
SAVE TOFF, FIRE
DATA DBAND /.0025/
DATA TMIN /.02/
DATA FIRE, TOFF /3*0., 3*0./

IF (ERROR .LT. -DBAND) THEN
 FIRE(AXIS) = 1
 TOFF(AXIS) = T + TMIN
ELSE IF (ERROR .GT. DBAND) THEN
 FIRE(AXIS) = -1
 TOFF(AXIS) = T + TMIN
ELSE IF(T .GE. TOFF(AXIS)) THEN
 FIRE(AXIS) = 0
END IF
THRUST = FIRE(AXIS)
RETURN
END

Figure 9.4.2. Subroutines for computing control signals and couples from

thrusters.

The orientation of the spacecraft body is controlled by three pairs of thrusters that fire

bursts of propellent when the angle of the craft drifts beyond a “dead zone” tolerance. Each

pair of thrusters is balanced to apply a pure couple to B about the directions 1, 2, and 3.

The control laws of the thrusters used in Ref. [5] are shown in the Fortran listing in the

right-hand column of Figure 9.4.2. Each of three thruster pairs fires when an error signal

exceeds a threshold of 0.0025, and remains on for at least a time duration of 0.02 seconds.

206

The algorithm shown in the figure assumes that the function is always called with

increasing values of time.

AUTOSIM Description

The inputs to AUTOSIM that define the rigid bodies of the system are shown in the

listing of Figure 9.4.4. The two-degree-of-freedom joint between the bus and the boom is

entered as two bodies, each with a single rotational degree of freedom. (The first, E, is

massless.) The rotation axis of the camera (axis #1) is reversed from the direction of axis

#1 in the clock. Hence, the coordinate system of D in the nominal orientation is reversed

relative to the coordinate systems of the other bodies.

Two simulation codes are generated for this model. The first uses the full, nonlinear

equations generated with the input shown in Figure 9.4.3. The other makes use of the

knowledge that some of the variables are numerically small. To make the small-variable

equations, the input of Figure 9.4.3 is modified as indicated in Figure 9.4.4. (Changes are

shown in boldface.)

Describing the moments acting between bodies is made quite simple if the names of the

state variables are known. The listings obtained from AUTOSIM are shown for reference

in Tables 9.4.1 and 9.4.2.

The moments acting on the multibody system are described in the listing of Figure

9.2.5, which continues the input to AUTOSIM started in Figure 9.4.3.

The first two lines define moments acting on the boom (body F) from the bus (body

B). The magnitudes of the moments are specified with equations defining simple torsional

springs and dampers, involving the coordinates and speeds defined in Table 9.4.1 and

9.4.2.

In order to obtain expressions for the moments acting on the clock and camera, the

subroutine that computes new control signals must be included. As shown by the listing in

Figure 9.4.2, the subroutine CMD computes two control variables as functions of time.

First, two variables are defined in AUTOSIM to pass as arguments to this subroutine,

using the macro add-variables1. The macro indicates that (1) the variables will be

1 If the add-variables macro were not used, AUTOSIM would assume that the symbols

CLKCMD and CAMCMD are parameters, and would write code to read them from the input file. As it
turns out, the simulation code would run correctly. However, its operation might be obscure to a person

207

used in the subroutine DIFEQN that AUTOSIM will soon generate, (2) the variables are

REAL, and (3) there are two variables, called CLKCMD and CAMCMD. The next input,

with the macro add-subroutine, instructs AUTOSIM to include the subroutine CMD

when DIFEQN is written. Also, the arguments to CMD are specified.

(add-body B :name "Bus"
 :translate (1 2 3)
 :body-rotation-axes (1 2 3))

(add-body c :name "clock"
 :parent b
 :inertia-matrix #(ci ci 0)
 :body-rotation-axes 3
 :joint-coordinates #(0 0 !"-L1")
 :cm-coordinates #(0 0 L2))

(add-body d :name "Camera"
 :parent c
 :joint-coordinates #(0 !"-L3" 0)
 :cm-coordinates #(0 L5 L6)
 :body-rotation-axes 1
 :parent-rotation-axis #(-1 0 0))

(add-body e :parent b
 :Joint-coordinates #(0 !"-L7" 0)
 :inertia-matrix 0 :mass 0
 :parent-rotation-axis 3
 :body-rotation-axes 3)

(add-body f :name "Boom"
 :parent e
 :inertia-matrix #(FI1 FI2 FI1)
 :cm-coordinates #(0 !"-L8" 0)
 :parent-rotation-axis 1
 :body-rotation-axes 1)

Figure 9.4.3. Description of spacecraft bodies for AUTOSIM

Next, the two torques generated by the clock and camera motors are added. The first,

CLOCKT, defines a torque acting between the bus and the clock. The magnitude is an

expression involving the relative angular position of the clock, Q(7), the relative angular

speed, U(7), and the control variable, CLKCMD. The second, CAMT, defines a similar

torque acting between the clock and the camera.

The last three inputs describe the moments applied by the thruster pairs. The function

THRUST, listed earlier, is referenced by name in the expressions for the magnitude of the

active moments.

perusing the source code.

208

(add-body B :name "Bus"
 :small-angles (t t t)
 :small-translations (t t t)
 :translate (1 2 3)
 :body-rotation-axes (1 2 3))

(add-body e :parent b
 :Joint-coordinates #(0 !"-L7" 0)
 :inertia-matrix 0 :mass 0
 :small-angles (t)
 :parent-rotation-axis 3
 :body-rotation-axes 3)

(add-body f :name "Boom"
 :parent e
 :inertia-matrix #(FI1 FI2 FI1)
 :cm-coordinates #(0 !"-L8" 0)
 :small-angles (t)
 :parent-rotation-axis 1
 :body-rotation-axes 1)

;;; declare parameters “large” so moments resulting from “small”
;;; variables are not small.

(large kb bb)

Figure 9.4.4. Modifications to define “small” variables.

Table 9.4.1. Generalized coordinates for Spacecraft #1.

Q(1): Translation of B0 relative to the fixed origin along [n1]. (m)

Q(2): Translation of B0 relative to the fixed origin along [n2]. (m)

Q(3): Translation of B0 relative to the fixed origin along [n3]. (m)

Q(4): Rotation of Bpp relative to N about axis #1. (rad)

Q(5): Rotation of Bp relative to Bpp about axis #2. (rad)

Q(6): Rotation of B relative to Bp about axis #3. (rad)

Q(7): Rotation of the clock relative to the bus about axis #3. (rad)

Q(8): Rotation of the camera relative to the clock about axis #1. (rad)

Q(9): Rotation of E relative to the bus about axis #3. (rad)

Q(10): Rotation of the boom relative to E about axis #1. (rad)

209

Table 9.4.2. Independent speeds for Spacecraft #1.

U(1): Abs. trans. speed of B* along axis 1. (m/s)

U(2): Abs. trans. speed of B* along axis 2. (m/s)

U(3): Abs. trans. speed of B* along axis 3. (m/s)

U(4): Abs. rotation of B about axis #1. (rad/s)

U(5): Abs. rotation of B about axis #2. (rad/s)

U(6): Abs. rotation of B about axis #3. (rad/s)

U(7): Rot. of relative to B, axis 3. (rad/s)

U(8): Rot. of D relative to C, axis 1. (rad/s)

U(9): Rot. of E relative to B, axis 3. (rad/s)

U(10): Rot. of F relative to E, axis 1. (rad/s)

;;; Add moments that are due to flexing of the boom

(add-moment bt1 :name "boom-torque Z"
 :direction [e3] :body1 f :body2 b
 :magnitude !"-kb*q(9) - bb*u(9)")

(add-moment bt2 :name "boom-torque X"
 :direction [f1] :body1 f :body2 b
 :magnitude !"-kb*q(10) - bb*u(10)")

;;; add moments from clock and camera motors

(add-variables difeqn real clkcmd camcmd)
(add-subroutine difeqn cmd t clkcmd camcmd)

(add-moment clockt :name "torque from clock motor"
 :direction [c3] :body1 c :body2 b
 :magnitude !"kclock*(-q(7) + clkcmd) - bclock*u(7)")

(add-moment camt :name "torque from camera motor"
 :direction [d1] :body1 d :body2 c
 :magnitude !"kclock*(-q(8) + camcmd) - bclock*u(8)")

;;; add moments from thrusters

(add-moment tt1 :name "thruster moment #1"
 :direction [b1] :body1 b
 :magnitude !"ltt1*func(thrust, t, 1, (gyro*u(4) + q(4)))")

(add-moment tt2 :name "thruster moment #2" :direction [b2] :body1 b
 :magnitude !"ltt2*func(thrust, t, 2, (gyro*u(5) + q(5)))")

(add-moment tt3 :name "thruster moment #3" :direction [b3]
 :magnitude !"ltt3*func(thrust, t, 3, (gyro*u(6) + q(6)))"
 :body1 b)

Figure 9.4.5. AUTOSIM description of active moments.

210

The remaining inputs to AUTOSIM are shown in the listing of Figure 9.4.6. They

specify (1) that the units system is metric, (2) default values for the parameters, (3) that the

simulation code should include all coordinates, speeds, and moments as output variables,

and (4) that the dynamics analysis should be performed.

(mks)
(set-defaults L1 1.5 L2 .75 L3 .1 L5 .22 L6 .2 L7 1.2 L8 3.3
 BM 410 CM 6.8 DM 57.5 FM 10.7
 BI11 115 BI12 -14 BI13 14
 BI22 316 BI23 -34.6 BI33 440
 CI .35
 DI11 4.85 DI12 -0.41 DI13 -.07
 DI22 2.2 DI23 -0.54 DI32 -0.54 DI33 5.5
 FI1 27.2 FI2 0.2
 LTT1 .23 LTT2 .21 LTT3 .31 GYRO 2
 KCLOCK 3500 BCLOCK 20 KB 2000 BB 10
 STEP .02 STOPT 30)

(add-coordinates-to-output)
(add-speeds-to-output)
(add-moments-to-output)
(dynamics)

Figure 9.4.6. Define units, default values, output variables, and name of

multibody system.

Results

Time histories from the simulated slew maneuver are shown in Figures 9.4.7 and

9.4.8. Performances of the different simulation codes are summarized in Table 9.4.3.

211

Q(4); AUTOSIM--full nonlinear

Q(5); AUTOSIM--full nonlinear

Q(6); AUTOSIM--full nonlinear

Q(4); AUTOSIM--small variables

Q(5); AUTOSIM--small variables

Q(6); AUTOSIM--small variables

Q(4); SD/Fast

Q(5); SD/Fast

Q(6); SD/Fast

0 5 10 15 20 25 30

Time - sec

-3x10
-3

-2x10
-3

-10
-3

0

10
-3

2x10
-3

3x10
-3

Rotation - rad

Figure 9.4.7. Time histories of satellite attitude variables during slew

maneuver.

212

AUTOSIM--full nonlinear

AUTOSIM--small variables

SD/Fast

0 5 10 15 20 25 30

Time - sec

-1.5x10
-4

-10
-4

-5x10
-5

0

5x10
-5

10
-4

1.5x10
-4

2x10
-4

Rot. of F rel. to E, axis #1 - rad

Figure 9.4.8. Time histories of boom deflection during slew maneuver.

Table 9.4.3. Performance comparisons between three simulation codes.

1 The subroutine SDNSIM contains 920 multiply/divides, 576 add/subtracts, and 14 trig function

evaluations. The solution of 7 simultaneous equations adds 139 multiply/divides and 126 add/subtracts.
The DERIV subroutine and additional routines add 14 multiplies, 7 adds, and 6 function/subroutine calls.

Source adds and

subtracts

multiplies, divides,

and function calls

SD/FAST Users Manual1 709 1094

AUTOSIM, using full, nonlinear formulation 628 791

AUTOSIM, using small variables for 8 d.o.f. 442 514

213

9.5. “Spacecraft #2”

A spacecraft model with 10 degrees of freedom was used to demonstrate the methods

used by Nielan in his SYMBA symbolic analysis code. This example is provided mainly to

compare the efficiencies of AUTOSIM and SYMBA for spacecraft vehicles.

Model Description

The spacecraft is composed of five rigid bodies: a main body W and four antennas, A1,

A2, A3, and A4. Dimensions and points in the spacecraft are shown in figure 9.5.1.

1

2

3
W , W*

A1*

A1

A4

A4*A3

A3*

A2

A2*

0

0 0

0

0

L1

L2L3

Figure 9.5.1. Dimensions of “Spacecraft #2.”

The hinge points for the four antennas are located at points A10, A20, A30, and A40. The

coordinates of those points are (L1, 0, L2), (L1, L2, 0), (L1, 0, –L2), and (L1, –L2, 0),

respectively, in the coordinate system of W. The centers of mass of the four antennas are

located a distance L3 from the hinge points, as shown.

The antenna hinges have torsional stiffness K and damping rate D. The rotation axes

for A1 and A3 lie parallel with the #3 axis of W, for A2 and A4 the rotation is parallel with

the #2 axis. Given the initial conditions of the antennas all aligned as shown, and an initial

angular rotation vector for W, the objective of the simulation is to view the time histories of

the body velocity components and the antenna angular displacements.

214

AUTOSIM Description

The description of this system in AUTOSIM is straightforward and is presented in

Figure 9.5.2. All of the inputs have been described in previous examples and should be

familiar to the reader. The state variables introduced for the system are listed in Table

9.5.1. (They appear in the expressions for the moments applied by the torsional springs

and dampers.)

(add-body W
 :inertia-matrix #(Ixx Iyy Izz)
 :translate (1 2 3)
 :body-rotation-axes (3 2 1)
 :mass m1)

(add-body a1 :parent w
 :inertia-matrix #(0 ia ia)
 :mass m2
 :joint-coordinates #(L1 0 L2)
 :cm-coordinates #(L3 0 0)
 :body-rotation-axes (2))

(add-body a2 :parent w
 :inertia-matrix #(0 ia ia)
 :mass m2
 :joint-coordinates #(L1 L2 0)
 :cm-coordinates #(L3 0 0)
 :body-rotation-axes (3))

(add-body a3 :parent w
 :inertia-matrix #(0 ia ia)
 :mass m2
 :joint-coordinates
 #(L1 0 !"-L2")
 :cm-coordinates #(L3 0 0)
 :body-rotation-axes (2))

(add-body a4 :parent w
 :inertia-matrix #(0 ia ia)
 :mass m2
 :joint-coordinates
 #(L1 !"-L2" 0)
 :cm-coordinates #(L3 0 0)
 :body-rotation-axes (3))

(add-moment t1
 :direction [w2]
 :magnitude
 !"-K*q(7) - D*u(7)"
 :body1 a1 :body2 w)

(add-moment t2
 :direction [w3]
 :magnitude
 !"-K*q(8) - D*u(8)"
 :body1 a2 :body2 w)

(add-moment t3
 :direction [w2]
 :magnitude
 !"-K*q(9) - D*u(9)"
 :body1 a3 :body2 w)

(add-moment t4
 :direction [w3]
 :magnitude
 !"-K*q(10) - D*u(10)"
 :body1 a4 :body2 w)

(mks)
(setf *multibody-system-name* "Symba

spacecraft")

(set-defaults IXX 110 IYY 100 IZZ 70
IA .02 M1 500 M2 2

 K .0000285 D .001359
 L1 .5 L2 .3 L3 .2)

(add-coordinates-to-output)
(add-speeds-to-output)

Figure 9.5.2. Description of Spacecraft #2 in AUTOSIM.

215

Table 9.5.1. State variables for Spacecraft #2.

Generalized Coordinates

Q(1): Translation of W0 relative to the fixed origin along [n1]. (m)

Q(2): Translation of W0 relative to the fixed origin along [n2]. (m)

Q(3): Translation of W0 relative to the fixed origin along [n3]. (m)

Q(4): Rotation of Wpp relative to N about axis #3. (rad)

Q(5): Rotation of Wp relative to Wpp about axis #2. (rad)

Q(6): Rotation of W relative to Wp about axis #1. (rad)

Q(7): Rotation of A1 relative to W about axis #2. (rad)

Q(8): Rotation of A2 relative to W about axis #3. (rad)

Q(9): Rotation of A3 relative to W about axis #2. (rad)

Q(10): Rotation of A4 relative to W about axis #3. (rad)

Independent Speeds

U(1): Abs. trans. speed of W* along axis 1. (m/s)

U(2): Abs. trans. speed of W* along axis 2. (m/s)

U(3): Abs. trans. speed of W* along axis 3. (m/s)

U(4): Abs. rotation of W about axis #3. (rad/s)

U(5): Abs. rotation of W about axis #2. (rad/s)

U(6): Abs. rotation of W about axis #1. (rad/s)

U(7): Rot. of A1 relative to W, axis 2. (rad/s)

U(8): Rot. of A2 relative to W, axis 3. (rad/s)

U(9): Rot. of A3 relative to W, axis 2. (rad/s)

U(10): Rot. of A4 relative to W, axis 3. (rad/s)

Results

The vehicle was simulated with the initial conditions U(4) = .0017 rad/sec, U(5) =

U(6) = .00017 rad/sec. Figure 9.5.3 shows time histories of the first 1000 seconds in

response to those initial conditions.

216

A1

A2

A3

A4

0 200 400 600 800 1000

Time - sec

-.6

-.4

-.2

0

.2

.4

.6

Rotation - rad

U(5)

U(6)

0 200 400 600 800 1000

Time - sec

-3x10
-3

-2x10
-3

-10
-3

0

10
-3

2x10
-3

3x10
-3

Angular speed - rad/s

Figure 9.5.3. Time histories for Spacecraft #2.

The numerical efficiencies of the simulation codes generated by AUTOSIM and

SYMBA are compared in Table 9.5.2.

217

Table 9.5.2. Performance comparisons for Spacecraft #2.

9.6. The “Stanford Arm” Manipulator

The Stanford Arm is a robot with six degrees of freedom that is of interest here because

it has been used to benchmark various methods for forming equations of motion. In

contrast to most vehicle systems, the topology is a “chain,” in which each body except one

has one and only one child. It is included here to compare the efficiency of the methods

developed in this dissertation with formulations for manipulators that have been published.

L1
A*

Ao, Bo

B*

1

2

Eo, Fo

E*

D*

F*

L2

L5

L6

L4

Co, C*, Do

3

L3

1

2

4

5

6

q

q

q

q
q

q

Figure 9.6.1. Sketch of “Stanford Arm” points, dimensions, and

coordinates.

Source adds and

subtracts

multiplies, divides,

and function calls

SYMBA [83] 514 760

AUTOSIM 338 455

218

Model Description

The robot is composed of six rigid bodies labeled simply bodies A,B,C,D,E, and F for

the AUTOSIM input. The geometry is sketched in Figure 9.6.1. Bodies A, B, D, E, and

F each have a single rotational degree of freedom shown in the figure. Body C has a single

translational degree of freedom. The generalized coordinates introduced by AUTOSIM,

q1, ... q6, are also shown in the figure. Each joint has an associated servo-motor. The

torques produced for the five rotational degrees of freedom are designated τ1, ... τ5 and the

force produced for the translational degree of freedom is designated σ. Controller torques

and forces have been defined as follows [57]:

τ1 = –[k1 (q1 - q1*) + k2 q1] (9.6.1)

τ2 = –
 k3 q2 – q2

* + k4q2

+ g
mCq3 + mD q3 + L5 + mE + mF q3 + L2 s2

+ mEL6 + mFL3 c5s2 + c4s5c2 (9.6.2)

τ3 = –[k5 (q4 - q4*) + k6 q4 – g(mEL6 + mFL3)s2 s4 s5] (9.6.3)

τ4 = –[k7 (q5 - q5*) + k8 q5 + g(mEL6 + mFL3) (c2s5 + s2c4c5)] (9.6.4)

τ5 = –[k9 (q6 - q6*) + k10 q6] (9.6.5)

σ = –[k11 (q3 - q3*) + k12 q3 – g(mC + mD + mE + mF) c2] (9.6.5)

where c2, c4, c5, s2, s4, and s5 represent cosine and sine functions of the generalized

coordinates q2, q4, and q5; k1, ... k12 are feedback controller gains; and q1*, ... q6* are

the desired final values of the coordinates.

The initial conditions are that all speeds are zero, five of the generalized coordinates are

zero, and q2 = π/2. The final values for the rotational coordinates are q1* = q2* = q4* =

q5* = q6* = π/3, and the final value for q3 is 0.1 m. Values of the simulation parameters

are taken from [57], and are shown in Table 9.6.1 for the names appearing in the

AUTOSIM input. (Note that the dimension L4 is not in the table, because it does not

appear in the equations of motion. Also, moments of inertia A1 and A2 do not appear.)

The target rotations are designated AROT, BROT, DROT, EROT, and FROT, while the

target displacement is CDISP.

219

Table 9.6.1. Parameters and values for Stanford Arm.
A2 0.200000E-01 moment of inertia of A (kg-m2)
AROT 1.04720 target rotation of A (rad)
B1 0.600000E-01 moment of inertia of B (kg-m2)
B2 0.100000E-01 moment of inertia of B (kg-m2)
B3 0.500000E-01 moment of inertia of B (kg-m2)
BROT 1.04720 target rotation of B (rad)
C1 .400000 moment of inertia of C (kg-m2)
C2 0.100000E-01 moment of inertia of C (kg-m2)
C3 .400000 moment of inertia of C (kg-m2)
CDISP .100000 target displacement of C (m)
D1 0.500000E-03 moment of inertia of D (kg-m2)
D2 0.100000E-02 moment of inertia of D (kg-m2)
D3 0.100000E-02 moment of inertia of D (kg-m2)
DROT 1.04720 target rotation of D (rad)
E1 0.500000E-03 moment of inertia of E (kg-m2)
E2 0.200000E-03 moment of inertia of E (kg-m2)
E3 0.500000E-03 moment of inertia of E (kg-m2)
EROT 1.04720 target rotation of E (rad)
F1 0.100000E-02 moment of inertia of F (kg-m2)
F2 0.200000E-02 moment of inertia of F (kg-m2)
F3 0.300000E-02 moment of inertia of F (kg-m2)
FROT 1.04720 target rotation of F (rad)
K1 3.00000 stiffness coefficient (N-m)
K2 5.00000 damping coefficient (N-m-s)
K3 1.00000 stiffness coefficient (N-m)
K4 3.00000 damping coefficient (N-m-s)
K5 .300000 stiffness coefficient (N-m)
K6 .600000 damping coefficient (N-m-s)
K7 .300000 stiffness coefficient (N-m)
K8 .600000 damping coefficient (N-m-s)
K9 .250000 stiffness coefficient (N-m)
K10 .250000 damping coefficient (N-m-s)
K11 30.0000 stiffness coefficient (N/m)
K12 41.0000 damping coefficient (N-s/m)
L1 .100000 coordinate of center of mass of B in dir 1 (m)
L2 .600000 coord. of attachment pt. for E in dir 2 (m)
L3 .200000 coordinate of center of mass of F in dir 2 (m)
L5 .700000 coordinate of center of mass of D in dir 2 (m)
L6 0.600000E-01 coordinate of center of mass of E in dir 2 (m)
MA 9.00000 mass of A (kg)
MB 6.00000 mass of B (kg)
MC 4.00000 mass of C (kg)
MD 1.00000 mass of D (kg)
ME .600000 mass of E (kg)
MF .500000 mass of F (kg)
STOPT 10.0000 simulation stop time (sec)

AUTOSIM Description

The description to AUTOSIM for the uncontolled system is shown in the listing of

Figure 9.6.2. Note that the direction for the gravitational field is changed from the default

([n3]) to –[n2] for compatibility with the coordinate systems shown in Figure 9.6.1.

220

(add-body a :body-rotation-axes 2 :mass ma
 :inertia-matrix #(a1 a2 a3) :cm-coordinates #(0 !"-L4" 0))

(add-body b :parent a :body-rotation-axes 1 :mass mb
 :inertia-matrix #(b1 b2 b3) :cm-coordinates #(L1 0 0))

(add-body c :parent b :inertia-matrix #(c1 c2 c3) :mass mc
 :translate 2 :joint-coordinates #(L1 0 0))

(add-body d :parent c :body-rotation-axes 2 :mass md
 :inertia-matrix #(d1 d2 d3) :cm-coordinates #(0 L5 0))

(add-body e :parent d :body-rotation-axes 1 :mass me
 :inertia-matrix #(e1 e2 e3)
 :joint-coordinates #(0 L2 0) :cm-coordinates #(0 L6 0))

(add-body f :parent e :body-rotation-axes 2 :mass mf
 :inertia-matrix #(f1 f2 f3) :cm-coordinates #(0 L3 0))

(add-gravity :direction !"-[n2]")

Figure 9.6.2. Description of uncontrolled Stanford Arm.

The controller torques and force (from eqs. 9.6.1 through 9.6.6) are described with the

inputs shown in Figure 9.6.3. The controller rules from eqs. 9.6.1 through 9.6.6 are

entered directly as expressions for the :magnitude argument of the add-moment and

add-line-force macros.

Results

The time history plots obtained by the simulation code are shown in Figure 9.6.4 and

agree with results published earlier [57].

The efficiency of the simulation code generated by AUTOSIM is compared with other

formulations in Table 9.6.2. The operation counts in this table have been published from a

variety of sources, and were summarized by Neilen and Kane previously. In their

summaries, the computation needed to uncouple the dynamical equations was not included

and therefore more operations are shown here: 65 adds and 86 multiply/divides. (A small

savings is obtained here, as the symbolic solution involves only 74 multiplications).

Because none of the other counts include the controller equations (eqs. 9.6.1 through

9.6.6), the AUTOSIM results are for the uncontrolled system. (The additional arithmetic

operations generated by AUTOSIM when the control equations are included are: 28

add/subtracts and 25 multiply/divides. These are fewer than appear in eqs. 9.6.1 through

221

9.6.6, due to the use of intermediate expressions that arise elsewhere in the equations of

motion.)
(add-moment tau1 :name "torque applied to A"
 :direction [n2] :body1 a
 :magnitude !"-K1*(Q(1) - AROT) - K2*QP(1)")

(add-moment tau2 :name "torque applied to B"
 :direction [a1] :body1 b :body2 a
 :magnitude
 !"-(K3*(Q(2) - BROT) + K4*QP(2) + GEES*
 (((MC+MD)*Q(3) + MD*L5)*SIN(Q(2))
 + (ME*L6 + MF*L3)
 *(COS(Q(5))*SIN(Q(2)) + COS(Q(4))*SIN(Q(5))*COS(Q(2)))
 + (ME + MF)*(Q(3) + L2)*SIN(Q(2))))")

(add-moment tau3 :name "torque applied to D"
 :direction [d2] :body1 d :body2 c
 :magnitude
 !"-(K5*(Q(4)-DROT) + K6*QP(4)
 - GEES*(ME*L6 + MF*L3)*SIN(Q(2))*SIN(Q(4))*SIN(Q(5)))")

(add-moment tau4 :name "torque applied to E"
 :direction [e1] :body1 e :body2 d
 :magnitude
 !"-(K7*(Q(5) - EROT) + K8*QP(5) + GEES*(ME*L6 + MF*L3)
 *(COS(Q(2))*SIN(Q(5)) + SIN(Q(2))*COS(Q(4))*COS(Q(5))))")

(add-moment tau5 :name "torque applied to F"
 :direction [f2] :body1 f :body2 e
 :magnitude !"-(K9*(Q(6) - FROT) + K10*QP(6))")

(add-line-force sigma :name "force applied to C"
 :direction [c2] :point1 c0 :point2 b0
 :magnitude
 !"-(K11*(Q(3) - CDISP) + K12*QP(3)
 - GEES*(MC+MD+ME+MF)*COS(Q(2)))")

Figure 9.6.3. Description of control torques and force for Stanford Arm.

In viewing Table 9.6.1, keep in mind that all but one of the formulations are based on

Kane’s equations. The formulation obtained by AUTOSIM is the most efficient known,

being almost twice as efficient as the first formulation of this sort, obtained manually by

Kane and Levinson [57].

The equations of motion produced by AUTOSIM are included in Appendix E.

222

0 5 10
0

.2

.4

.6

.8

1

1.2
Rot. of A rel. to N, axis #2 - rad

0 5 10
1

1.1

1.2

1.3

1.4

1.5

1.6
Rot. of B rel. to A, axis #1 - rad

0 5 10
Time - sec

0

2x10 -2

4x10 -2

6x10 -2

8x10 -2

.1
Trans. of C0 rel. to BCM, dir=[b2] - m

0 5 10
0

.2

.4

.6

.8

1

1.2
Rot. of D rel. to C, axis #2 - rad

0 5 10
0

.2

.4

.6

.8

1

1.2
Rot. of E rel. to D, axis #1 - rad

0 5 10
Time - sec

0

.2

.4

.6

.8

1

1.2
Rot. of F rel. to E, axis #2 - rad

Figure 9.6.4. Time history plots of generalized coordinates.

Table 9.6.1. Performance comparisons between four simulation codes.

223

Formulation for uncontrolled system* adds and

subtracts

multiplies

and divides

Symbolic using Macsyma (Hussain and Noble) [44] 1902 5406

Numerical Newton-Euler (Walker and Orin) [124] 1255 1627

Symbolic using Macsyma (Kane and Nielan) [82] 521 858

Symbolic, by hand (Kane and Levinson) [57] 459 732

SD/EXACT (Rosenthal and Sherman) [83] 465 718

SD/FAST (Rosenthal and Sherman) [99] 390 576

Symbolic, by hand (Wampler) [125] 318 448

SYMBA (Nielan) [83] 268 384

AUTOSIM 240 353

* for AUTOSIM, the control equations add 28 add/subtracts and 25 multiply/divides.

The control equations also add to the other formulations, but the amount is not known.

224

10. SUMMARY AND CONCLUSIONS

This chapter summarizes the preceding material and then presents conclusions.

Possible directions for continuing the research are noted.

10.1 Summary

Simulation codes for ground vehicles and other multibody systems assembled from

rigid bodies, joints, and massless force- and moment-producing components have

previously been programmed by hand for specific systems. Also, general-purpose

programs have been developed to simulate classes of multibody systems. In the latter

approach, the equations of motion are developed for each system according to a multibody

formalism. The multibody formalisms used to automatically formulate equations, whether

numerically or symbolically, have not been representative of how human analysts formulate

the equations. They have represented analysis strategies that can be programmed easily,

whereas the human analyst usually applies modeling and engineering knowledge to

simplify the work. Simulation codes for ground vehicles that are developed by hand can

run orders of magnitude faster than popular general-purpose codes simulating the same

model. Hence, for applications in which computation time is critical, such as real-time

hardware-in-the-loop simulations, or simulations run on desktop computers, simulations

are coded by hand because there is no alternative.

In this dissertation, a multibody formalism was developed that includes methods and

concepts employed by human analysts. The formalism is built on Kane’s method (written

for students of dynamics), and then extended with specific tactics for (1) choosing state

variables, (2) defining appropriate forms of vector representations, (3) grouping rigid

bodies together and choosing coordinate systems so as to simplify expressions that later

arise, and (4) obtaining equations of motion for numerical solution. This formalism is made

possible by developing a new computer language called AUTOSIM to represent a

multibody system and the vector and dyadic expressions involved in its description.

Computer data objects are defined in Chapter 5 for representing (1) symbolic algebraic

expressions for vector/dyadic analyses, (2) physical components in a multibody system,

225

and (3) program structures needed in a simulation code. With these representations, the

multibody formalism is programmed almost exactly as it is presented in Chapter 8.

AUTOSIM is capable of automatically producing equations of motion in symbolic form

for multibody systems that cannot be represented with most symbolic multibody analysis

methods. The analyst using AUTOSIM can handle systems with arbitrarily oriented forces

and moments, nonholonomic constraints, and closed kinematical loops. The forces,

moments, and output variables can involve external subroutines linked to experimental

measurements, unconventional models, interfaces with hardware in the loop, etc.

Constraints are described using high-level representations that relieve the analyst of the task

of manually forming constraint equations or obtaining matrix coefficients.

Closed kinematical loops are handled by a blend of analytical and computational

methods. Constraint equations that are too complicated to yield closed-form analytical

solutions are used to create recursive numerical procedures that compute certain dependent

variables called “computed coordinates.”

The equations formed by AUTOSIM are simplified when possible to remove terms that

are negligible when one or more variables or parameters are known to be “small.”

Parameters and constants are handled symbolically, and are factored out of the equations

when possible so that they can be “precomputed.” As a result, the equations have the same

efficiency as would be obtained if numerical values were specified for all parameters (if the

numerical values are not zero or one). However, since the parameters are represented by

symbols, the same simulation code can be used for any set of valid parameter values.

Six example multibody systems were analyzed. The first three examples could not

have been analyzed symbolically with the automation level demonstrated here using

previously available methods. The other three examples were systems that have been

analyzed with other symbolic multibody computer codes. In the three latter cases, the

equations derived by AUTOSIM were more efficient than the most efficient formulation

previously published by amounts ranging from 6% (the robot manipulator) to a factor of 2

(the spacecraft in Section 9.4).

10.2 Conclusions

The above results lead to the following conclusions:

1. Kane’s method of analyzing dynamic systems of constrained rigid bodies is easily

extended to a form required for computer solution.

226

2. Methods and concepts used by human analysts can be programmed into a

multibody formalism.

3. The derivation of constraint equations and the coefficients needed to form the

dynamical equations of a constrained system can be automated.

4. Advances in computer software and hardware permit the above methods to be

programmed on desktop computers. This diminishes the need for multibody

formalisms designed to fit within the limits of traditional computer languages at the

expense of versatility and efficiency.

5. Extremely high efficiency in simulation codes is obtained when the above methods

are applied.

6. Regarding the attention to the three areas of (1) the rigid-body dynamics formalism,

(2) the algebraic manipulation methods, and (3) the generation of numerical

computation code: the general strategy of spreading the analysis methods over

these areas permits the use of relatively simple methods within each area.

7. A symbolic analysis method that closely parallels the approach taken by a human

analyst may be easier to use than other types of analysis languages, because the

automated part of the analysis begins from a description of the problem in terms that

are most familiar to the analyst.

Several limitations of the symbolic analysis approach should also be mentioned. First,

there is an underlying assumption that for a given system, the correct equations of motion

can be derived for once and for all. With some models the system gains or loses degrees of

freedom. For example, a man walking has fewer degrees of freedom when both feet are on

the ground than when one or two feet are in the air. For some mechanisms, a set of

equations obtained to best describe motions about a nominal configuration becomes

singular for other configurations. In these cases, generalized numerical codes that change

equations “on the fly” may be preferable.

Symbolic analysis methods have had a reputation for being unsuitable for large

systems. When using general-purpose computer algebra languages (e.g., Macsyma,

Reduce), this is indeed a serious limitation because the languages maintain complete

expressions that grow rapidly unless the analyst makes an effort to break up the analysis

into segments. With symbolic analyses programmed especially for multibody systems

(e.g., AUTOSIM, SD/FAST) this is much less of a problem because expressions are kept

227

to a manageable size as the analysis proceeds. (In AUTOSIM this is done through the

introduction of intermediate variables. In other codes it is done by printing equations as

they are derived, and immediately recovering the computer memory that they occupied.)

Also, with the widespread use of virtual memory on workstations, memory requirements

of several hundred megabytes can be accommodated if necessary. (As a point of reference,

the examples in Chapter nine were all performed with a memory limit of 3 MB, and took

one to ten minutes of computation time on an Apple Macintosh.)

Although much larger systems can be analyzed symbolically with programs such as

AUTOSIM than was possible ten years ago, the performance of AUTOSIM has not yet

been investigated for systems that involve more than seven thousand arithmetic operations.

(Note that the limiting factor is not the number of bodies, nor the number of degrees of

freedom. It is the complexity of the equations, measured approximately by the number of

multiply/divide arithmetic operations contained in the equations, that most directly

determines the memory and time needed to analyze a system.)

Equations for some multibody systems can be formulated in a numerical code using

iteration loops, so that all of the equations are not explicitly formed as they are in

AUTOSIM. (For example, a pure chain topology.) For these systems, the explicit

formulation developed according to the methods presented in this dissertation might be too

lengthy to be derived in a reasonable time.

Since 1980, there have been a number of dynamics formalisms developed for chain

topologies that yield explicit equations of motion without forming a mass matrix. As the

number of bodies in the chain becomes large, the computation needed to obtain the

derivatives of the state variables grows in proportion to the number of links. Hence, these

algorithms are called “Order(n) formulations.” For chains of length six and less, these

formulations typically require more computation than methods leading to implicit equations

(such as presented here). However, for large systems, the decomposition of the mass

matrix requires an ever greater effort, that grows in proportion to n3. Therefore, the

method presented here is probably not the most efficient when dealing with long chains of

bodies.

228

10.3 Further Research Opportunities

There are many possibilities for extending the methods developed in this work to other

forms of analysis. Two general areas of application are in (1) analytical methods, and (2)

numerical methods. In the area of analytical methods, virtually any analysis involving

moving reference frames can be programmed directly using the algebra functions defined in

Chapter 5. Although this work was limited to the development of efficient simulation

codes, the computer algebra methods can be applied to such applications as:

1. Equations for the inverse dynamic problem. (That is, forces and torques in a

multibody system are computed as needed to cause known movements.)

2. Symbolic solution of nonlinear statics problems. A Jacobian matrix is formed to

solve for forces and torques and equilibrium position, given known values of

independent coordinates.

3. Derivation of matrices needed as inputs for other software (e.g., mass, stiffness,

and damping matrices for the linearized equations of motion are inputs for popular

controller design software).

4. Analysis of constrained systems to define alternative formulations and code for

switching between the formulations to avoid singularities.

Applications involving numerical analysis include the following:

1. The simulation codes generated by AUTOSIM can be produced in languages other

than Fortran, such as simulation languages (ACSL, ADSIM, etc.) or other

programming languages (C, Pascal, Lisp, etc.).

2. The output code can be tailored for a particular computer architecture. For example,

the method used to remove unused code (described in Section 5.3) can be modified

slightly to isolate sections of code that can be computed independently of each

other, in support of parallel processors.

3. The equations can be tailored to novel numerical integration methods. The most

critical parameter in determining simulation efficiency is the step size of the

numerical integration. Methods that allow larger time steps to be used for the

equations of motion, or even portions of the equations, provide a great potential for

improving computation speed. Combinations of analytical and computational

methods, such as the one used for updating “computed coordinates” in this work,

229

offer great promise for using symbolically generated numerical algorithms to

improve the accuracy and efficiency of the equations.

4. “Interface software” needed to link related analyses can be written automatically.

One possibility is to generate subroutines to link with finite element codes to

combine rigid-body motions with deformations of flexible bodies. Another

possibility is the handling of systems that change degrees of freedom, but which

have a small number of possible combinations (e.g., a walking man). Equations

could be formulated for each configuration, and the appropriate equations set would

be selected “on the fly” during the simulation. A subroutine would be needed to

map the values of the state variables for one equation set onto a proper set of initial

conditions for another set of equations.

230

APPENDICES

231

APPENDIX A — AUTOSIM REFERENCE

The AUTOSIM software runs under Common Lisp. The user interface is that of the

Lisp system on which AUTOSIM is installed, and all AUTOSIM commands are Lisp

forms. Lisp syntax is detailed fully in many introductory textbooks, and usually in the

reference material provided with the Lisp software. However, is not necessary to be fluent

in Lisp to use AUTOSIM. The syntax of Lisp is so simple that the basics should be fairly

apparent from the examples in Chapter 9. Additionally, selected reference information

about the the Lisp environment is presented in this appendix for the reader who is

unfamiliar with Lisp and desires “just enough” information to fully understand the

examples in Chapter 9. The summary of Lisp is followed by descriptions of the

AUTOSIM functions and macros used to describe and analyze a multibody system.

A.1. Brief Summary of Lisp Syntax and Data Types

Working in a Lisp environment is very simple: the analyst types in a “Lisp object” and

the machine prints the value of that object. Lisp objects used in AUTOSIM are the

following:

• number — numbers are entered and printed as might be expected. Although Lisp

has separate representations for different types of numbers (floating point, integer,

ratio, etc.) it is not necessary that the analyst using AUTOSIM be concerned with

this.

• symbol — a symbol is a fundamental data object in Lisp that has a name and

possibly a value. It is described in more detail below.

• list — a list is a sequence of zero or more objects enclosed by parentheses and

separated by spaces. Many forms of data are well represented by lists, such as the

terms in a sum, the factors in a product, etc. A list by itself is treated as a “Lisp

form” and is “evaluated,” as described below.

• string — a string is a sequence of alphanumeric characters enclosed with double

quote characters, e.g., "This is a string".

232

• 1-D array — a sequence of zero or more objects that are normally referenced with

an index. An array is enclosed by parentheses and preceded by a ‘#’ character,

e.g., #(1 2 3). Superficially, a 1-D array appears similar to a list, but it is not

represented the same internally on the computer. It is not essential here to

understand how and why arrays and lists differ, only that they are not always

interchangeable.

• 2-D matrix — a matrix is written as a list of lists, preceded by “#2a” (without the

quotes) to indicate that the data are in a matrix of rank 2. For example, the inertia

matrix for the example in section 9.1 is written “#2a((Ixx 0 Ixz) (0 Iyy

0) (Ixz 0 Izzr)).”

• Comments — anything following a semi-colon character is ignored by Lisp.

• F-strings — a string preceded by an exclamation mark is parsed to obtain an

algebraic expression, e.g., !"dot([n1], vel(b))". This is not a part of

Lisp, but is an addition made by AUTOSIM. F-strings are described in more detail

in the next subsection.

Lisp Symbols

The symbol is a basic element in Lisp. A symbol has a printed representation, which

usually has the appearance of a word written in capital letters. Some examples are: RESET,

M2, T, NIL, ADD-BODY, and B*. Symbol names may include numbers and many non-

alphabetic characters, such as ‘*’ and ‘-’. Names read as input are automatically converted

to capital letters, and therefore most alphabet characters in symbol names are upper-case,

regardless of how they appear as input.

A symbol may also have an associated value. In fact, the Lisp symbol is a data

structure with several forms of associated data beyond a print name and a value. However,

in AUTOSIM, symbols are used by the analyst mostly for their printed representation or

for functions that the symbols represent. The value of a Lisp symbol is viewed by typing

the name of the symbol. A new value is assigned using the setf macro, as described

later.

Two reserved symbols widely used in Lisp are T and NIL. NIL means empty or false

(depending on context). An empty list (e.g., “()”) is represented as NIL. All conditional

forms (IF-THEN, etc.) base the decision on whether a Boolian form is NIL or not NIL.

The symbol T is commonly used to indicate unconditionally not NIL (i.e., True).

233

Lists and Lisp Forms

Most of the inputs from the analyst using AUTOSIM are Lisp forms , entered as lists.

Each form begins and ends with a parenthesis, and includes at least one element. For

example, the form used to reset the AUTOSIM environment is

(reset)

The above form is a list with one item, namely, the symbol reset. In general, items in a

list are separated by one or more spaces, tabs, or newline characters. The following two

lists are equivalent:

; Version 1 (note the use of “;” to insert comments)

(add-body b :name "new body" :joint-coordinates #(L 0 0)
:cm-coordinates #(R1 0 R2) :inertia-matrix #(ixx iyy izz))

; Version 2

(add-body b
 :name "new body"
 :joint-coordinates #(L 0 0)
 :cm-coordinates #(R1 0 R2)
 :inertia-matrix #(ixx iyy izz))

The second version, entered with multiple lines and spaces for readability, is interpreted

exactly the same as the first version.

If a list is entered directly into the system, it is “evaluated” and the result of the

evaluation is then printed. For example, if one types (add 3 4), the following display

would be seen.1

? (add 3 4)
7
?

The forms used in AUTOSIM are technically classified in Lisp as either functions or

macros. They have three types of items in the list: (1) the name of the function or macro

(e.g., reset, add-body, add), (2) zero or more required arguments, and (3) zero or

more pairs of optional keyword arguments. The pairs of keyword arguments consist of a

keyword and an argument. Keywords always begin with the colon character, as in the

above example. In the example (add-body), there is one required argument, (the symbol

1 Allegro CL, the Lisp package sold by Apple computer, shows user entries in boldface and the

machine responses in plain type. The question mark is a prompt issued by Allegro to indicate it is ready
for the next input. Examples in this dissertation follow the same convention.

234

b), and four optional keyword arguments. The keywords are :name, :joint-

coordinates, :cm-coordinates, and :inertia-matrix. Keyword

arguments are always optional, and can appear in any order after the mandatory arguments.

If a keyword argument is not provided, then the argument associated with that keyword

defaults to a value specified in the Lisp program. Numerous examples of keyword

arguments appear in Chapter 9.

Assigning Values to Lisp Symbols with SETF

The language Common Lisp includes hundreds of predefined functions, macros, and

“special forms.” Only one of these forms appears in the examples in Chapter 9. This is the

macro setf, used to modify Lisp data. With AUTOSIM, it is mainly used to assign

values to Lisp symbols. In Fortran, assignment is performed with the ‘=’ symbol. A

symbolic equivalent of the Fortran statement

X = A + B

is performed with the Lisp form

(setf x !"a + b")

Later, if the expression (A + B) is required, the Lisp symbol X can be used if we

specify that the value of x [the expression (A + B)] is of interest and not the name (the

symbol X). (To specify this in an F-string, the name of the symbol is preceeded with the

‘#’ character. See Figure 9.1.4 for an example.)

AUTOSIM maintains about a hundred global Lisp variables. Most of these must not be

changed by the analyst. One however, is intended to be set by the analyst. It is the symbol

multibody-system-name. This symbol can be assigned to a string that gives a

descriptive name for the multibody system. That name is used to generate some of the

documentation for the Fortran simulation code generated by AUTOSIM. Also, it appear on

the screen when the simulation code is run by the end user.

235

Table A.2.1. Mathematical functions that can be used in F-strings.

F-String Lisp Argument(s) Description

– neg x –x

– sub x, y x – y

* mul x, y x y (either x or y must be a scalar)

** power x, y xy (x is scalar, y is a number)

+ add x, y x + y

/ div x, y x / y (y is scalar)

N/A symbol use value of Lisp symbol named symbol

atan make-atan x y = tan–1 x (–π/2 ≤ y ≤ +π/2)

atan2 make-atan s1, s2 y = tan–1 (s1 / s2) (–π ≤ y ≤ +π)

cos make-cos x cos x (x is scalar)

func make-func fname,

{arg}*

arbitrary Fortran function:

nominal nominal x expression when all variables are zero

sin make-sin x sin x (x is scalar)

angle angle v1, v2, {v3} angle between two vectors, sign determined

by optional third vector (right-handed rule)

cross cross v1, v2 v1 × v2

dir dir v v v

dot dot v1, v2 v1 • v2

dplane dot-plane v1, v2 project vector onto plane

dxdt dxdt x x

mag mag v v

partial partial y, x ∂y ∂x
(x is scalar)

pos pos* p1, {p2} position vector connecting two points

(default for p2 is the fixed origin)

rot rot* B absolute rotational velocity of body B

vel vel* p1, {p2} difference between absolute velocities of 2

points (default for p2 is the fixed origin)

NOTE: arguments enclosed with braces {} are optional. Those followed with a ‘*’ are

repeated zero or more times.

236

A.2 AUTOSIM Algebraic Expressions

In Chapter 5, a number of Lisp functions were defined to perform algebraic operations.

Algebraic expressions containing these operations are printed in Fortran syntax, e.g.,

3.0*A*B**2/SIN(Q(3)). The Lisp functions are used to automate all operations that

are performed in a formal procedure. In addition to predefined analyses, these functions

are also needed by the analyst to describe forces, moments, output variables, and constraint

equations. To simplify their use by the analyst, AUTOSIM includes a parser that reads a

Fortran-style expression and converts it to a Lisp equivalent. The parser is invoked by

putting the expression in a string, and preceding the string with an exclamation mark.

Expressions entered in this way are called F-strings. Examples of F-strings appear

frequently in the examples of Chapter 9.

Briefly, the parser reads a string in two steps. It first removes any spaces and linefeeds

from the string and converts all of the text to upper-case. Then, through a sequence of

“find and replace” operations, it replaces known functions with Lisp equivalents.

Arithmetic operators (+, –, /, *, **) are also replaced. Table A.2.1 summarizes the

functions recognized by the parser.

Normally, any symbols that appear in an F-string are assumed to represent parameters

or variables in the multibody system. However, it is sometimes convenient to assign an

expression to a Lisp symbol via the setf macro, and then include that expression in an F-

string. To do this, the name of the Lisp symbol should be preceded with the character ‘#’

(without the quotes). Examples of this are seen in Section 9.1.

A.3 AUTOSIM Functions and Macros

The basic procedure for analyzing a system is as follows:

1. Invoke the function reset to initialize AUTOSIM and clear any old data.

2. Describe the multibody system. Include all of the bodies, additional points of

interest, constraint equations, forces, moments, and external subroutines.

3. Define all output variables of interest.

4. Invoke the function dynamics to derive efficient equations for computing state

variables and output variables.

237

5. (this step is optional.) Check the descriptions of the input parameters identified by

AUTOSIM. Set names and units in the paramater definitions (replacing names and

units chosen automatically) if the existing descriptions are not clear enough.

6. Generate the Fortran simulation code by invoking the function write-sim.

The analysis functions are listed in Table A.3.1. The macros and functions used to

describe the multibody system and the output variables are described below.

Table A.3.1. AUTOSIM functions for analyzing the multibody system.

Lisp Function Action

reset clear all AUTOSIM data to start new analysis

dynamics analyze system to derive equations of motion

write-sim write simulation code in the Fortran language

Describing the Multibody System

Table A.3.2 lists the macros used to build a description of the multibody system. The

order in which these macros are entered as inputs by the analyst is not critical, other than

the obvious restriction that it is not possible to reference an object until it has been entered.

For example, if body B is entered with body A listed as the parent, it is necessary to add

body A before adding body B. The macros in the table are described in more detail below.

add-body symbol

This macro creates a body object and sets most of its slots. The conventions for

representing system topology and joint kinematics that were presented in Chapter 8 are put

into use with this macro. In addition to creating the body object, this macro creates uvs as

needed for the coordinate system of the new body, a number of sym objects for mass and

inertia parameters, and three point objects representing (1) the origin of the new

coordinate system, (2) the joint position (fixed in the coordinate system of the parent), and

(3) the the center of mass. The macro has one required argument, symbol, which is a

unique symbol used to identify the body, e.g., B. The keyword arguments are defined

below:

238

Table A.3.2. AUTOSIM macros for describing a multibody system.

Lisp form Arguments

Required Optional Keywords

add-body symbol :parent :coordinate-system

:name :mass :inertia-

matrix :joint-coordinates

:cm-coordinates :translate

:parent-rotation-axis

:body-rotation-axes

:reference-axis

:small-angles

:small-translations

add-constraint expression :variable

add-gravity :direction :gees

add-line-force symbol :name :direction

:magnitude :no-forcem

:point1 :point2 :x :x0 :v

add-moment symbol :name :direction

:magnitude :body1 :body2

:no-forcem

add-point symbol :name :body :coordinates

:coordinate-system

add-strut symbol :magnitude :point1 :point2

:no-forcem :x :x0 :v :name

add-subroutine where name {symbol}*

add-variables where type {symbol}*

large {symbol}*

no-movement point1 point2 direction :confirm

set-defaults {symbol number}*

set-name {symbol name}*

set-units {symbol units}*

small {symbol}*

NOTE: arguments enclosed with braces {}* are repeated zero or more times.

239

parent — the parent body. The default is N.

mass — an expression for the mass of the new body. If this argument is not provided, a

symbol is created by appending the letter M to symbol . (e.g., BM)

name — a string that describes the body. (e.g., "left-front wheel") If the

argument is not provided, symbol is used as the name.

inertia-matrix — the inertia matrix of the body, with respect to the local coordinate

system. Three forms of input are allowed: (1) a 3 × 3 matrix, containing all of the

terms; (2) a three-element array, containing the moments of inertia (the products are

set to zero); and (3) zero (all moments and products are set to zero). If this

argument is not provided, a full 3 × 3 matrix is used. AUTOSIM generates

symbols by appending the letter I and two digits to symbol, e.g., BI11, BI12,

BI22, BI13, BI23, and BI33.

coordinate-system — the body whose coordinate system is used to specify point

locations and movement directions. The default is the parent body for all

coordinates except the center of mass. The default for the center of mass is the

coordinate system of the new body.

joint-coordinates — a 3-element array containing the coordinates of the joint, using the

specified coordinate system. In Figure 8.1.1, the vector defined by these

coordinates is designated rA0Bj. The default is #(0 0 0).

cm-coordinates — a 3-element array containing the coordinates of the center of mass,

using the specified coordinate system. In Figure 8.1.1, the vector defined by these

coordinates is designated rB0B*. The default is #(0 0 0).

translate — a list of consecutive translations allowed by the joint. Translations are

allowed in any direction, with the direction(s) fixed in the parent body. This

argument is normally a list. The length of the list provides the number of

translational generalized coordinates for the body. Each item on the list must be

either (1) a number specifying an axis parallel to the direction of translation, or (2) a

3-element array giving the coordinates of the translational direction. Directions are

defined in the specified coordinate system. The joint shown in Figure 8.1.1 has a

single translational degree of freedom in the direction rT
B. Assuming this direction

is not aligned with an axis in the parent, an array of 3 coordinates would be used to

describe the direction.

240

When there is one translational generalized coordinate, it can be provided in lieu of

a list with one element. The default is NIL (a joint with no translational degrees of

freedom).

parent-rotation-axis — the direction of the first rotation (if the joint has one or three

rotational degrees of freedom) in the specified coordinate system. In the figure, this

direction is designated rrot
B . The direction is described either by (1) a 3-element

array containing its coordinates, or (2) the number of an axis parallel to the rotation.

The default is that the parent-rotation-axis is the same as the first element of the

body-rotation-axes list. If neither the parent-rotation-axis nor the body-rotation-

axes arguments are provided, the joint has no rotational degrees of freedom.

body-rotation-axes — a list of consecutive rotation axes in the new body. The axes of

the coordinate system of the new body are defined by this argument. The number

of rotations is obtained from the length of this list (0, 1, or 3). Each element of the

list must be an axis number (1, 2, or 3) indicating about which axis the rotation

occurs. If the joint has one degree of freedom, a single number is valid as a value.

(It need not be enclosed in parentheses.) If this argument is not provided and the

parent-rotation-axis is also not provided, then the joint has no rotational degrees of

freedom. If the body-rotation-axes list is not provided and the parent-rotation-axis

is provided, then the body-rotation-axes list is set to a single rotation about an axis

included in direction of parent-rotation-axis. (Unless the parent-rotation-axis is an

axis number, the analyst should not depend on the default body-rotation-axes being

set as intended.)

reference-axis — the coordinates (or axis number) of the reference axis, in the

coordinate system of the parent. The reference axis determines the orientation of

the new body relative to the parent in the nominal state. (The nominal state exists

when all generalized coordinates are zero.) In Figure 8.1.1, this direction is

designated rref
B . The default is determined by the right-handed convention from the

parent-rotation-axis.

small-angles — a list whose length matches the number of rotational degrees of

freedom, and which identifies the rotation angles as “small” or “not small.” If this

argument is provided, it must have the same length as the list provided for the

argument body-rotation-axes. Small angles are identified as T, large angles are

identified as NIL. If the joint has one rotational degree of freedom, the value can

241

be provided without enclosing it in parentheses. The default is that all generalized

coordinates and speeds introduced for rotation in this body are not small.

small-translations — a list whose length matches the number of translational degrees of

freedom, and which identifies the translational displacements as “small” or “not

small.” If this argument is provided, it must have the same length as the list

provided for the argument translate. Small displacements are identified as T, large

displacements are identified as NIL. If the joint has one translational degree of

freedom, the value can be provided without enclosing it in parentheses. The default

is that all generalized coordinates and speeds introduced for translation of this body

are not small.

add-constraint zero-exp

This function is used to apply a constraint equation. The required argument zero-exp is an

expression that is identically zero when the constraint is satisfied. The optional argument

variable is a state variable (generalized speed or generalized coordinate) that is eliminated by

the constraint. The expression zero-exp is used to “solve-for” variable. If variable is not

provided, then the units of zero-exp are used to determine if the variable to be eliminated

should be a coordinate or a speed. The criteria for selecting the variable to eliminate was

described in Chapter 8.

add-gravity

This macro applies a force to each body at its mass center, in the direction direction, with

magnitude m•gees where m is the mass of the body. The default direction is [N3] and the

default symbol for gees is GEES.

add-line-force symbol

This macro creates a force object that represents a force in the system that passes through

a known point with a known line of action. The required argument, symbol, is a symbol

used to identify the force. The optional arguments are defined below. Note that at least

one of the optional arguments point1 or point2 must be included in order for the force to

actually affect the system. Typically, most of the additional arguments are used.

name — string that describes the force, used by AUTOSIM when creating

documentation and for labeling output variables, e.g., "tire force". The

default is symbol.

242

direction — expression for the direction in which the force acts. The default is [N3].

magnitude — expression for the force magnitude. (E.g., !"–K*(x – x0) –

D*v"). This expression must be scalar. Because springs, dampers, and

controllers involve deflections, dummy variables are provided to simplify the

specification of simple elements. (See descriptions for the keywords x, x0, and

v.) The default is a constant that prints the same as symbol.

point1 — point upon which the force acts. The line of action for the force passes

through this point to affect the body containing point1. The default is the fixed

origin (i.e., the origin of the inertial reference).

point2 — second point. This point serves two functions: (1) the second body influenced

by the force is the body containing point2, and (2) relative deflection and velocity

are define between point1 and a plane perpendicular to direction that contains

point2. The line of action for the force does not necessarily pass through this point.

The default is the fixed origin.

x — a dummy variable for the distance between point1 and a plane perpendicular to

direction that passes through point2. If the expression for magnitude contains this

symbol, the symbol is replaced with an expression for the distance. The default

symbol is X. This need only be changed if the analyst has provided an expression

for magnitude that uses the symbol X to represent an existing parameter or external

variable in the system.

x0 — a dummy variable for the nominal value of x when all generalized coordinates are

zero. This expression is the “static” distance between point1 and the plane

containing point2 that is perpendicular to direction. The default symbol is X0. This

need only be changed if the analyst has provided an expression for magnitude that

uses the symbol X0 to represent an existing parameter or external variable in the

system.

v — a dummy variable for the speed between point1 and point2, in the direction

direction. If the expression for magnitude contains this symbol, the symbol is

replaced with an expression for the speed. The default symbol is V. This need

only be changed if the analyst has provided an expression for magnitude that uses

the symbol V to represent an existing parameter or external variable in the system.

243

no-forcem — AUTOSIM normally introduces a new symbol for each force magnitude

(an element of the Fortran array FORCEM) to make the simulation code easier to

read. To disable this behavior, set no-forcem to any value except NIL (e.g., T).

The default is NIL.

add-moment symbol

This macro creates a moment object that represents the moment of a couple between two

bodies. The required argument, symbol, is a symbol used to identify the moment. The

optional arguments are defined below. Note that at least one of the optional arguments

body1 or body2 must be included in order for the moment to actually affect the system.

name — string that describes the moment. The default is symbol.

direction — expression for the direction or the moment. The default is [N3].

magnitude — expression for the moment magnitude. This expression must be scalar.

The default is a constant that prints the same as symbol.

body1 — symbol for body upon which the moment acts. The default is N.

body2 — symbol for body from which the moment acts. The default is N.

no-forcem — AUTOSIM normally introduces a new symbol for each force magnitude

(an element of the Fortran array FORCEM) to make the simulation code easier to

read. To disable this behavior, set no-forcem T. The default is NIL.

add-point symbol

This macro defines a point on a body for later reference in describing forces, output

variables, or constraint equations. The required argument symbol is used to reference the

point later. The optional arguments are the following:

name — a string that describes the point. The default is symbol.

body — the body/coordinate system in which the point is located. The default is N.

coordinates—a 3-element array containing the coordinates of the point in the specified

coordinate system. The default is #(0 0 0).

coordinate-system — a coordinate system to use for specifying the coordinates of the

point. If coordinate-system is not the same as body, the coordinates are converted

by assuming the system is in its nominal state (all generalized coordinates are zero).

The default is body.

244

add-strut symbol

This macro defines a force that connects two known points. The direction of the force is

derived by AUTOSIM. This macro is similar to add-line-force, and most of the

arguments have the same meanings. The difference is that a force defined with add-

line-force has a known direction and a single point through which the line of action

passes, whereas a force defined with add-strut has an unknown direction that passes

through two known points. Thus, add-strut does not include an argument for the

direction. Also, the argument point2 is more simply defined as the second point upon

which the force acts. The dummy variables x, x0, and v involve displacement and velocity

along the line connecting point1 and point2.

add-subroutine where name {variable}*

This macro is used to specify that an external subroutine should be included in the code

generated by AUTOSIM. name is the name of the subroutine, and the arguments are listed

as zero or more variable arguments. The variables can be any scalar expressions. An

example use of this macro appear in section 9.4.

The argument where specifies where in the simulation code the subroutine is needed. The

valid symbols that can be provided are the following:

difeqn — the subroutine call should be made in the DIFEQN subroutine, to contribute

to the equations of motion. For example, an external tire model might be

implemented as a subroutine that has several input variables and several output

forces and moments that appear in the equations of motion.

echo — the subroutine call should be made in the ECHO subroutine, to print data into

an echo file. For example, if an external tire model is used, a subroutine might be

included to print all of the tire parameters that are hidden from AUTOSIM.

input — the subroutine call should be made in the INPUT subroutine, to parse lines of

input for keywords related to external subroutines.

init — the subroutine call should be made when initializations are performed.

output — the subroutine call should be made in the OUTPUT subroutine, to compute

values needed for one or more output variables.

245

update — the subroutine call should be made once per time step, so that local variables

in the subroutine can be “updated.” This is necessary with many models that

involve hysteresis.

add-variables where type {variable}*

This macro is similar to add-subroutine, and exists mainly to define variables that

appear in external subroutines (added with add-subroutine) that receive values from

the subroutines. The argument where has exactly the same meaning and accepted values as

described above for add-subroutine. The argument type is a Fortran variable type,

such as REAL, INTEGER, CHARACTER*20, REAL*8, etc. The rest of the arguments are

the variables being added.

large {symbol}*

This macro is used to declare that one or more symbols are “large.” This is commonly

applied to large stiffness values that are multiplied with “small” deflections to obtain forces

or moments that are not small. For example, see section 9.4. The macro assigns the

small-order slot of each argument a value of –1.

no-movement point1 point2 direction

This macro adds two constraint equations, one for speed and one for position, that declare

that there is no movement between point1 and point2 in the direction direction. The macro

no-movement works by invoking the add-constraint macro twice. The first time,

it takes the difference in velocity of the two points and dots the result with direction to

obtain a scalar constraint equation. The second time, it takes the difference in position

between the two points and again dots the result with direction to obtain a scalar

expression. It verifies that it can select two variables to eliminate (one speed and one

coordinate) before invoking add-constraint, and will do nothing if it cannot find both

variables. The keyword :confirm can be set to T to allow the analyst a chance to cancel

if he or she does not approve the choice of variables to eliminate. (If the analyst does not

approve of the variable selected by the macro, no action is taken.) The default is NIL.

That is, the macro does not offer the analyst a chance to cancel.

set-defaults {symbol number}*

All parameters in the simulation code generated by AUTOSIM have default values. If the

analyst provides no information, all default values are 1.0. This macro is used to assign

different values. The numerical values assigned here are used in the simulation code only if

246

the end user does not provide values as inputs. That is, all parameters can be modified by

the user, whether or not this macro was used by the analyst.

set-name {symbol name}*

All parameters and variables in the simulation code generated by AUTOSIM have names.

However, the names generated automatically by AUTOSIM may not be as meaningful to

the end user as names that the analyst might have in mind. This macro is used to override

names of parameters and variables that appear in documentation and output files of the

simulation code.

set-units {symbol units}*

All parameters and variables in the simulation code generated by AUTOSIM have units.

However, there is not always enough information to deduce the units of some parameters

and external variables. This macro is used to override units of parameters and variables

that appear in documentation and output files of the simulation code.

small {symbol}*

This macro is used to declare that one or more symbols are “small.” This is commonly

applied to speeds that are small, but which apply to coordinates that are not small. For

example, see section 9.1. The macro assigns the small-order slot of each argument a

value of +1.

Specifying Output Variables

Although most of the material in this dissertation involves the derivation of equations of

motion, the actual purpose of a simulation code is to generate time histories of variables of

interest. Thus, it is essential to specify exactly which variables are of interest and should

be written as output by the simulation code. The macro add-out is used to specify

virtually any output variable that might be of interest. Additionally, a few functions have

been prepared to automatically specify that the simulation code generated by AUTOSIM

include groups of “standard” variables as output variables. These functions are listed in

Table A.3.

247

Table A.3.3. AUTOSIM functions for specifying outputs.

Lisp Function Action

add-accelerations-to-output Add all derivatives of generalized speeds

to the list of output variables.

add-coordinates-to-output Add all generalized coordinates to the list

of output variables.

add-forces-to-output Add all force magnitudes to the list of

output variables.

add-moments-to-output Add all moment magnitudes to the list of

output variables.

add-speeds-to-output Add all generalized speeds to the list of

output variables.

Function Required Optional

add-out expression

short-name

long-name

gen-name

body units

Add one variable to list of outputs.

Specify labels with keyword arguments.

add-out expression short-name

This macro defines a variable that will be computed in the simulation code and written into

an output file. The required argument expression is a scalar expression. The second

required argument short-name is a string with up to 8-characters that describes the variable.

The optional keyword arguments provide additional labeling information. The program

generated by AUTOSIM will put this information into the header of the output file to

facilitate automated post-processing of file generated by the simulation code. The keyword

arguments are defined as follows:

long-name — a string with up to 32 characters that provides a more detailed name for the

variable. The default is short-name.

gen-name — a string with up to 32 characters that provides generic name for the

variable. The default is determined by the units of the variable.

body — the body most closely associated with the variable. The default is N.

units — the units of the variable. The default is the expression for units that is obtained

using the AUTOSIM function get-units.

248

APPENDIX B — PASSENGER CAR HANDLING
MODEL

This appendix contains the complete source code for the passenger car handling model

described in Section 9.1. This version is based on statements that some of the variables are

small.

C Passenger car handling model simulation program.
C Version created December 13, 1989 by AUTOSIM
C
C (c) Mike Sayers and The Regents of The University of Michigan, 1989.
C All rights reserved.
C
C This program simulates the passenger car handling model by
C numerically integrating the 7 ordinary differential equations that
C describe the kinematics and dynamics of the system. The passenger
C car handling model is composed of 2 bodies and has 3 degrees of
C freedom.
C
C Each derivative evaluation requires 34 multiply/divides, 24
C add/subtracts, and 2 function/subroutine calls.
C
C Bodies:
C =======
C Non-rolling body (NRB); parent=N; 3 coords: Q(1) Q(2) Q(3)
C Rolling body (RB); parent=NRB; 1 coord: Q(4)
C
C Generalized Coordinates:
C ========================
C Q(1): Translation of NRB0 relative to the fixed origin along [n1].
C (in)
C Q(2): Translation of NRB0 relative to the fixed origin along [n2].
C (in)
C Q(3): Rotation of the non-rolling body relative to the inertial
C reference about axis #3. (deg)
C Q(4): Rotation of the rolling body relative to the non-rolling
C body about axis #1. (deg)
C
C Independent Speeds:
C ===================
C U(1): Abs. trans. speed of NRB* along axis 2. (in/s)
C U(2): Abs. rot. of NRB, axis 3. (deg/s)
C U(3): Rot. of RB relative to NRB, axis 1. (deg/s)
C
C Nonholonomic Constraints:
C =========================
C Abs. trans. speed of NRB* along axis 1.: SPEED
C
C Active Forces:
C ==============
C FORCEM(1): (negative) Side force, front axle
C FORCEM(2): (negative) Side force, rear axle

249

C
C Active Moments:
C ===============
C FORCEM(3): (negative) Aligning moment, front axle
C FORCEM(4): (negative) Aligning moment, rear axle
C FORCEM(5): (negative) roll moment from suspension
C
C Program Sections:
C =================
C MAIN -- Control flow of program and perform numerical integration
C
C BLOCK DATA -- initialize variables in COMMON blocks
C DIFEQN (T, Q, QP, U, UP) -- compute QP and UP given T, Q, and U
C ECHO (IFILE, Q, U) -- create output file with echo of input
C parameters
C INPUT (Q, U) -- read parameters and initial conditions
C Function LENSTR (STRING) -- count characters in left-justified
C string
C Function NORMA(A) -- Normalize angle
C Function OPNFIL(PROMPT, STAT, IUNIT) -- let user open file
C OPNOUT(IFILE) -- create output file and write header
C OUTPUT(IFILE, T, Q, QP, U, UP) -- write variables at time T
C PRECMP -- pre-compute constants used in simulation
C TIMDAT(TIMEDT) -- get time and date from computer
C
 IMPLICIT NONE
 CHARACTER*80 INFILE, TITLE
 REAL NORMA, PARS, STEP, STEP2, STOPT, T, Y, YM, YP
 INTEGER I, IECHO, IFILE, ILOOP1, ILOOP2, IPRNT2, ISEC1,
 & ISEC2, NCOORD, NLOOP, NPARS, NSPEED, NTOT
C
 PARAMETER (NCOORD = 4, NSPEED = 3, IFILE = 1, NTOT = 7)
 DIMENSION Y(NTOT), YM(NTOT), YP(NTOT)
 PARAMETER (NPARS = 24)
 DIMENSION PARS(NPARS)
 COMMON /INPARS/ PARS, TITLE, INFILE
 SAVE /INPARS/
C
 EQUIVALENCE (PARS(22), STEP), (PARS(23), STOPT)
C
 WRITE(*, '(5A)')
 & ' Passenger car handling model simulation program.'
 WRITE(*, '(5A)')
 & ' Version created December 13, 1989 by AUTOSIM'
 WRITE(*, '(5A)')
 & ' '
C
C Read input data
C
 CALL INPUT(Y, Y(NCOORD + 1))
 IPRNT2 = PARS(10)
C
C Compute constants in common block /PRCMP/ before starting.
C
 CALL PRECMP
C
C Option to echo data to output file

250

C
 CALL ECHO(IFILE, Y, Y(NCOORD + 1))
C
C Set up output file with simulated time histories
C
 CALL OPNOUT (IFILE)
 CALL TIME (ISEC1)
C
C Start by evaluating derivatives and printing variables at t=0
C
 T = 0.
 CALL DIFEQN(T, Y, YP, Y(NCOORD + 1), YP(NCOORD + 1))
 CALL OUTPUT(IFILE, T, Y, YP, Y(NCOORD + 1), YP(NCOORD + 1))
C
C Integration loop. Continue until printout time reaches final time.
C Use two evaluations of the derivatives to integrate over the step.
C
 NLOOP = STOPT / STEP / IPRNT2 + 1
 STEP2 = STEP / 2.
 DO 60 ILOOP1 = 1, NLOOP
 DO 50 ILOOP2 = 1, IPRNT2
 DO 10 I = 1, NTOT
 YM(I) = Y(I) + STEP2 * YP(I)
 10 CONTINUE
 CALL DIFEQN (T + STEP2, YM, YP, YM(NCOORD + 1),
 & YP(NCOORD + 1))
C
 DO 20 I = 1, NTOT
 Y(I) = Y(I) + STEP * YP(I)
 20 CONTINUE
C
 T = T + STEP
 CALL DIFEQN (T, Y, YP, Y(NCOORD + 1), YP(NCOORD + 1))
 50 CONTINUE
 CALL OUTPUT (IFILE, T, Y, YP, Y(NCOORD + 1), YP(NCOORD + 1))
 IF (T .GE. STOPT) GO TO 70
 60 CONTINUE
 70 CONTINUE
C
 CALL TIME (ISEC2)
C
C End of integration loop. Print final status of run
C
 WRITE (*, *) ' Termination at time =', T, ' sec.'
 WRITE (*,*) ' Computation efficiency: ', (ISEC2 - ISEC1) / T,
 & ' sec/sim. sec'
 WRITE (*,*) ' '

 CLOSE(IFILE)
 PAUSE ' Done'
 END

251

C===
 BLOCK DATA
C===
 CHARACTER*80 INFILE, TITLE
 REAL PARS
 INTEGER NPARS
C
 PARAMETER (NPARS = 24)
 DIMENSION PARS(NPARS)
 COMMON /INPARS/ PARS, TITLE, INFILE
 SAVE /INPARS/
C
 DATA PARS /-444.0, -428.0, 1080.0, 1000.0, 0.82, 63.4,
 & 78.0, 212.0, 15.48, 2.0, 5580.0, 0.0, 37080.0,
 & 6211.0, -0.016, 125.5, 1.0, 704.0, 3831.0, 968.0,
 & 1.0, 0.025, 2.0, 5.1/
 DATA INFILE /' '/
 DATA TITLE /'Default parameter values'/
 END
C===
 SUBROUTINE DIFEQN(T, Q, QP, U, UP)
C===
C This subroutine defines the equations of motion for the Passenger
C car handling model, which includes 3 degrees of freedom.
C
C --> T real time
C --> Q real array of 4 generalized coordinates
C <-- QP real array of derivitives of Q
C --> U real array of 3 generalized speeds
C <-- UP real array of derivatives of U
C
C Each derivative evaluation requires 34 multiply/divides, 24
C add/subtracts, and 2 function/subroutine calls.
C
C (c) Mike Sayers and The Regents of The University of Michigan, 1989.
C All rights reserved.
C
 IMPLICIT NONE
 CHARACTER*80 INFILE, TITLE
 REAL C, CA1, CA2, CAM1, CAM2, CCOEF1, CE, CG1, CROLL,
 & DEGREES, FORCEM, GEES, H, IPRINT, IXX, IXZ, IZZR,
 & KROLL, KRS2, L, NRBI33, NRBM, PARS, PC, Q, QP, RBM,
 & S, SPEED, STEER, STEP, STOPT, T, THETAR, U, UP, Z
 INTEGER NCOORD, NPARS, NSPEED
C
 PARAMETER (NCOORD = 4, NSPEED = 3)
 DIMENSION Q(NCOORD), QP(NCOORD), U(NSPEED), UP(NSPEED)
 DIMENSION C(4), FORCEM(5), S(4), Z(30)
 COMMON /DYVARS/ C, FORCEM, S, Z
 SAVE /DYVARS/
C
 PARAMETER (NPARS = 24)
 DIMENSION PARS(NPARS)
 COMMON /INPARS/ PARS, TITLE, INFILE
 SAVE /INPARS/
C
 EQUIVALENCE (PARS(1), CA1), (PARS(2), CA2), (PARS(3), CAM1),

252

 & (PARS(4), CAM2), (PARS(5), CCOEF1), (PARS(6), CE),
 & (PARS(7), CG1), (PARS(8), CROLL), (PARS(9), H),
 & (PARS(10), IPRINT), (PARS(11), IXX), (PARS(12),
 & IXZ), (PARS(13), IZZR), (PARS(14), KROLL),
 & (PARS(15), KRS2), (PARS(16), L), (PARS(17), NRBI33),
 & (PARS(18), NRBM), (PARS(19), RBM), (PARS(20),
 & SPEED), (PARS(21), STEER), (PARS(22), STEP),
 & (PARS(23), STOPT), (PARS(24), THETAR)
 DIMENSION PC(43)
 COMMON /PRCMP/ PC
 SAVE /PRCMP/
C
 PARAMETER (GEES = 386.2, DEGREES = 57.29577951308232)
 S(3) = SIN(Q(3))
 C(3) = COS(Q(3))
C
C
C Kinematical equations
C
 QP(1) = (SPEED*C(3) -U(1)*S(3))
 QP(2) = (U(1)*C(3) + SPEED*S(3))
 QP(3) = U(2)
 QP(4) = U(3)
C
C define expression for Side force, front axle
C
 Z(1) = (STEER -PC(43)*U(2) -PC(2)*U(1))
 FORCEM(1) = (-PC(1)*Q(4) + CA1*Z(1))
C
C define expression for Side force, rear axle
C
 Z(2) = (KRS2*Q(4) -PC(2)*U(1))
 FORCEM(2) = CA2*Z(2)
C
C define expression for Aligning moment, front axle
C
 FORCEM(3) = CAM1*Z(1)
C
C define expression for Aligning moment, rear axle
C
 FORCEM(4) = CAM2*Z(2)
C
C define expression for roll moment from suspension
C
 FORCEM(5) = (KROLL*Q(4) + PC(4)*U(3))
C
C Dynamical equations
C
 Z(3) = PC(3)*Q(4)
 Z(4) = SPEED*U(2)
 Z(5) = (PC(8)*Q(4) -Z(4))
 Z(6) = (PC(32)*Q(4) + NRBM*Z(4) -RBM*Z(5) + FORCEM(1) +
 & FORCEM(2))
 Z(7) = (PC(36)*Z(3) -PC(10)*Z(5) + L*FORCEM(1) + FORCEM(3) +
 & FORCEM(4))
 Z(8) = PC(16)*Z(6)
 Z(9) = (PC(37)*Z(5) + PC(38)*Z(6) + PC(39)*(Z(7) -Z(8))

253

 & -PC(28)*FORCEM(5))
 Z(10) = (PC(29)*(Z(7) -Z(8)) + PC(40)*Z(9))
 UP(3) = Z(9)
 UP(2) = -Z(10)
 UP(1) = -(PC(30)*Z(6) + PC(41)*Z(9) -PC(42)*Z(10))
 RETURN
 END
C===
 SUBROUTINE ECHO(IFILE, Q, U)
C===
C This subroutine prompts the user for the name of an optional echo
C file for the passenger car handling model. If a file is selected,
C all of the parameter values and initial conditions are written to
C confirm that the intended values were used in the simulation.
C
C (c) Mike Sayers and The Regents of The University of Michigan, 1989.
C All rights reserved.
C
 IMPLICIT NONE
 CHARACTER*24 TIMEDT
 CHARACTER*80 INFILE, OPNFIL, TITLE
 REAL CA1, CA2, CAM1, CAM2, CCOEF1, CE, CG1, CROLL,
 & DEGREES, GEES, H, IPRINT, IXX, IXZ, IZZR, KROLL,
 & KRS2, L, NRBI33, NRBM, PARS, Q, RBM, SPEED, STEER,
 & STEP, STOPT, T, THETAR, U
 INTEGER IFILE, NCOORD, NPARS, NSPEED
C
 PARAMETER (NPARS = 24)
 DIMENSION PARS(NPARS)
 COMMON /INPARS/ PARS, TITLE, INFILE
 SAVE /INPARS/
C
 EQUIVALENCE (PARS(1), CA1), (PARS(2), CA2), (PARS(3), CAM1),
 & (PARS(4), CAM2), (PARS(5), CCOEF1), (PARS(6), CE),
 & (PARS(7), CG1), (PARS(8), CROLL), (PARS(9), H),
 & (PARS(10), IPRINT), (PARS(11), IXX), (PARS(12),
 & IXZ), (PARS(13), IZZR), (PARS(14), KROLL),
 & (PARS(15), KRS2), (PARS(16), L), (PARS(17), NRBI33),
 & (PARS(18), NRBM), (PARS(19), RBM), (PARS(20),
 & SPEED), (PARS(21), STEER), (PARS(22), STEP),
 & (PARS(23), STOPT), (PARS(24), THETAR)
 PARAMETER (NCOORD = 4, NSPEED = 3)
 DIMENSION Q(NCOORD), U(NSPEED)
 PARAMETER (GEES = 386.2, DEGREES = 57.29577951308232)
C
 IF (OPNFIL('Name of (optional) file to echo the input data',
 & 'OPTOUT', IFILE) .EQ. ' ') RETURN
C
 CALL TIMDAT(TIMEDT)
C
 WRITE(IFILE, '(A)') 'PARSFILE'
 WRITE(IFILE, '(5A)')
 & 'Echo file created by:'
 WRITE(IFILE, '(5A)')
 & 'Passenger car handling model simulation program.'
 WRITE(IFILE, '(5A)')
 & 'Version created December 13, 1989 by AUTOSIM'

254

 WRITE(IFILE, '(5A)')
 & ' '
 WRITE(IFILE, '(A,T8,A)') 'TITLE', TITLE
 WRITE(IFILE, '(/A,A)') '* Input File: ', INFILE
 WRITE(IFILE, '(A, A)') '* Run was made ', TIMEDT
 WRITE(IFILE, '(/A/)') '* PARAMETER VALUES'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'CA1', CA1/DEGREES,
 & 'front cornering stiffness (lb/deg)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'CA2', CA2/DEGREES,
 & 'rear cornering stiffness (lb/deg)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'CAM1', CAM1/DEGREES,
 & 'front aligning moment coefficient (in-lb/deg)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'CAM2', CAM2/DEGREES,
 & 'rear aligning moment coefficient (in-lb/deg)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'CCOEF1', CCOEF1,
 & 'prop. of body roll resulting in front wheel camber (-)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'CE', CE,
 & 'distance from rear axle to sprung mass c.g. (in)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'CG1', CG1/DEGREES,
 & 'front camber stiffness (lb/deg)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'CROLL', CROLL/DEGREES,
 & 'torsional damping rate for the vehicle body in roll'
 &,' (in-lb-s/d)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'H', H,
 & 'height of sprung mass c.g. above roll axis (in)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'IPRINT', IPRINT,
 & 'number of time steps between output printing (counts)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'IXX', IXX,
 & 'moment of inertia of RB (in-lb-s2)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'IXZ', IXZ,
 & 'product of inertia of RB (in-lb-s2)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'IZZR', IZZR,
 & 'moment of inertia of RB (in-lb-s2)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'KROLL', KROLL/DEGREES,
 & 'torsional spring rate for the vehicle body in roll'
 &,' (in-lb/deg)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'KRS2', KRS2,
 & 'roll-steer coefficient for rear axle (-)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'L', L,
 & 'wheelbase (in)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'NRBI33', NRBI33,
 & 'moment of inertia of NRB (in-lb-s2)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'NRBM', GEES*NRBM,
 & 'mass of NRB (lbm)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'RBM', RBM*GEES,
 & 'mass of RB (lbm)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'SPEED', SPEED,
 & 'forward speed (in/s)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'STEER', STEER*DEGREES,
 & 'Steer angle at road (deg)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'STEP', STEP,
 & 'simulation time step (sec)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'STOPT', STOPT,
 & 'simulation stop time (sec)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'THETAR', THETAR*DEGREES,
 & 'inclination angle of roll axis (deg)'
 WRITE(IFILE, '(/A/)') '* INITIAL CONDITIONS'

255

 WRITE(IFILE, '(A, T8, G13.6, T24, 5A)') 'Q(1)', Q(1),
 & 'Translation of NRB0 relative to the fixed origin along [n1].'
 &,' (in)'
 WRITE(IFILE, '(A, T8, G13.6, T24, 5A)') 'Q(2)', Q(2),
 & 'Translation of NRB0 relative to the fixed origin along [n2].'
 &,' (in)'
 WRITE(IFILE, '(A, T8, G13.6, T24, 5A)') 'Q(3)', DEGREES*Q(3),
 & 'Rotation of the non-rolling body relative to the inertial'
 &,' reference about axis #3. (deg)'
 WRITE(IFILE, '(A, T8, G13.6, T24, 5A)') 'Q(4)', DEGREES*Q(4),
 & 'Rotation of the rolling body relative to the non-rolling body'
 &,' about axis #1. (deg)'
 WRITE(IFILE, '(A, T8, G13.6, T24, 5A)') 'U(1)', U(1),
 & 'Abs. trans. speed of NRB* along axis 2. (in/s)'
 WRITE(IFILE, '(A, T8, G13.6, T24, 5A)') 'U(2)', DEGREES*U(2),
 & 'Abs. rot. of NRB, axis 3. (deg/s)'
 WRITE(IFILE, '(A, T8, G13.6, T24, 5A)') 'U(3)', DEGREES*U(3),
 & 'Rot. of RB relative to NRB, axis 1. (deg/s)'
 WRITE(IFILE, '(/A)') 'END'
 CLOSE(IFILE)
 RETURN
 END
C===
 SUBROUTINE INPUT(Q, U)
C===
C This subroutine prompts the user for the name of an optional
C parameter file for the Passenger car handling model. If a file is
C selected, parameter values are read to override the default values.
C
C (c) Mike Sayers and The Regents of The University of Michigan, 1989.
C All rights reserved.
C
 IMPLICIT NONE
 LOGICAL ISIT
 CHARACTER*80 BUFFER, ECHFIL, INFILE, OPNFIL, QUEUE, TITLE
 CHARACTER*8 CHAR8, NAMES, QC, UC
 REAL CA1, CA2, CAM1, CAM2, CCOEF1, CE, CG1, CROLL,
 & DEGREES, GEES, H, IPRINT, IXX, IXZ, IZZR, KROLL,
 & KRS2, L, NRBI33, NRBM, PARS, PSCALE, Q, QINIT,
 & QSCALE, RBM, SPEED, STEER, STEP, STOPT, T, THETAR,
 & U, UINIT, USCALE
 INTEGER IFILE, ILOOP, IQUEUE, LENSTR, LSTRNG, MAXQ, NCOORD,
 & NPARS, NQUEUE, NSPEED
C
 PARAMETER (NPARS = 24)
 DIMENSION PARS(NPARS)
 COMMON /INPARS/ PARS, TITLE, INFILE
 SAVE /INPARS/
C
 EQUIVALENCE (PARS(1), CA1), (PARS(2), CA2), (PARS(3), CAM1),
 & (PARS(4), CAM2), (PARS(5), CCOEF1), (PARS(6), CE),
 & (PARS(7), CG1), (PARS(8), CROLL), (PARS(9), H),
 & (PARS(10), IPRINT), (PARS(11), IXX), (PARS(12),
 & IXZ), (PARS(13), IZZR), (PARS(14), KROLL),
 & (PARS(15), KRS2), (PARS(16), L), (PARS(17), NRBI33),
 & (PARS(18), NRBM), (PARS(19), RBM), (PARS(20),
 & SPEED), (PARS(21), STEER), (PARS(22), STEP),

256

 & (PARS(23), STOPT), (PARS(24), THETAR)
 PARAMETER (GEES = 386.2, DEGREES = 57.29577951308232)
 PARAMETER (NCOORD = 4, NSPEED = 3, MAXQ = 20, IFILE = 1)
 DIMENSION NAMES(NPARS), Q(NCOORD), QC(NCOORD), QINIT(NCOORD),
 & QUEUE(MAXQ), QSCALE(NCOORD), U(NSPEED), UC(NSPEED),
 & UINIT(NSPEED), USCALE(NSPEED)
 DATA QINIT /NCOORD*0./, UINIT /NSPEED*0./
 DATA QC /'Q(1)', 'Q(2)', 'Q(3)', 'Q(4)'/
 DATA UC /'U(1)', 'U(2)', 'U(3)'/
 DATA QSCALE /1, 1, DEGREES, DEGREES/
 DATA USCALE /1, DEGREES, DEGREES/
 DATA NAMES /'CA1', 'CA2', 'CAM1', 'CAM2', 'CCOEF1', 'CE',
 & 'CG1', 'CROLL', 'H', 'IPRINT', 'IXX', 'IXZ', 'IZZR',
 & 'KROLL', 'KRS2', 'L', 'NRBI33', 'NRBM', 'RBM',
 & 'SPEED', 'STEER', 'STEP', 'STOPT', 'THETAR'/
 NQUEUE = 0
 IQUEUE = 0
C
C Open file with parameter values and initial conditions
C
 5 INFILE = OPNFIL ('Name of (optional) file with parameter values',
 & 'OPTIN', IFILE)
 6 IF (INFILE .NE. '') THEN
 READ(IFILE, '(A)') CHAR8
C
 IF (CHAR8 .EQ. 'END') GO TO 100
 IF (CHAR8 .NE. 'PARSFILE') THEN
 CLOSE(IFILE)
 WRITE (*, '(A)') ' Error--File did not begin with "PARSFILE"'
 IF (IQUEUE .EQ. 0) THEN
 GO TO 5
 ELSE
 GO TO 100
 END IF
 END IF
C
C Read line from file. CHAR8 is the keyword, checked for:
C o TITLE keyword,
C o parameter keyword (from NAMES array),
C o initial value of generalized coordinate (keyword from QC array),
C o initial value of generalized speed (keyword from UC array),
C o (possibly) keyword for other input subroutine, or
C o END keyword.
C All other lines are ignored. Also, all lines are ignored after END
C is found, and any line with a '*' in column 1 is ignored.
C
 10 READ(IFILE, '(A8,A80)', END=100, ERR=100) CHAR8, BUFFER
 IF (CHAR8 .EQ. 'TITLE') THEN
 TITLE = BUFFER
 GO TO 10
 ELSE IF (CHAR8 .EQ. 'END') THEN
 GO TO 100
 ELSE IF (CHAR8(1:1) .EQ. '*') THEN
 GO TO 10
 ELSE IF (CHAR8 .EQ. 'PARSFILE') THEN
 INQUIRE (FILE=BUFFER, EXIST=ISIT)
 IF (ISIT) THEN

257

 NQUEUE = NQUEUE + 1
 QUEUE (NQUEUE) = BUFFER
 ELSE
 LSTRNG = LENSTR (BUFFER)
 WRITE (*,'(A,A,A)') 'Error--PARSFILE "', BUFFER(:LSTRNG),
 & '"not found (skipped).'
 END IF
 GO TO 10
 END IF
C
C Check for names of parameters
C
 DO 20 ILOOP = 1, NPARS
 IF (CHAR8 .EQ. NAMES(ILOOP)) THEN
 READ(BUFFER, '(G13.0)') PARS(ILOOP)
 GO TO 10
 END IF
 20 CONTINUE
C
C Check for names of generalized coordinates (initial conditions)
C
 DO 30 ILOOP = 1, NCOORD
 IF (CHAR8 .EQ. QC(ILOOP)) THEN
 READ(BUFFER, '(G13.0)') QINIT(ILOOP)
 GO TO 10
 END IF
 30 CONTINUE
C
C Check for names of generalized speeds (initial conditions)
C
 DO 40 ILOOP = 1, NSPEED
 IF (CHAR8 .EQ. UC(ILOOP)) THEN
 READ(BUFFER, '(G13.0)') UINIT(ILOOP)
 GO TO 10
 END IF
 40 CONTINUE
C
 GO TO 10
 END IF
C
C Close this file and process other PARS files that were referenced.
C
 100 CLOSE (IFILE)
 IF (IQUEUE .LT. NQUEUE) THEN
 IQUEUE = IQUEUE + 1
 INFILE = QUEUE (IQUEUE)
 OPEN (IFILE, STATUS='OLD', FILE=INFILE)
 WRITE (*, '(A,A)') ' Reading from PARSFILE ', INFILE
 GO TO 6
 END IF
C
C Set initial conditions
C
 DO 110 ILOOP = 1, NCOORD
 110 Q(ILOOP) = QINIT(ILOOP) / QSCALE(ILOOP)
C
 DO 120 ILOOP = 1, NSPEED

258

 120 U(ILOOP) = UINIT(ILOOP) / USCALE(ILOOP)
C
C Convert units as needed.
C
 CA1 = CA1*DEGREES
 CA2 = CA2*DEGREES
 CAM1 = CAM1*DEGREES
 CAM2 = CAM2*DEGREES
 CG1 = CG1*DEGREES
 CROLL = CROLL*DEGREES
 KROLL = KROLL*DEGREES
 NRBM = NRBM/GEES
 RBM = RBM/GEES
 STEER = STEER/DEGREES
 THETAR = THETAR/DEGREES
C
 RETURN
 END
C===
 FUNCTION LENSTR (STRING)
C===
C count characters in left-justified string. M. Sayers, 8-9-87
C
 CHARACTER*(*) STRING
 N = LEN (STRING)
 DO 10 L = N, 1, -1
 IF (STRING(L:L) .NE. ' ') THEN
 LENSTR = L
 RETURN
 END IF
 10 CONTINUE
 LENSTR = 1
 RETURN
 END
C===
 FUNCTION NORMA(A)
C===
C normalize angle
C
 REAL A, NORMA, PI
 PARAMETER (PI=3.141592653589793)
 IF (A .GE. PI) THEN
 NORMA = A - PI
 ELSE IF (A .LE. -PI) THEN
 NORMA = A + PI
 ELSE
 NORMA = A
 END IF
 RETURN
 END
C===
 FUNCTION OPNFIL (PROMPT, STAT, IFILE)
C===
C This function tries to get a file name from the user and open the
C file.
C
C --> PROMPT string Message to prompt user

259

C --> STAT string Status of file ("NEW" = mandatory output,
C "OLD" = mandatory input,
C "OPTIN" = optional input,
C "OPTOUT" = optional output)
C --> IFILE integer Fortran I/O unit for file
C <-- OPNFIL string name of file opened or " " if no file selected
C
C M. Sayers January 30, 1989
C
 LOGICAL ISIT
 CHARACTER*(*) PROMPT, STAT, OPNFIL
 CHARACTER*3 STAT2
 INTEGER IFILE, L, LENSTR
C
C Set Fortran STATUS type
C
 IF (STAT .EQ. 'NEW' .OR. STAT .EQ. 'OPTOUT') THEN
 STAT2 = 'NEW'
 ELSE
 STAT2 = 'OLD'
 END IF
C
C Ask user for file name, and check for no response (blank line)
C
 100 WRITE(*, '(A, A, A\)') ' ', PROMPT, ': '
 READ(*, '(A)') OPNFIL
 IF (OPNFIL .EQ. ' ') THEN
 IF (STAT .EQ. 'OPTIN' .OR. STAT .EQ. 'OPTOUT') THEN
 RETURN
 ELSE IF (STAT .EQ. 'NEW') THEN
 WRITE (*,'(A)') ' Output file is required!'
 GO TO 100
 ELSE
 WRITE (*,'(A)') ' Input file is required!'
 GO TO 100
 END IF
 END IF
C
C Deal with existance of file (or lack thereof)
C
 INQUIRE (FILE=OPNFIL, EXIST=ISIT)
 IF ((.NOT. ISIT) .AND. (STAT2 .EQ. 'OLD')) THEN
 L = LENSTR(OPNFIL)
 WRITE (*, '(A, A, A)') ' File "', OPNFIL(:L),
 & '" does not exist. Try again.'
 GO TO 100
 ELSE IF (ISIT .AND. STAT2 .EQ. 'NEW') THEN
 OPEN (IFILE, FILE=OPNFIL)
 CLOSE (IFILE, STATUS='DELETE')
 END IF
C
C Open file and write blank line on screen
C
 OPEN(IFILE, STATUS=STAT2, FILE=OPNFIL)
 WRITE (*,'(A)') ' '
 RETURN
 END

260

C===
 SUBROUTINE OPNOUT(IFILE)
C===
C This subroutine prompts the user for the name of a file set that
C will be created to store time histories of the 9 output variables
C computed by the Passenger car handling model simulation program.
C
C A text file is created and opened, and labeling information is
C written to facilitate post-processing of the data. Then, the text
C file is closed and a corresponding binary file is created and opened
C to store the numerical values of the output variables.
C
C (c) Mike Sayers and The Regents of The University of Michigan, 1989.
C All rights reserved.
C
 IMPLICIT NONE
 CHARACTER*80 FNOUT, INFILE, OPNFIL, TITLE
 LOGICAL ISIT
 REAL CA1, CA2, CAM1, CAM2, CCOEF1, CE, CG1, CROLL,
 & DEGREES, GEES, H, IPRINT, IXX, IXZ, IZZR, KROLL,
 & KRS2, L, NRBI33, NRBM, PARS, RBM, SPEED, STEER,
 & STEP, STOPT, T, THETAR
 INTEGER IFILE, ILOOP, IPRNT2, LENSTR, LSTRNG, MAXBUF,
 & NBYTES, NCHAN, NCOORD, NPARS, NRECS, NSAMP, NSCAN,
 & NSPEED, NUMKEY, NVARS
 CHARACTER*32 GENNAM, LONGNM, RIGBOD
 CHARACTER*24 TIMEDT
 CHARACTER*8 CHAR8, SHORTN, UNITSN
C
 PARAMETER (NPARS = 24)
 DIMENSION PARS(NPARS)
 COMMON /INPARS/ PARS, TITLE, INFILE
 SAVE /INPARS/
C
 EQUIVALENCE (PARS(22), STEP), (PARS(23), STOPT)
C
 PARAMETER (NVARS = 9, NUMKEY = 1)
 DIMENSION LONGNM(NVARS), GENNAM(NVARS), RIGBOD(NVARS),
 & SHORTN(NVARS), UNITSN(NVARS)
C
C Prompt user to provide name of output file. File is opened and
C attached to Fortran unit IFILE.
C
 FNOUT = OPNFIL('Name of (required) file for time history outputs',
 & 'NEW', IFILE)
 NCHAN = 0
 IPRNT2 = PARS(10)
C
 NCHAN = NCHAN + 1
 LONGNM (NCHAN) = 'Lateral Acceleration'
 SHORTN (NCHAN) = 'Ay'
 GENNAM (NCHAN) = 'Translational Acceleration'
 UNITSN (NCHAN) = 'g''s'
 RIGBOD (NCHAN) = 'Rolling Body'
C
 NCHAN = NCHAN + 1
 LONGNM (NCHAN) = 'Yaw Rate'

261

 SHORTN (NCHAN) = 'r'
 GENNAM (NCHAN) = 'Angular Speed'
 UNITSN (NCHAN) = 'deg/s'
 RIGBOD (NCHAN) = 'Non-Rolling Body'
C
 NCHAN = NCHAN + 1
 LONGNM (NCHAN) = 'Front slip angle'
 SHORTN (NCHAN) = 'alpha f'
 GENNAM (NCHAN) = 'Slip Angle'
 UNITSN (NCHAN) = 'deg'
 RIGBOD (NCHAN) = 'Non-Rolling Body'
C
 NCHAN = NCHAN + 1
 LONGNM (NCHAN) = 'Rear slip angle'
 SHORTN (NCHAN) = 'alpha r'
 GENNAM (NCHAN) = 'Slip Angle'
 UNITSN (NCHAN) = 'deg'
 RIGBOD (NCHAN) = 'Non-Rolling Body'
C
 NCHAN = NCHAN + 1
 LONGNM (NCHAN) = 'Side force, front axle'
 SHORTN (NCHAN) = 'FY1'
 GENNAM (NCHAN) = 'Force'
 UNITSN (NCHAN) = 'lb'
 RIGBOD (NCHAN) = 'Non-Rolling Body'
C
 NCHAN = NCHAN + 1
 LONGNM (NCHAN) = 'Side force, rear axle'
 SHORTN (NCHAN) = 'FY2'
 GENNAM (NCHAN) = 'Force'
 UNITSN (NCHAN) = 'lb'
 RIGBOD (NCHAN) = 'Non-Rolling Body'
C
 NCHAN = NCHAN + 1
 LONGNM (NCHAN) = 'Aligning moment, front axle'
 SHORTN (NCHAN) = 'MZ1'
 GENNAM (NCHAN) = 'Moment'
 UNITSN (NCHAN) = 'in-lb'
 RIGBOD (NCHAN) = 'Non-Rolling Body'
C
 NCHAN = NCHAN + 1
 LONGNM (NCHAN) = 'Aligning moment, rear axle'
 SHORTN (NCHAN) = 'MZ2'
 GENNAM (NCHAN) = 'Moment'
 UNITSN (NCHAN) = 'in-lb'
 RIGBOD (NCHAN) = 'Non-Rolling Body'
C
 NCHAN = NCHAN + 1
 LONGNM (NCHAN) = 'roll moment from suspension'
 SHORTN (NCHAN) = 'ROLLM'
 GENNAM (NCHAN) = 'Moment'
 UNITSN (NCHAN) = 'in-lb'
 RIGBOD (NCHAN) = 'Rolling Body'
C
C Write Header Info for ERD file
C
C Set parameters needed to write header for ERD format file

262

C NUMKEY = 1 for 32-bit floating-point binary
C NSAMP = number of samples
C NRECS = number of "records" in output file
C NBYTES = number of bytes/record
C
 NSAMP = STOPT / STEP / IPRNT2 + 1
 NBYTES = 4 * NCHAN
 NRECS = NSAMP
C
C Write standard ERD file heading.
C
 WRITE(IFILE, '(A)') 'ERDFILEV2.00'
 WRITE(IFILE, 100) NCHAN, NSAMP, NRECS, NBYTES, NUMKEY, STEP*IPRNT2
 WRITE(IFILE, '(A,A)') 'TITLE ', TITLE
 WRITE(IFILE, 110) 'SHORTNAM', (SHORTN(ILOOP), ILOOP=1, NCHAN)
 WRITE(IFILE, 120) 'LONGNAME', (LONGNM(ILOOP), ILOOP=1, NCHAN)
 WRITE(IFILE, 110) 'UNITSNAM', (UNITSN(ILOOP), ILOOP=1, NCHAN)
 WRITE(IFILE, 120) 'GENNAME ', (GENNAM(ILOOP), ILOOP=1, NCHAN)
 WRITE(IFILE, 120) 'RIGIBODY', (RIGBOD(ILOOP), ILOOP=1, NCHAN)
 WRITE(IFILE, '(A)') 'XLABEL Time'
 WRITE(IFILE, '(A)') 'XUNITS sec'
C
 IF (INFILE .EQ. ' ') THEN
 WRITE(IFILE, '(A)') 'HISTORY No input file (used defaults)'
 ELSE
 WRITE(IFILE, '(A, A)') 'HISTORY Input parameter file was ',
 & INFILE
 END IF
 CALL TIMDAT(TIMEDT)
 WRITE(IFILE, '(A,A)')
 & 'HISTORY Data generated with Passenger car handling model at '
 &, TIMEDT
 WRITE(IFILE, '(A)') 'END'
C
C Close (text) header and create binary file.
C
 CLOSE(IFILE)
 LSTRNG = LENSTR(FNOUT)
 FNOUT = FNOUT (:LSTRNG) // '.BIN'
 INQUIRE(FILE=FNOUT, EXIST=ISIT)
 IF (ISIT) THEN
 OPEN (IFILE, FILE=FNOUT)
 CLOSE (IFILE, STATUS='DELETE')
 END IF
C
 OPEN(IFILE, FILE=FNOUT, STATUS='NEW', ACCESS='SEQUENTIAL',
 & FORM='UNFORMATTED')
C
 100 FORMAT (5(I6,','),G13.6)
 110 FORMAT (A8, 9A8)
 120 FORMAT (A8, 9A32)
 RETURN
 END

263

C===
 SUBROUTINE OUTPUT(IFILE, T, Q, QP, U, UP)
C===
C --> IFILE integer Fortran i/o unit for output
C --> T real time
C --> Q real array of 4 generalized coordinates
C --> QP real array of derivitives of Q
C --> U real array of 3 generalized speeds
C --> UP real array of derivatives of U
C
C This subroutine writes the values of the 9 output variables computed
C by the Passenger car handling model simulation program into an
C output file, using the values at time T.
C
C (c) Mike Sayers and The Regents of The University of Michigan, 1989.
C All rights reserved.
C
 IMPLICIT NONE
 CHARACTER*80 INFILE, TITLE
 REAL C, CA1, CA2, CAM1, CAM2, CCOEF1, CE, CG1, CROLL,
 & DEGREES, FORCEM, GEES, H, IPRINT, IXX, IXZ, IZZR,
 & KROLL, KRS2, L, NRBI33, NRBM, OUTBUF, PARS, PC, Q,
 & QP, RBM, S, SPEED, STEER, STEP, STOPT, T, THETAR, U,
 & UP, Z
 INTEGER IFILE, ILOOP, NCOORD, NPARS, NSPEED, NVARS
C
 PARAMETER (NCOORD = 4, NSPEED = 3, NVARS = 9)
 DIMENSION Q(NCOORD), QP(NCOORD), U(NSPEED), UP(NSPEED),
 & OUTBUF(NVARS)
 DIMENSION PC(43)
 COMMON /PRCMP/ PC
 SAVE /PRCMP/
C
 DIMENSION C(4), FORCEM(5), S(4), Z(30)
 COMMON /DYVARS/ C, FORCEM, S, Z
 SAVE /DYVARS/
C
 PARAMETER (NPARS = 24)
 DIMENSION PARS(NPARS)
 COMMON /INPARS/ PARS, TITLE, INFILE
 SAVE /INPARS/
C
 EQUIVALENCE (PARS(1), CA1), (PARS(2), CA2), (PARS(3), CAM1),
 & (PARS(4), CAM2), (PARS(5), CCOEF1), (PARS(6), CE),
 & (PARS(7), CG1), (PARS(8), CROLL), (PARS(9), H),
 & (PARS(10), IPRINT), (PARS(11), IXX), (PARS(12),
 & IXZ), (PARS(13), IZZR), (PARS(14), KROLL),
 & (PARS(15), KRS2), (PARS(16), L), (PARS(17), NRBI33),
 & (PARS(18), NRBM), (PARS(19), RBM), (PARS(20),
 & SPEED), (PARS(21), STEER), (PARS(22), STEP),
 & (PARS(23), STOPT), (PARS(24), THETAR)
 PARAMETER (GEES = 386.2, DEGREES = 57.29577951308232)
 Z(11) = Q(4)*S(3)
 Z(12) = PC(5)*Z(11)
 Z(13) = (-Z(12) + C(3))
 Z(14) = Z(13)*C(3)
 Z(15) = Q(4)*C(3)

264

 Z(16) = PC(5)*Z(15)
 Z(17) = (Z(16) + S(3))
 Z(18) = Z(17)*S(3)
 Z(19) = (Z(14) + Z(18))
 Z(20) = Z(19)*UP(1)
 Z(21) = PC(31)*UP(2)
 Z(22) = H*UP(3)
 Z(23) = (Z(21) + Z(22))
 Z(24) = Z(17)**2
 Z(25) = Z(13)**2
 Z(26) = (Z(24) + Z(25))
 Z(27) = Z(23)*Z(26)
 Z(28) = (Z(4) + Z(20) + Z(27))
 Z(29) = 1.0/SQRT(Z(26))
 Z(30) = Z(28)*Z(29)
C
C fill buffer with output variables.
C
 OUTBUF(1) = Z(30)/GEES
 OUTBUF(2) = DEGREES*U(2)
 OUTBUF(3) = -DEGREES*Z(1)
 OUTBUF(4) = -DEGREES*Z(2)
 OUTBUF(5) = -FORCEM(1)
 OUTBUF(6) = -FORCEM(2)
 OUTBUF(7) = -FORCEM(3)
 OUTBUF(8) = -FORCEM(4)
 OUTBUF(9) = -FORCEM(5)
C
C The following line writes to an unformatted binary file
C
 WRITE (IFILE) (OUTBUF(ILOOP), ILOOP=1, NVARS)
C
C--The next 3 lines are for the Macintosh
C
 IF (T .EQ. 0.) WRITE (*, '(/A/7X,A)') ' Progress:','sec'
 CALL TOOLBX (Z'89409000', 0, -11)
 WRITE (*, '(F6.2)') T
 RETURN
 END
C===
 SUBROUTINE PRECMP
C===
C This subroutine defines all constants that can be pre-computed for
C the Passenger car handling model. The constants are put into the
C COMMON block /PRECMP/
C
C (c) Mike Sayers and The Regents of The University of Michigan, 1989.
C All rights reserved.
C
 IMPLICIT NONE
 CHARACTER*80 INFILE, TITLE
 REAL CA1, CA2, CAM1, CAM2, CCOEF1, CE, CG1, CROLL,
 & DEGREES, GEES, H, IPRINT, IXX, IXZ, IZZR, KROLL,
 & KRS2, L, NRBI33, NRBM, PARS, PC, RBM, SPEED, STEER,
 & STEP, STOPT, THETAR
 INTEGER NPARS
C

265

 DIMENSION PC(43)
 COMMON /PRCMP/ PC
 SAVE /PRCMP/
C
 PARAMETER (NPARS = 24)
 DIMENSION PARS(NPARS)
 COMMON /INPARS/ PARS, TITLE, INFILE
 SAVE /INPARS/
C
 EQUIVALENCE (PARS(1), CA1), (PARS(2), CA2), (PARS(3), CAM1),
 & (PARS(4), CAM2), (PARS(5), CCOEF1), (PARS(6), CE),
 & (PARS(7), CG1), (PARS(8), CROLL), (PARS(9), H),
 & (PARS(10), IPRINT), (PARS(11), IXX), (PARS(12),
 & IXZ), (PARS(13), IZZR), (PARS(14), KROLL),
 & (PARS(15), KRS2), (PARS(16), L), (PARS(17), NRBI33),
 & (PARS(18), NRBM), (PARS(19), RBM), (PARS(20),
 & SPEED), (PARS(21), STEER), (PARS(22), STEP),
 & (PARS(23), STOPT), (PARS(24), THETAR)
 PARAMETER (GEES = 386.2, DEGREES = 57.29577951308232)
C
 PC(1) = CG1*CCOEF1
 PC(2) = 1.0/SPEED
 PC(3) = COS(THETAR)
 PC(4) = CROLL*COS(THETAR)
 PC(5) = SIN(THETAR)
 PC(6) = CE*COS(THETAR)
 PC(7) = H*SIN(THETAR)
 PC(8) = GEES*COS(THETAR)
 PC(9) = GEES*SIN(THETAR)
 PC(10) = RBM*(CE*COS(THETAR) + H*SIN(THETAR))
 PC(11) = H*RBM
 PC(12) = (RBM + NRBM)
 PC(13) = (NRBI33 + COS(THETAR)*(IZZR*COS(THETAR) +
 & IXZ*SIN(THETAR)) + RBM*(CE*COS(THETAR) +
 & H*SIN(THETAR))**2 + (IXZ*COS(THETAR) +
 & IXX*SIN(THETAR))*SIN(THETAR))
 PC(14) = (IXZ*COS(THETAR) + IXX*SIN(THETAR) + H*RBM
 & *(CE*COS(THETAR) + H*SIN(THETAR)))
 PC(15) = (RBM*H**2 + IXX)
 PC(16) = PC(10)/PC(12)
 PC(17) = PC(11)/PC(12)
 PC(18) = PC(10)*PC(16)
 PC(19) = (PC(13) -PC(18))
 PC(20) = PC(10)*PC(17)
 PC(21) = (PC(14) -PC(20))
 PC(22) = PC(21)/PC(19)
 PC(23) = PC(11)*PC(16)
 PC(24) = (PC(14) -PC(23))
 PC(25) = PC(11)*PC(17)
 PC(26) = PC(22)*PC(24)
 PC(27) = (PC(15) -PC(25) -PC(26))
 PC(28) = 1.0/PC(27)
 PC(29) = 1.0/PC(19)
 PC(30) = 1.0/PC(12)
 PC(31) = (PC(6) + PC(7))
 PC(32) = RBM*PC(8)
 PC(33) = PC(9)*PC(11)

266

 PC(34) = CE*RBM
 PC(35) = PC(8)*PC(34)
 PC(36) = (PC(33) + PC(35))
 PC(37) = PC(11)*PC(28)
 PC(38) = PC(17)*PC(28)
 PC(39) = PC(22)*PC(28)
 PC(40) = PC(24)*PC(29)
 PC(41) = PC(11)*PC(30)
 PC(42) = PC(10)*PC(30)
 PC(43) = L*PC(2)
 RETURN
 END
**
 SUBROUTINE TIMDAT (TIMEDT)
**
C Get date and time. On the Mac, this requires the TIME and DATE
C subroutines from Absoft.
C
C by M. Sayers, 1986.
C
C <-- TIMEDT char*24 string containing time & date.
C
 CHARACTER*24 TIMEDT
 CHARACTER*36 MONTHS
 INTEGER*4 M, IDAY, IYEAR, ISEC
 INTEGER*2 YEAR, MONTH, DAY, HOUR, MIN, SEC, I100
 MONTHS = 'JanFebMarAprMayJunJulAugSepOctNovDec'

C--The following 4 lines are for the IBM PC (using Microsoft
C--time and date functions)
* CALL GETDAT (YEAR, MONTH, DAY)
* CALL GETTIM (IHOUR, MIN, SEC, I100)
* WRITE (TIMEDT, 100) IHOUR, MIN, MONTHS (MONTH*3-2:MONTH*3),
* & DAY, YEAR

C--get time for MTS version
C CALL TIME(22, 0, TIMEDT)

C--The following 5 lines are for the Apple Mac
C--(using Absoft time & date functions)
 CALL DATE (M, IDAY, IYEAR)
 CALL TIME (ISEC)
 WRITE (TIMEDT, 100)
 & ISEC/3600, MOD (ISEC, 3600) / 60, MONTHS (M*3-2:M*3),
 & IDAY, 1900 + IYEAR

 100 FORMAT (I2,':',I2.2,' on ',A3,I3,',',I5)
 RETURN
 END

267

APPENDIX C — FOUR-BAR LINKAGE

This appendix contains the complete source code for the four-bar linkage described in

Section 9.3.

C 4-Bar linkage simulation program.
C Version created December 11, 1989 by AUTOSIM
C
C (c) Mike Sayers and The Regents of The University of Michigan, 1989.
C All rights reserved.
C
C This program simulates the 4-bar linkage by numerically integrating
C the 4 ordinary differential equations that describe the kinematics
C and dynamics of the system. The 4-bar linkage is composed of 3
C bodies and has 1 degree of freedom.
C
C Each derivative evaluation requires 141 multiply/divides, 81
C add/subtracts, and 6 function/subroutine calls.
C
C Bodies:
C =======
C A; parent=N; 1 DOF: Q(1)
C B; parent=A; 1 DOF: Q(2)
C C; parent=N; 1 DOF: Q(3)
C
C Generalized Coordinates:
C ========================
C Q(1): Rotation of A relative to the inertial reference about axis
C #3. (rad)
C Q(2): Rotation of B relative to A about axis #3. (rad)
C Q(3): Rotation of C relative to the inertial reference about axis
C #3. (rad)
C
C Independent Speeds:
C ===================
C U(1): Abs. rot. of A, axis 3. (rad/s)
C
C Nonholonomic Constraints:
C =========================
C Rot. of B relative to A, axis 3.: -U(1)*(1 -L1*(S(2) -(L1 -L5)
C *(C(3)*(C(1)*C(2)**2 -C(2)*S(1)*S(2)) + C(2)*(C(2)*S(1) +
C C(1)*S(2))*S(3))*(S(2)*(C(1)*C(3) + S(1)*S(3)) + C(2)
C *(C(3)*S(1) -C(1)*S(3)))/(L1 -L5 -(L1 -L5)*(S(2)*(C(1)*C(3) +
C S(1)*S(3)) + C(2)*(C(3)*S(1) -C(1)*S(3)))**2))/L4)
C Abs. rot. of C, axis 3.: L1*U(1)*(C(3)*(C(1)*C(2)**2
C -C(2)*S(1)*S(2)) + C(2)*(C(2)*S(1) + C(1)*S(2))*S(3))/(L1
C -L5 -(L1 -L5)*(S(2)*(C(1)*C(3) + S(1)*S(3)) + C(2)
C *(C(3)*S(1) -C(1)*S(3)))**2)
C

268

C Active Forces:
C ==============
C FORCEM(1): strut
C
C Program Sections:
C =================
C MAIN -- Control flow of program and perform numerical integration
C
C BLOCK DATA -- initialize variables in COMMON blocks
C DIFEQN (T, Q, QP, U, UP) -- compute QP and UP given T, Q, and U
C ECHO (IFILE, Q, U) -- create output file with echo of input
C parameters
C INITNR(X, ALPHA, BETA, Q) -- compute ALPHA and BETA coeficients for
C MNEWT
C INPUT (Q, U) -- read parameters and initial conditions
C Function LENSTR (STRING) -- count characters in left-justified
C string
C LUDCMP(A, N, NP, INDX, D) -- decompose matrix into LUD form [1]
C LUBKSB(A, N, NP, INDX, B) -- solve simultaneous equations [1]
C MNEWT(NTRIAL,X,N,TOLX,TOLF,Q) -- solve for initial conditions [1]
C Function NORMA(A) -- Normalize angle
C Function OPNFIL(PROMPT, STAT, IUNIT) -- let user open file
C OPNOUT(IFILE) -- create output file and write header
C OUTPUT(IFILE, T, Q, QP, U, UP) -- write variables at time T
C PRECMP -- pre-compute constants used in simulation
C TIMDAT(TIMEDT) -- get time and date from computer
C
C [1] Press et. al., Numerical Recipes, The Art of Scientific
C Computing. Cambridge Press, 1986.
C
 IMPLICIT NONE
 CHARACTER*80 INFILE, TITLE
 REAL NORMA, PARS, STEP, STEP2, STOPT, T, Y, YM, YP
 INTEGER I, IECHO, IFILE, ILOOP1, ILOOP2, IPRNT2, ISEC1,
 & ISEC2, NCOORD, NLOOP, NPARS, NSPEED, NTOT
C
 PARAMETER (NCOORD = 3, NSPEED = 1, IFILE = 1, NTOT = 4)
 DIMENSION Y(NTOT), YM(NTOT), YP(NTOT)
 PARAMETER (NPARS = 14)
 DIMENSION PARS(NPARS)
 COMMON /INPARS/ PARS, TITLE, INFILE
 SAVE /INPARS/
C
 EQUIVALENCE (PARS(13), STEP), (PARS(14), STOPT)
C
 WRITE(*, '(5A)')
 & ' 4-Bar linkage simulation program.'
 WRITE(*, '(5A)')
 & ' Version created December 11, 1989 by AUTOSIM'
 WRITE(*, '(5A)')
 & ' '
C
C Read input data
C
 CALL INPUT(Y, Y(NCOORD + 1))
 IPRNT2 = PARS(4)
C

269

C Compute constants in common block /PRCMP/ before starting.
C
 CALL PRECMP
C
C compute initial values of dependent coordinates.
C
 CALL MNEWT(20, Y(2), 2, 1.E-06, 1.E-06, Y)
C
C Option to echo data to output file
C
 CALL ECHO(IFILE, Y, Y(NCOORD + 1))
C
C Set up output file with simulated time histories
C
 CALL OPNOUT (IFILE)
 CALL TIME (ISEC1)
C
C Start by evaluating derivatives and printing variables at t=0
C
 T = 0.
 CALL DIFEQN(T, Y, YP, Y(NCOORD + 1), YP(NCOORD + 1))
 CALL OUTPUT(IFILE, T, Y, YP, Y(NCOORD + 1), YP(NCOORD + 1))
C
C Integration loop. Continue until printout time reaches final time.
C Use two evaluations of the derivatives to integrate over the step.
C
 NLOOP = STOPT / STEP / IPRNT2 + 1
 STEP2 = STEP / 2.
 DO 60 ILOOP1 = 1, NLOOP
 DO 50 ILOOP2 = 1, IPRNT2
 DO 10 I = 1, NTOT
 YM(I) = Y(I) + STEP2 * YP(I)
 10 CONTINUE
 CALL DIFEQN (T + STEP2, YM, YP, YM(NCOORD + 1),
 & YP(NCOORD + 1))
C
 DO 20 I = 1, NTOT
 Y(I) = Y(I) + STEP * YP(I)
 20 CONTINUE
C
 T = T + STEP
 CALL DIFEQN (T, Y, YP, Y(NCOORD + 1), YP(NCOORD + 1))
 50 CONTINUE
 CALL OUTPUT (IFILE, T, Y, YP, Y(NCOORD + 1), YP(NCOORD + 1))
 IF (T .GE. STOPT) GO TO 70
 60 CONTINUE
 70 CONTINUE
C
 CALL TIME (ISEC2)
C
C End of integration loop. Print final status of run
C
 WRITE (*, *) ' Termination at time =', T, ' sec.'
 WRITE (*,*) ' Computation efficiency: ', (ISEC2 - ISEC1) / T,
 & ' sec/sim. sec'
 WRITE (*,*) ' '

270

 CLOSE(IFILE)
 PAUSE ' Done'
 END
C===
 BLOCK DATA
C===
 CHARACTER*80 INFILE, TITLE
 REAL PARS
 INTEGER NPARS
C
 PARAMETER (NPARS = 14)
 DIMENSION PARS(NPARS)
 COMMON /INPARS/ PARS, TITLE, INFILE
 SAVE /INPARS/
C
 DATA PARS /1.0, 10.0, 100.0, 1.0, 10000.0, 0.5, 0.1, 0.2,
 & 0.3, 0.1, 0.3, 0.5, 0.005, 1.0/
 DATA INFILE /' '/
 DATA TITLE /'Default parameter values'/
 END
C===
 SUBROUTINE DIFEQN(T, Q, QP, U, UP)
C===
C This subroutine defines the equations of motion for the 4-bar
C linkage, which includes 1 degree of freedom.
C
C --> T real time
C --> Q real array of 3 generalized coordinates
C <-- QP real array of derivitives of Q
C --> U real array of 1 generalized speed
C <-- UP real array of derivative of U
C
C Each derivative evaluation requires 141 multiply/divides, 81
C add/subtracts, and 6 function/subroutine calls.
C
C (c) Mike Sayers and The Regents of The University of Michigan, 1989.
C All rights reserved.
C
 IMPLICIT NONE
 CHARACTER*80 INFILE, TITLE
 REAL BI33, BM, C, D, DEGREES, FORCEM, GEES, IPRINT, K,
 & L1, L2, L3, L4, L5, L6, L7, PARS, PC, Q, QP, S,
 & STEP, STOPT, T, U, UP, Z
 INTEGER NCOORD, NPARS, NSPEED
C
 PARAMETER (NCOORD = 3, NSPEED = 1)
 DIMENSION Q(NCOORD), QP(NCOORD), U(NSPEED), UP(NSPEED)
 DIMENSION C(3), FORCEM(1), S(3), Z(71)
 COMMON /DYVARS/ C, FORCEM, S, Z
 SAVE /DYVARS/
C
 PARAMETER (NPARS = 14)
 DIMENSION PARS(NPARS)
 COMMON /INPARS/ PARS, TITLE, INFILE
 SAVE /INPARS/
C
 EQUIVALENCE (PARS(1), BI33), (PARS(2), BM), (PARS(3), D),

271

 & (PARS(4), IPRINT), (PARS(5), K), (PARS(6), L1),
 & (PARS(7), L2), (PARS(8), L3), (PARS(9), L4),
 & (PARS(10), L5), (PARS(11), L6), (PARS(12), L7),
 & (PARS(13), STEP), (PARS(14), STOPT)
 DIMENSION PC(30)
 COMMON /PRCMP/ PC
 SAVE /PRCMP/
C
 PARAMETER (GEES = 9.80665)
 S(1) = SIN(Q(1))
 S(2) = SIN(Q(2))
 S(3) = SIN(Q(3))
 C(1) = COS(Q(1))
 C(2) = COS(Q(2))
 C(3) = COS(Q(3))
C
C
C Kinematical equations
C
 Z(1) = L5*S(3)
 Z(2) = C(3)*S(1)
 Z(3) = C(1)*S(3)
 Z(4) = (Z(2) -Z(3))
 Z(5) = Z(4)*S(2)
 Z(6) = C(1)*C(3)
 Z(7) = S(1)*S(3)
 Z(8) = (Z(6) + Z(7))
 Z(9) = Z(8)*C(2)
 Z(10) = (Z(5) -Z(9) + C(3))
 Z(11) = L4*Z(10)
 Z(12) = L1*Z(4)
 Z(13) = (Z(1) -Z(11) + Z(12))
 Z(14) = L5*C(3)
 Z(15) = Z(8)*S(2)
 Z(16) = Z(4)*C(2)
 Z(17) = (Z(15) + Z(16) + S(3))
 Z(18) = L4*Z(17)
 Z(19) = L1*Z(8)
 Z(20) = (Z(14) + Z(18) -Z(19))
 Z(21) = Z(13)/Z(20)
 Z(22) = (-Q(3) + Z(21))
 Q(3) = -Z(22)
 Z(23) = L1*C(2)
 Z(24) = C(1)*C(2)
 Z(25) = S(1)*S(2)
 Z(26) = (Z(24) -Z(25))
 Z(27) = L5*Z(26)
 Z(28) = C(2)*S(1)
 Z(29) = C(1)*S(2)
 Z(30) = (Z(28) + Z(29))
 Z(31) = L4*Z(30)
 Z(32) = (-Z(5) + Z(9))
 Z(33) = PC(1)*Z(32)
 Z(34) = (Z(23) -Z(27) -Z(31) -Z(33))
 Z(35) = L4*Z(26)
 Z(36) = L5*Z(30)
 Z(37) = L1*S(2)

272

 Z(38) = (Z(15) + Z(16))
 Z(39) = PC(1)*Z(38)
 Z(40) = (Z(35) -Z(36) + Z(37) -Z(39))
 Z(41) = Z(34)/Z(40)
 Q(2) = (Q(2) + Z(41))
 QP(1) = U(1)
 Z(42) = -(Z(25) -C(1)*C(2))*C(2)
 Z(43) = (Z(42)*C(3) + Z(30)*C(2)*S(3))
 Z(44) = PC(1)*(1 -Z(38)**2)
 Z(45) = Z(43)/Z(44)
 Z(46) = (-PC(1)*Z(38)*Z(45) + S(2))
 Z(47) = (1 -PC(2)*Z(46))
 QP(2) = -U(1)*Z(47)
 QP(3) = L1*U(1)*Z(45)
C
C define expression for strut
C
 Z(48) = L1*C(1)
 Z(49) = L1*S(1)
 Z(50) = (PC(21) -PC(19)*Z(26) + PC(20)*Z(30) -L2*Z(37) -L6*Z(48)
 & -L7*Z(49) -PC(15)*C(1) -PC(16)*S(1) -PC(17)*S(2))
 Z(51) = L7*Z(30)
 Z(52) = L6*Z(26)
 Z(53) = 1.0/SQRT(Z(50))
 FORCEM(1) = -(-PC(25) + K*SQRT(Z(50)) + U(1)*Z(53)
 & *(-PC(27)*Z(46)*(Z(23) -Z(51) -Z(52)) -PC(28)*C(1) +
 & PC(29)*C(2) + PC(30)*S(1)))
C
C Dynamical equations
C
 Z(54) = (Z(37) -L3*(1 -Z(47)))
 Z(55) = GEES*C(1)
 Z(56) = (-L1*U(1)**2 + GEES*S(1))
 Z(57) = Z(53)*FORCEM(1)
 Z(58) = L7*Z(57)
 Z(59) = L6*Z(57)
 Z(60) = L1*Z(57)
 Z(61) = (QP(1) -QP(3))
 Z(62) = (((Z(6) + Z(7))*Z(61) + Z(8)*QP(2))*C(2) -((Z(2)
 & -Z(3))*Z(61) + Z(4)*QP(2))*S(2))
 Z(63) = (QP(1) + QP(2))
 Z(64) = U(1)*(QP(2)*C(2) -(2.0*Z(43)*Z(62)*Z(39)**2 + Z(44)
 & *(PC(1)*Z(43)*Z(62) -Z(38)*((PC(22)*Z(29)*QP(2)
 & -PC(1)*Z(30)*QP(3))*C(2)*C(3) + PC(1)*(C(3)
 & *(Z(28)*Z(63)*C(2) + (Z(24)*QP(1) -Z(25)*QP(2))*S(2)) +
 & (Z(42)*QP(3) -(Z(24) -Z(25))*Z(63)*C(2) +
 & Z(30)*QP(2)*S(2))*S(3)))))/Z(44)**2)
 Z(65) = BM*Z(54)
 Z(66) = BM*Z(23)
 UP(1) = (-Z(46)*(PC(23)*Z(64) + PC(24)*(Z(23) -Z(51)
 & -Z(52))*Z(53)*FORCEM(1)) + Z(54)*(-Z(30)*Z(58)
 & -Z(26)*Z(59) + Z(60)*C(2)) -Z(65)*(-PC(8)*Z(64) +
 & Z(56)*C(2) + Z(55)*S(2)) + Z(23)*(L2*Z(57) -Z(26)*Z(58)
 & + Z(30)*Z(59) -Z(60)*S(2)) + Z(66)*(PC(9)
 & *(U(1)*Z(46))**2 -Z(55)*C(2) +
 & Z(56)*S(2)))/(PC(23)*Z(46)**2 + Z(54)*Z(65) +
 & Z(23)*Z(66))

273

 RETURN
 END
C===
 SUBROUTINE ECHO(IFILE, Q, U)
C===
C This subroutine prompts the user for the name of an optional echo
C file for the 4-bar linkage. If a file is selected, all of the
C parameter values and initial conditions are written to confirm that
C the intended values were used in the simulation.
C
C (c) Mike Sayers and The Regents of The University of Michigan, 1989.
C All rights reserved.
C
 IMPLICIT NONE
 CHARACTER*24 TIMEDT
 CHARACTER*80 INFILE, OPNFIL, TITLE
 REAL BI33, BM, D, DEGREES, GEES, IPRINT, K, L1, L2, L3,
 & L4, L5, L6, L7, PARS, Q, STEP, STOPT, T, U
 INTEGER IFILE, NCOORD, NPARS, NSPEED
C
 PARAMETER (NPARS = 14)
 DIMENSION PARS(NPARS)
 COMMON /INPARS/ PARS, TITLE, INFILE
 SAVE /INPARS/
C
 EQUIVALENCE (PARS(1), BI33), (PARS(2), BM), (PARS(3), D),
 & (PARS(4), IPRINT), (PARS(5), K), (PARS(6), L1),
 & (PARS(7), L2), (PARS(8), L3), (PARS(9), L4),
 & (PARS(10), L5), (PARS(11), L6), (PARS(12), L7),
 & (PARS(13), STEP), (PARS(14), STOPT)
 PARAMETER (NCOORD = 3, NSPEED = 1)
 DIMENSION Q(NCOORD), U(NSPEED)
 PARAMETER (GEES = 9.80665)
C
 IF (OPNFIL('Name of (optional) file to echo the input data',
 & 'OPTOUT', IFILE) .EQ. ' ') RETURN
C
 CALL TIMDAT(TIMEDT)
C
 WRITE(IFILE, '(A)') 'PARSFILE'
 WRITE(IFILE, '(5A)')
 & 'Echo file created by:'
 WRITE(IFILE, '(5A)')
 & '4-Bar linkage simulation program.'
 WRITE(IFILE, '(5A)')
 & 'Version created December 11, 1989 by AUTOSIM'
 WRITE(IFILE, '(5A)')
 & ' '
 WRITE(IFILE, '(A,T8,A)') 'TITLE', TITLE
 WRITE(IFILE, '(/A,A)') '* Input File: ', INFILE
 WRITE(IFILE, '(A, A)') '* Run was made ', TIMEDT
 WRITE(IFILE, '(/A/)') '* PARAMETER VALUES'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'BI33', BI33,
 & 'moment of inertia of B (kg-m2)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'BM', BM,
 & 'mass of B (kg)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'D', D,

274

 & 'coefficient in term in strut (N-sec/rad/m)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'IPRINT', IPRINT,
 & 'number of time steps between output printing (counts)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'K', K,
 & 'stiffness coefficient in term in strut (N/m)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'L1', L1,
 & 'coordinate of attachment point for B in dir 1 (m)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'L2', L2,
 & 'coordinate of strut pt 1 in dir 2 (m)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'L3', L3,
 & 'coordinate of center of mass of B in dir 2 (m)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'L4', L4,
 & 'coordinate of b-point in dir 2 (m)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'L5', L5,
 & 'coordinate of attachment point for C in dir 1 (m)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'L6', L6,
 & 'coordinate of strut pt 2 in dir 1 (m)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'L7', L7,
 & 'coordinate of strut pt 2 in dir 2 (m)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'STEP', STEP,
 & 'simulation time step (sec)'
 WRITE(IFILE, '(A,T8,G13.6,T24,5A)') 'STOPT', STOPT,
 & 'simulation stop time (sec)'
 WRITE(IFILE, '(/A/)') '* INITIAL CONDITIONS'
 WRITE(IFILE, '(A, T8, G13.6, T24, 5A)') 'Q(1)', Q(1),
 & 'Rotation of A relative to the inertial reference about axis'
 &,' #3. (rad)'
 WRITE(IFILE, '(A, T8, G13.6, T24, 5A)') 'Q(2)', Q(2),
 & 'Rotation of B relative to A about axis #3. (rad)'
 WRITE(IFILE, '(A, T8, G13.6, T24, 5A)') 'Q(3)', Q(3),
 & 'Rotation of C relative to the inertial reference about axis'
 &,' #3. (rad)'
 WRITE(IFILE, '(A, T8, G13.6, T24, 5A)') 'U(1)', U(1),
 & 'Abs. rot. of A, axis 3. (rad/s)'
 WRITE(IFILE, '(/A)') 'END'
 CLOSE(IFILE)
 RETURN
 END
C===
 SUBROUTINE INITNR(X, ALPHA, BETA, Q)
C===
C This subroutine computes coefficients for a Newton-Raphson iteration
C needed to establish the initial values of 2 computed coordinates in
C the 4-bar linkage.
C
C (c) Mike Sayers and The Regents of The University of Michigan, 1989.
C All rights reserved.
C
 IMPLICIT NONE
 REAL ALPHA, BETA, BI33, BM, D, DEGREES, GEES, IPRINT, K,
 & L1, L2, L3, L4, L5, L6, L7, PARS, PC, Q, STEP,
 & STOPT, T, X
 INTEGER NPARS
 CHARACTER*80 INFILE, TITLE
C
 DIMENSION PC(30)
 COMMON /PRCMP/ PC

275

 SAVE /PRCMP/
C
 PARAMETER (NPARS = 14)
 DIMENSION PARS(NPARS)
 COMMON /INPARS/ PARS, TITLE, INFILE
 SAVE /INPARS/
C
 EQUIVALENCE (PARS(1), BI33), (PARS(2), BM), (PARS(3), D),
 & (PARS(4), IPRINT), (PARS(5), K), (PARS(6), L1),
 & (PARS(7), L2), (PARS(8), L3), (PARS(9), L4),
 & (PARS(10), L5), (PARS(11), L6), (PARS(12), L7),
 & (PARS(13), STEP), (PARS(14), STOPT)
 PARAMETER (GEES = 9.80665)
 DIMENSION X(2), Q(*), BETA(*), ALPHA(2, 2)
C
 BETA(1) = (-L1*COS(X(1)) + L4*(COS(X(1))*SIN(Q(1)) +
 & COS(Q(1))*SIN(X(1))) + L5*(COS(Q(1))*COS(X(1))
 & -SIN(Q(1))*SIN(X(1))) + (L1 -L5)*(-SIN(X(1))
 & *(COS(X(2))*SIN(Q(1)) -COS(Q(1))*SIN(X(2))) + COS(X(1))
 & *(COS(Q(1))*COS(X(2)) + SIN(Q(1))*SIN(X(2)))))
 ALPHA(1,1) = -(-L5*(COS(X(1))*SIN(Q(1)) + COS(Q(1))*SIN(X(1))) +
 & L4*(COS(Q(1))*COS(X(1)) -SIN(Q(1))*SIN(X(1))) +
 & L1*SIN(X(1)) -(L1 -L5)*(SIN(X(1))*(COS(Q(1))*COS(X(2)) +
 & SIN(Q(1))*SIN(X(2))) + COS(X(1))*(COS(X(2))*SIN(Q(1))
 & -COS(Q(1))*SIN(X(2)))))
 ALPHA(1,2) = -(L1 -L5)*(COS(X(1))*(COS(X(2))*SIN(Q(1))
 & -COS(Q(1))*SIN(X(2))) + SIN(X(1))*(COS(Q(1))*COS(X(2)) +
 & SIN(Q(1))*SIN(X(2))))
 BETA(2) = -(L5*SIN(X(2)) -L4*(COS(X(2)) + SIN(X(1))
 & *(COS(X(2))*SIN(Q(1)) -COS(Q(1))*SIN(X(2))) -COS(X(1))
 & *(COS(Q(1))*COS(X(2)) + SIN(Q(1))*SIN(X(2)))) + L1
 & *(COS(X(2))*SIN(Q(1)) -COS(Q(1))*SIN(X(2))))
 ALPHA(2,1) = -L4*(SIN(X(1))*(COS(Q(1))*COS(X(2)) +
 & SIN(Q(1))*SIN(X(2))) + COS(X(1))*(COS(X(2))*SIN(Q(1))
 & -COS(Q(1))*SIN(X(2))))
 ALPHA(2,2) = (L5*COS(X(2)) + L4*(SIN(X(2)) + SIN(X(1))
 & *(COS(Q(1))*COS(X(2)) + SIN(Q(1))*SIN(X(2))) + COS(X(1))
 & *(COS(X(2))*SIN(Q(1)) -COS(Q(1))*SIN(X(2)))) -L1
 & *(COS(Q(1))*COS(X(2)) + SIN(Q(1))*SIN(X(2))))
 RETURN
 END
C===
 SUBROUTINE INPUT(Q, U)
C===
C This subroutine prompts the user for the name of an optional
C parameter file for the 4-bar linkage. If a file is selected,
C parameter values are read to override the default values.
C
C (c) Mike Sayers and The Regents of The University of Michigan, 1989.
C All rights reserved.
C
 IMPLICIT NONE
 LOGICAL ISIT
 CHARACTER*80 BUFFER, ECHFIL, INFILE, OPNFIL, QUEUE, TITLE
 CHARACTER*8 CHAR8, NAMES, QC, UC
 REAL BI33, BM, D, DEGREES, GEES, IPRINT, K, L1, L2, L3,
 & L4, L5, L6, L7, PARS, PSCALE, Q, QINIT, QSCALE,

276

 & STEP, STOPT, T, U, UINIT, USCALE
 INTEGER IFILE, ILOOP, IQUEUE, LENSTR, LSTRNG, MAXQ, NCOORD,
 & NPARS, NQUEUE, NSPEED
C
 PARAMETER (NPARS = 14)
 DIMENSION PARS(NPARS)
 COMMON /INPARS/ PARS, TITLE, INFILE
 SAVE /INPARS/
C
 EQUIVALENCE (PARS(1), BI33), (PARS(2), BM), (PARS(3), D),
 & (PARS(4), IPRINT), (PARS(5), K), (PARS(6), L1),
 & (PARS(7), L2), (PARS(8), L3), (PARS(9), L4),
 & (PARS(10), L5), (PARS(11), L6), (PARS(12), L7),
 & (PARS(13), STEP), (PARS(14), STOPT)
 PARAMETER (GEES = 9.80665)
 PARAMETER (NCOORD = 3, NSPEED = 1, MAXQ = 20, IFILE = 1)
 DIMENSION NAMES(NPARS), Q(NCOORD), QC(NCOORD), QINIT(NCOORD),
 & QUEUE(MAXQ), QSCALE(NCOORD), U(NSPEED), UC(NSPEED),
 & UINIT(NSPEED), USCALE(NSPEED)
 DATA QINIT /NCOORD*0./, UINIT /NSPEED*0./
 DATA QC /'Q(1)', 'Q(2)', 'Q(3)'/
 DATA UC /'U(1)'/
 DATA QSCALE /1, 1, 1/
 DATA USCALE /1/
 DATA NAMES /'BI33', 'BM', 'D', 'IPRINT', 'K', 'L1', 'L2',
 & 'L3', 'L4', 'L5', 'L6', 'L7', 'STEP', 'STOPT'/
 NQUEUE = 0
 IQUEUE = 0
C
C Open file with parameter values and initial conditions
C
 5 INFILE = OPNFIL ('Name of (optional) file with parameter values',
 & 'OPTIN', IFILE)
 6 IF (INFILE .NE. '') THEN
 READ(IFILE, '(A)') CHAR8
C
 IF (CHAR8 .EQ. 'END') GO TO 100
 IF (CHAR8 .NE. 'PARSFILE') THEN
 CLOSE(IFILE)
 WRITE (*, '(A)') ' Error--File did not begin with "PARSFILE"'
 IF (IQUEUE .EQ. 0) THEN
 GO TO 5
 ELSE
 GO TO 100
 END IF
 END IF
C
C Read line from file. CHAR8 is the keyword, checked for:
C o TITLE keyword,
C o parameter keyword (from NAMES array),
C o initial value of generalized coordinate (keyword from QC array),
C o initial value of generalized speed (keyword from UC array),
C o (possibly) keyword for other input subroutine, or
C o END keyword.
C All other lines are ignored. Also, all lines are ignored after END
C is found, and any line with a '*' in column 1 is ignored.
C

277

 10 READ(IFILE, '(A8,A80)', END=100, ERR=100) CHAR8, BUFFER
 IF (CHAR8 .EQ. 'TITLE') THEN
 TITLE = BUFFER
 GO TO 10
 ELSE IF (CHAR8 .EQ. 'END') THEN
 GO TO 100
 ELSE IF (CHAR8(1:1) .EQ. '*') THEN
 GO TO 10
 ELSE IF (CHAR8 .EQ. 'PARSFILE') THEN
 INQUIRE (FILE=BUFFER, EXIST=ISIT)
 IF (ISIT) THEN
 NQUEUE = NQUEUE + 1
 QUEUE (NQUEUE) = BUFFER
 ELSE
 LSTRNG = LENSTR (BUFFER)
 WRITE (*,'(A,A,A)') 'Error--PARSFILE "', BUFFER(:LSTRNG),
 & '"not found (skipped).'
 END IF
 GO TO 10
 END IF
C
C Check for names of parameters
C
 DO 20 ILOOP = 1, NPARS
 IF (CHAR8 .EQ. NAMES(ILOOP)) THEN
 READ(BUFFER, '(G13.0)') PARS(ILOOP)
 GO TO 10
 END IF
 20 CONTINUE
C
C Check for names of generalized coordinates (initial conditions)
C
 DO 30 ILOOP = 1, NCOORD
 IF (CHAR8 .EQ. QC(ILOOP)) THEN
 READ(BUFFER, '(G13.0)') QINIT(ILOOP)
 GO TO 10
 END IF
 30 CONTINUE
C
C Check for names of generalized speeds (initial conditions)
C
 DO 40 ILOOP = 1, NSPEED
 IF (CHAR8 .EQ. UC(ILOOP)) THEN
 READ(BUFFER, '(G13.0)') UINIT(ILOOP)
 GO TO 10
 END IF
 40 CONTINUE
C
 GO TO 10
 END IF
C
C Close this file and process other PARS files that were referenced.
C
 100 CLOSE (IFILE)
 IF (IQUEUE .LT. NQUEUE) THEN
 IQUEUE = IQUEUE + 1
 INFILE = QUEUE (IQUEUE)

278

 OPEN (IFILE, STATUS='OLD', FILE=INFILE)
 WRITE (*, '(A,A)') ' Reading from PARSFILE ', INFILE
 GO TO 6
 END IF
C
C Set initial conditions
C
 DO 110 ILOOP = 1, NCOORD
 110 Q(ILOOP) = QINIT(ILOOP) / QSCALE(ILOOP)
C
 DO 120 ILOOP = 1, NSPEED
 120 U(ILOOP) = UINIT(ILOOP) / USCALE(ILOOP)
C
C Convert units as needed.
C
C
 RETURN
 END
C===
 FUNCTION LENSTR (STRING)
C===
C count characters in left-justified string. M. Sayers, 8-9-87
C
 CHARACTER*(*) STRING
 N = LEN (STRING)
 DO 10 L = N, 1, -1
 IF (STRING(L:L) .NE. ' ') THEN
 LENSTR = L
 RETURN
 END IF
 10 CONTINUE
 LENSTR = 1
 RETURN
 END
C===
 SUBROUTINE LUDCMP(A,N,NP,INDX,D)
C===
C This subroutine is from Numerical Recipes. It decomposes a square
C matrix A into LU form.
C
 PARAMETER (NMAX=100,TINY=1.0E-20)
 DIMENSION A(NP,NP),INDX(N),VV(NMAX)
 D=1.
 DO 12 I=1,N
 AAMAX=0.
 DO 11 J=1,N
 IF (ABS(A(I,J)).GT.AAMAX) AAMAX=ABS(A(I,J))
11 CONTINUE
 IF (AAMAX.EQ.0.) PAUSE 'Singular matrix.'
 VV(I)=1./AAMAX
12 CONTINUE
 DO 19 J=1,N
 IF (J.GT.1) THEN
 DO 14 I=1,J-1
 SUM=A(I,J)
 IF (I.GT.1)THEN
 DO 13 K=1,I-1

279

 SUM=SUM-A(I,K)*A(K,J)
13 CONTINUE
 A(I,J)=SUM
 ENDIF
14 CONTINUE
 ENDIF
 AAMAX=0.
 DO 16 I=J,N
 SUM=A(I,J)
 IF (J.GT.1)THEN
 DO 15 K=1,J-1
 SUM=SUM-A(I,K)*A(K,J)
15 CONTINUE
 A(I,J)=SUM
 ENDIF
 DUM=VV(I)*ABS(SUM)
 IF (DUM.GE.AAMAX) THEN
 IMAX=I
 AAMAX=DUM
 ENDIF
16 CONTINUE
 IF (J.NE.IMAX)THEN
 DO 17 K=1,N
 DUM=A(IMAX,K)
 A(IMAX,K)=A(J,K)
 A(J,K)=DUM
17 CONTINUE
 D=-D
 VV(IMAX)=VV(J)
 ENDIF
 INDX(J)=IMAX
 IF(J.NE.N)THEN
 IF(A(J,J).EQ.0.)A(J,J)=TINY
 DUM=1./A(J,J)
 DO 18 I=J+1,N
 A(I,J)=A(I,J)*DUM
18 CONTINUE
 ENDIF
19 CONTINUE
 IF(A(N,N).EQ.0.)A(N,N)=TINY
 RETURN
 END
C===
 SUBROUTINE LUBKSB(A,N,NP,INDX,B)
C===
C This subroutine is from Numerical Recipes. It solves a set of
C simultaneous linear equations by back-substitution after an LU
C decomposition. It is used here for performing a Newton-Raphson
C solution for nonlinear equations.
C
 DIMENSION A(NP,NP),INDX(N),B(N)
 II=0
 DO 12 I=1,N
 LL=INDX(I)
 SUM=B(LL)
 B(LL)=B(I)
 IF (II.NE.0)THEN

280

 DO 11 J=II,I-1
 SUM=SUM-A(I,J)*B(J)
11 CONTINUE
 ELSE IF (SUM.NE.0.) THEN
 II=I
 ENDIF
 B(I)=SUM
12 CONTINUE
 DO 14 I=N,1,-1
 SUM=B(I)
 IF(I.LT.N)THEN
 DO 13 J=I+1,N
 SUM=SUM-A(I,J)*B(J)
13 CONTINUE
 ENDIF
 B(I)=SUM/A(I,I)
14 CONTINUE
 RETURN
 END
C===
 SUBROUTINE MNEWT(NTRIAL,X,N,TOLX,TOLF,Q)
C===
C This subroutine is from Numerical Recipes, modified to take the
C additional argument Q needed by user function INITNR.

 PARAMETER (NP=10)
 DIMENSION X(*),ALPHA(NP,NP),BETA(NP),INDX(NP),Q(*)
 IF (N .GT. NP) THEN
 WRITE(*,*) ' Oops! Dimension NP in MNEWT is too small. Change '
 WRITE(*,*) ' to ', N, ' and recompile.'
 PAUSE
 STOP
 END IF
 DO 13 K=1,NTRIAL
 CALL INITNR(X,ALPHA,BETA,Q)
 ERRF=0.
 DO 11 I=1,N
 ERRF=ERRF+ABS(BETA(I))
11 CONTINUE
 IF(ERRF.LE.TOLF)RETURN
 CALL LUDCMP(ALPHA,N,N,INDX,D)
 CALL LUBKSB(ALPHA,N,N,INDX,BETA)
 ERRX=0.
 DO 12 I=1,N
 ERRX=ERRX+ABS(BETA(I))
 X(I)=X(I)+BETA(I)
12 CONTINUE
 IF(ERRX.LE.TOLX)RETURN
13 CONTINUE
 RETURN
 END
C===
 FUNCTION NORMA(A)
C===
C normalize angle
C
 REAL A, NORMA, PI

281

 PARAMETER (PI=3.141592653589793)
 IF (A .GE. PI) THEN
 NORMA = A - PI
 ELSE IF (A .LE. -PI) THEN
 NORMA = A + PI
 ELSE
 NORMA = A
 END IF
 RETURN
 END
C===
 FUNCTION OPNFIL (PROMPT, STAT, IFILE)
C===
C This function tries to get a file name from the user and open the
C file.
C
C --> PROMPT string Message to prompt user
C --> STAT string Status of file ("NEW" = mandatory output,
C "OLD" = mandatory input,
C "OPTIN" = optional input,
C "OPTOUT" = optional output)
C --> IFILE integer Fortran I/O unit for file
C <-- OPNFIL string name of file opened or " " if no file selected
C
C M. Sayers January 30, 1989
C
 LOGICAL ISIT
 CHARACTER*(*) PROMPT, STAT, OPNFIL
 CHARACTER*3 STAT2
 INTEGER IFILE, L, LENSTR
C
C Set Fortran STATUS type
C
 IF (STAT .EQ. 'NEW' .OR. STAT .EQ. 'OPTOUT') THEN
 STAT2 = 'NEW'
 ELSE
 STAT2 = 'OLD'
 END IF
C
C Ask user for file name, and check for no response (blank line)
C
 100 WRITE(*, '(A, A, A\)') ' ', PROMPT, ': '
 READ(*, '(A)') OPNFIL
 IF (OPNFIL .EQ. ' ') THEN
 IF (STAT .EQ. 'OPTIN' .OR. STAT .EQ. 'OPTOUT') THEN
 RETURN
 ELSE IF (STAT .EQ. 'NEW') THEN
 WRITE (*,'(A)') ' Output file is required!'
 GO TO 100
 ELSE
 WRITE (*,'(A)') ' Input file is required!'
 GO TO 100
 END IF
 END IF
C
C Deal with existance of file (or lack thereof)
C

282

 INQUIRE (FILE=OPNFIL, EXIST=ISIT)
 IF ((.NOT. ISIT) .AND. (STAT2 .EQ. 'OLD')) THEN
 L = LENSTR(OPNFIL)
 WRITE (*, '(A, A, A)') ' File "', OPNFIL(:L),
 & '" does not exist. Try again.'
 GO TO 100
 ELSE IF (ISIT .AND. STAT2 .EQ. 'NEW') THEN
 OPEN (IFILE, FILE=OPNFIL)
 CLOSE (IFILE, STATUS='DELETE')
 END IF
C
C Open file and write blank line on screen
C
 OPEN(IFILE, STATUS=STAT2, FILE=OPNFIL)
 WRITE (*,'(A)') ' '
 RETURN
 END
C===
 SUBROUTINE OPNOUT(IFILE)
C===
C This subroutine prompts the user for the name of a file set that
C will be created to store time histories of the 7 output variables
C computed by the 4-bar linkage simulation program.
C
C A text file is created and opened, and labeling information is
C written to facilitate post-processing of the data. Then, the text
C file is closed and a corresponding binary file is created and opened
C to store the numerical values of the output variables.
C
C (c) Mike Sayers and The Regents of The University of Michigan, 1989.
C All rights reserved.
C
 IMPLICIT NONE
 CHARACTER*80 FNOUT, INFILE, OPNFIL, TITLE
 LOGICAL ISIT
 REAL BI33, BM, D, DEGREES, GEES, IPRINT, K, L1, L2, L3,
 & L4, L5, L6, L7, PARS, STEP, STOPT, T
 INTEGER IFILE, ILOOP, IPRNT2, LENSTR, LSTRNG, MAXBUF,
 & NBYTES, NCHAN, NCOORD, NPARS, NRECS, NSAMP, NSCAN,
 & NSPEED, NUMKEY, NVARS
 CHARACTER*32 GENNAM, LONGNM, RIGBOD
 CHARACTER*24 TIMEDT
 CHARACTER*8 CHAR8, SHORTN, UNITSN
C
 PARAMETER (NPARS = 14)
 DIMENSION PARS(NPARS)
 COMMON /INPARS/ PARS, TITLE, INFILE
 SAVE /INPARS/
C
 EQUIVALENCE (PARS(13), STEP), (PARS(14), STOPT)
C
 PARAMETER (NVARS = 7, NUMKEY = 1)
 DIMENSION LONGNM(NVARS), GENNAM(NVARS), RIGBOD(NVARS),
 & SHORTN(NVARS), UNITSN(NVARS)
C
C Prompt user to provide name of output file. File is opened and
C attached to Fortran unit IFILE.

283

C
 FNOUT = OPNFIL('Name of (required) file for time history outputs',
 & 'NEW', IFILE)
 NCHAN = 0
 IPRNT2 = PARS(4)
C
 NCHAN = NCHAN + 1
 LONGNM (NCHAN) = 'strut force'
 SHORTN (NCHAN) = 'F'
 GENNAM (NCHAN) = 'Force'
 UNITSN (NCHAN) = 'N'
 RIGBOD (NCHAN) = 'B'
C
 NCHAN = NCHAN + 1
 LONGNM (NCHAN) = 'X coordinate of B*'
 SHORTN (NCHAN) = 'B* X'
 GENNAM (NCHAN) = 'Translation'
 UNITSN (NCHAN) = 'm'
 RIGBOD (NCHAN) = 'B'
C
 NCHAN = NCHAN + 1
 LONGNM (NCHAN) = 'Y coordinate of B*'
 SHORTN (NCHAN) = 'B* Y'
 GENNAM (NCHAN) = 'Translation'
 UNITSN (NCHAN) = 'm'
 RIGBOD (NCHAN) = 'B'
C
 NCHAN = NCHAN + 1
 LONGNM (NCHAN) = 'Rot. of A rel. to N, axis #3'
 SHORTN (NCHAN) = 'Q(1)'
 GENNAM (NCHAN) = 'Rotation'
 UNITSN (NCHAN) = 'rad'
 RIGBOD (NCHAN) = 'A'
C
 NCHAN = NCHAN + 1
 LONGNM (NCHAN) = 'Rot. of B rel. to A, axis #3'
 SHORTN (NCHAN) = 'Q(2)'
 GENNAM (NCHAN) = 'Rotation'
 UNITSN (NCHAN) = 'rad'
 RIGBOD (NCHAN) = 'B'
C
 NCHAN = NCHAN + 1
 LONGNM (NCHAN) = 'Rot. of C rel. to N, axis #3'
 SHORTN (NCHAN) = 'Q(3)'
 GENNAM (NCHAN) = 'Rotation'
 UNITSN (NCHAN) = 'rad'
 RIGBOD (NCHAN) = 'C'
C
 NCHAN = NCHAN + 1
 LONGNM (NCHAN) = 'angle of B rel. to N'
 SHORTN (NCHAN) = 'B-angle'
 GENNAM (NCHAN) = 'Rotation Angle'
 UNITSN (NCHAN) = 'rad'
 RIGBOD (NCHAN) = 'B'
C
C Write Header Info for ERD file
C

284

C Set parameters needed to write header for ERD format file
C NUMKEY = 1 for 32-bit floating-point binary
C NSAMP = number of samples
C NRECS = number of "records" in output file
C NBYTES = number of bytes/record
C
 NSAMP = STOPT / STEP / IPRNT2 + 1
 NBYTES = 4 * NCHAN
 NRECS = NSAMP
C
C Write standard ERD file heading.
C
 WRITE(IFILE, '(A)') 'ERDFILEV2.00'
 WRITE(IFILE, 100) NCHAN, NSAMP, NRECS, NBYTES, NUMKEY, STEP*IPRNT2
 WRITE(IFILE, '(A,A)') 'TITLE ', TITLE
 WRITE(IFILE, 110) 'SHORTNAM', (SHORTN(ILOOP), ILOOP=1, NCHAN)
 WRITE(IFILE, 120) 'LONGNAME', (LONGNM(ILOOP), ILOOP=1, NCHAN)
 WRITE(IFILE, 110) 'UNITSNAM', (UNITSN(ILOOP), ILOOP=1, NCHAN)
 WRITE(IFILE, 120) 'GENNAME ', (GENNAM(ILOOP), ILOOP=1, NCHAN)
 WRITE(IFILE, 120) 'RIGIBODY', (RIGBOD(ILOOP), ILOOP=1, NCHAN)
 WRITE(IFILE, '(A)') 'XLABEL Time'
 WRITE(IFILE, '(A)') 'XUNITS sec'
C
 IF (INFILE .EQ. ' ') THEN
 WRITE(IFILE, '(A)') 'HISTORY No input file (used defaults)'
 ELSE
 WRITE(IFILE, '(A, A)') 'HISTORY Input parameter file was ',
 & INFILE
 END IF
 CALL TIMDAT(TIMEDT)
 WRITE(IFILE, '(A,A)')
 & 'HISTORY Data generated with 4-bar linkage at '
 &, TIMEDT
 WRITE(IFILE, '(A)') 'END'
C
C Close (text) header and create binary file.
C
 CLOSE(IFILE)
 LSTRNG = LENSTR(FNOUT)
 FNOUT = FNOUT (:LSTRNG) // '.BIN'
 INQUIRE(FILE=FNOUT, EXIST=ISIT)
 IF (ISIT) THEN
 OPEN (IFILE, FILE=FNOUT)
 CLOSE (IFILE, STATUS='DELETE')
 END IF
C
 OPEN(IFILE, FILE=FNOUT, STATUS='NEW', ACCESS='SEQUENTIAL',
 & FORM='UNFORMATTED')
C
 100 FORMAT (5(I6,','),G13.6)
 110 FORMAT (A8, 7A8)
 120 FORMAT (A8, 7A32)
 RETURN
 END
C===
 SUBROUTINE OUTPUT(IFILE, T, Q, QP, U, UP)
C===

285

C --> IFILE integer Fortran i/o unit for output
C --> T real time
C --> Q real array of 3 generalized coordinates
C --> QP real array of derivitives of Q
C --> U real array of 1 generalized speed
C --> UP real array of derivatives of U
C
C This subroutine writes the values of the 7 output variables computed
C by the 4-bar linkage simulation program into an output file, using
C the values at time T.
C
C (c) Mike Sayers and The Regents of The University of Michigan, 1989.
C All rights reserved.
C
 IMPLICIT NONE
 CHARACTER*80 INFILE, TITLE
 REAL BI33, BM, C, D, DEGREES, FORCEM, GEES, IPRINT, K,
 & L1, L2, L3, L4, L5, L6, L7, OUTBUF, PARS, PC, Q, QP,
 & S, STEP, STOPT, T, U, UP, Z
 INTEGER IFILE, ILOOP, NCOORD, NPARS, NSPEED, NVARS
C
 PARAMETER (NCOORD = 3, NSPEED = 1, NVARS = 7)
 DIMENSION Q(NCOORD), QP(NCOORD), U(NSPEED), UP(NSPEED),
 & OUTBUF(NVARS)
 DIMENSION PC(30)
 COMMON /PRCMP/ PC
 SAVE /PRCMP/
C
 DIMENSION C(3), FORCEM(1), S(3), Z(71)
 COMMON /DYVARS/ C, FORCEM, S, Z
 SAVE /DYVARS/
C
 PARAMETER (NPARS = 14)
 DIMENSION PARS(NPARS)
 COMMON /INPARS/ PARS, TITLE, INFILE
 SAVE /INPARS/
C
 EQUIVALENCE (PARS(1), BI33), (PARS(2), BM), (PARS(3), D),
 & (PARS(4), IPRINT), (PARS(5), K), (PARS(6), L1),
 & (PARS(7), L2), (PARS(8), L3), (PARS(9), L4),
 & (PARS(10), L5), (PARS(11), L6), (PARS(12), L7),
 & (PARS(13), STEP), (PARS(14), STOPT)
 PARAMETER (GEES = 9.80665)
 Z(67) = (Q(1) + Q(2))
 Z(68) = L3*Z(26)
 Z(69) = (Z(49) + Z(68))
 Z(70) = L3*Z(30)
 Z(71) = (Z(48) -Z(70))
C
C fill buffer with output variables.
C
 OUTBUF(1) = -FORCEM(1)
 OUTBUF(2) = Z(71)
 OUTBUF(3) = Z(69)
 OUTBUF(4) = Q(1)
 OUTBUF(5) = Q(2)
 OUTBUF(6) = Q(3)

286

 OUTBUF(7) = Z(67)
C
C The following line writes to an unformatted binary file
C
 WRITE (IFILE) (OUTBUF(ILOOP), ILOOP=1, NVARS)
C
C--The next 3 lines are for the Macintosh
C
 IF (T .EQ. 0.) WRITE (*, '(/A/7X,A)') ' Progress:','sec'
 CALL TOOLBX (Z'89409000', 0, -11)
 WRITE (*, '(F6.2)') T
 RETURN
 END
C===
 SUBROUTINE PRECMP
C===
C This subroutine defines all constants that can be pre-computed for
C the 4-bar linkage. The constants are put into the COMMON block
C /PRECMP/
C
C (c) Mike Sayers and The Regents of The University of Michigan, 1989.
C All rights reserved.
C
 IMPLICIT NONE
 CHARACTER*80 INFILE, TITLE
 REAL BI33, BM, D, DEGREES, GEES, IPRINT, K, L1, L2, L3,
 & L4, L5, L6, L7, PARS, PC, STEP, STOPT
 INTEGER NPARS
C
 DIMENSION PC(30)
 COMMON /PRCMP/ PC
 SAVE /PRCMP/
C
 PARAMETER (NPARS = 14)
 DIMENSION PARS(NPARS)
 COMMON /INPARS/ PARS, TITLE, INFILE
 SAVE /INPARS/
C
 EQUIVALENCE (PARS(1), BI33), (PARS(2), BM), (PARS(3), D),
 & (PARS(4), IPRINT), (PARS(5), K), (PARS(6), L1),
 & (PARS(7), L2), (PARS(8), L3), (PARS(9), L4),
 & (PARS(10), L5), (PARS(11), L6), (PARS(12), L7),
 & (PARS(13), STEP), (PARS(14), STOPT)
 PARAMETER (GEES = 9.80665)
C
 PC(1) = (L1 -L5)
 PC(2) = L1/L4
 PC(3) = SQRT((L1 -L6)**2 + (L2 -L7)**2)
 PC(4) = 1.0/L4
 PC(5) = D*L1
 PC(6) = (L2 -L3)
 PC(7) = L1*BI33/L4
 PC(8) = L1*L3/L4
 PC(9) = L3*PC(2)**2
 PC(10) = L6**2
 PC(11) = L2*L6
 PC(12) = L2**2

287

 PC(13) = L2*L7
 PC(14) = L1**2
 PC(15) = L1*L6
 PC(16) = L1*L7
 PC(17) = L1*L2
 PC(18) = L7**2
 PC(19) = 2.0*PC(13)
 PC(20) = 2.0*PC(11)
 PC(21) = (PC(10) + PC(12) + PC(14) + PC(18))
 PC(22) = 2.0*PC(1)
 PC(23) = PC(2)*PC(7)
 PC(24) = PC(2)*PC(6)
 PC(25) = K*PC(3)
 PC(26) = L2*PC(4)
 PC(27) = PC(5)*PC(26)
 PC(28) = L7*PC(5)
 PC(29) = L2*PC(5)
 PC(30) = L6*PC(5)
 RETURN
 END
**
 SUBROUTINE TIMDAT (TIMEDT)
**
C Get date and time. On the Mac, this requires the TIME and DATE
C subroutines from Absoft.
C
C by M. Sayers, 1986.
C
C <-- TIMEDT char*24 string containing time & date.
C
 CHARACTER*24 TIMEDT
 CHARACTER*36 MONTHS
 INTEGER*4 M, IDAY, IYEAR, ISEC
 INTEGER*2 YEAR, MONTH, DAY, HOUR, MIN, SEC, I100
 MONTHS = 'JanFebMarAprMayJunJulAugSepOctNovDec'

C--The following 4 lines are for the IBM PC (using Microsoft
C--time and date functions)
* CALL GETDAT (YEAR, MONTH, DAY)
* CALL GETTIM (IHOUR, MIN, SEC, I100)
* WRITE (TIMEDT, 100) IHOUR, MIN, MONTHS (MONTH*3-2:MONTH*3),
* & DAY, YEAR

C--get time for MTS version
C CALL TIME(22, 0, TIMEDT)

C--The following 5 lines are for the Apple Mac
C--(using Absoft time & date functions)
 CALL DATE (M, IDAY, IYEAR)
 CALL TIME (ISEC)
 WRITE (TIMEDT, 100)
 & ISEC/3600, MOD (ISEC, 3600) / 60, MONTHS (M*3-2:M*3),
 & IDAY, 1900 + IYEAR

 100 FORMAT (I2,':',I2.2,' on ',A3,I3,',',I5)
 RETURN
 END

288

APPENDIX D — SPACECRAFT #1 EQUATIONS

This appendix contains the equations of motion for the spacecraft described in Section

9.4. These are the full, nonlinear equations, extracted from the subroutines DIFEQN and

PRECMP. Definitions of state variables and parameters are found in Section 9.4.

The computations performed “in the loop” are the following:

C
C Each derivative evaluation requires 773 multiply/divides, 628
C add/subtracts, and 18 function/subroutine calls.
C
C (c) Mike Sayers and The Regents of The University of Michigan, 1989.
C All rights reserved.
C
 S(6) = SIN(Q(6))
 S(5) = SIN(Q(5))
 S(4) = SIN(Q(4))
 S(7) = SIN(Q(7))
 S(8) = SIN(Q(8))
 S(9) = SIN(Q(9))
 S(10) = SIN(Q(10))
 C(6) = COS(Q(6))
 C(5) = COS(Q(5))
 C(4) = COS(Q(4))
 C(7) = COS(Q(7))
 C(8) = COS(Q(8))
 C(9) = COS(Q(9))
 C(10) = COS(Q(10))
C
C
C Kinematical equations
C
 Z(1) = (PC(2)*U(5) + U(1))
 Z(2) = (PC(2)*U(4) -U(2))
 QP(1) = (C(5)*(Z(1)*C(6) + Z(2)*S(6)) + U(3)*S(5))
 Z(3) = S(4)*S(5)
 QP(2) = -(Z(2)*(C(6)*C(4) -Z(3)*S(6)) -Z(1)*(Z(3)*C(6) +
 & C(4)*S(6)) + U(3)*C(5)*S(4))
 QP(3) = (U(3)*C(5)*C(4) + Z(1)*(-C(4)*C(6)*S(5) + S(6)*S(4))
 & -Z(2)*(C(4)*S(6)*S(5) + C(6)*S(4)))
 QP(4) = (U(4)*C(6) -U(5)*S(6))/C(5)
 QP(5) = (U(5)*C(6) + U(4)*S(6))
 QP(6) = (U(6) -QP(4)*S(5))
 QP(7) = U(7)
 QP(8) = U(8)
 QP(9) = U(9)
 QP(10) = U(10)

289

C
C External subroutines and extra variables
C
 CALL CMD(T, CLKCMD, CAMCMD)
C
C define expression for boom-torque Z
C
 FORCEM(1) = (KB*Q(9) + BB*U(9))
C
C define expression for boom-torque X
C
 FORCEM(2) = (KB*Q(10) + BB*U(10))
C
C define expression for torque from clock motor
C
 FORCEM(3) = (KCLOCK*(CLKCMD -Q(7)) -BCLOCK*U(7))
C
C define expression for torque from camera motor
C
 FORCEM(4) = (KCLOCK*(CAMCMD -Q(8)) -BCLOCK*U(8))
C
C define expression for thruster torque #1
C
 FORCEM(5) = LTT1*THRUST(T, 1, (Q(4) + GYRO*U(4)))
C
C define expression for thruster torque #2
C
 FORCEM(6) = LTT2*THRUST(T, 2, (Q(5) + GYRO*U(5)))
C
C define expression for thruster torque #3
C
 FORCEM(7) = LTT3*THRUST(T, 3, (Q(6) + GYRO*U(6)))
C
C Dynamical equations
C
 Z(4) = (U(6) + U(7))
 Z(5) = (U(4)*C(7) + U(5)*S(7))
 Z(6) = (U(5)*C(7) -U(4)*S(7))
 Z(7) = (Z(6)*C(8) -Z(4)*S(8))
 Z(8) = (Z(4)*C(8) + Z(6)*S(8))
 Z(9) = S(7)*S(8)
 Z(10) = C(8)*S(7)
 Z(11) = C(7)*S(8)
 Z(12) = C(7)*C(8)
 Z(13) = (U(8) -Z(5))
 Z(14) = (U(6) + U(9))
 Z(15) = (U(5)*C(9) -U(4)*S(9))
 Z(16) = (Z(14)*C(10) -Z(15)*S(10))
 Z(17) = (Z(15)*C(10) + Z(14)*S(10))
 Z(18) = S(9)*S(10)
 Z(19) = C(10)*S(9)
 Z(20) = C(9)*S(10)
 Z(21) = C(9)*C(10)
 Z(22) = (U(10) + U(4)*C(9) + U(5)*S(9))
 Z(23) = PC(3)*S(7)
 Z(24) = PC(3)*C(7)
 Z(25) = (L5 -L3*C(8))

290

 Z(26) = (Z(25)*C(7) + Z(24)*S(8))
 Z(27) = (L6 + L3*S(8))
 Z(28) = (Z(27)*C(7) + Z(24)*C(8))
 Z(29) = (L5*Z(9) + L6*Z(10) + Z(23))
 Z(30) = (Z(25)*S(7) + Z(23)*S(8))
 Z(31) = (Z(23)*C(8) + Z(27)*S(7))
 Z(32) = (L5*Z(11) + L6*Z(12) + Z(24))
 Z(33) = (L3 -L5*C(8) + L6*S(8))
 Z(34) = PC(2)*S(9)
 Z(35) = PC(2)*C(9)
 Z(36) = L7*S(9)
 Z(37) = (Z(35)*C(10) + L7*S(10))
 Z(38) = (L8*C(9) + L7*C(10) -Z(35)*S(10))
 Z(39) = (L8*Z(18) -Z(34))
 Z(40) = (L8*S(9) -Z(34)*S(10))
 Z(41) = Z(34)*C(10)
 Z(42) = (L8*Z(20) -Z(35))
 Z(43) = Z(36)*S(10)
 Z(44) = Z(36)*C(10)
 Z(45) = L8*C(10)
 Z(46) = (Z(45) + L7*C(9))
 Z(47) = U(4)*U(7)
 Z(48) = U(5)*U(7)
 Z(49) = Z(48)*C(7)
 Z(50) = Z(47)*S(7)
 Z(51) = (Z(49) -Z(50))
 Z(52) = (Z(47)*C(7) + Z(48)*S(7))
 Z(53) = (U(8)*Z(8) + Z(52)*C(8))
 Z(54) = -(U(8)*Z(7) -Z(52)*S(8))
 Z(55) = U(4)*U(9)
 Z(56) = U(5)*U(9)
 Z(57) = (Z(56)*C(9) -Z(55)*S(9))
 Z(58) = (Z(55)*C(9) + Z(56)*S(9))
 Z(59) = -(U(10)*Z(17) -Z(58)*S(10))
 Z(60) = U(6)*U(4)
 Z(61) = U(5)*U(6)
 Z(62) = U(4)**2
 Z(63) = U(5)**2
 Z(64) = (Z(62) + Z(63))
 Z(65) = -(U(6)*U(2) -U(5)*U(3))
 Z(66) = -(U(4)*U(3) -U(6)*U(1))
 Z(67) = -(U(5)*U(1) -U(4)*U(2))
 Z(68) = (PC(3)*Z(60) -Z(65))
 Z(69) = (PC(3)*Z(61) -Z(66))
 Z(70) = Z(7)*Z(8)
 Z(71) = Z(13)**2
 Z(72) = -(-L3*(Z(4)*Z(6) + Z(49) -Z(50)) + PC(3)*Z(64) + Z(67))
 Z(73) = (L3*(Z(4)**2 + Z(5)**2) -Z(69)*C(7) + Z(68)*S(7))
 Z(74) = (L5*(Z(51) + Z(70)) + L6*(Z(71) + Z(7)**2) -Z(72)*C(8) +
 & Z(73)*S(8))
 Z(75) = -(L6*(Z(51) -Z(70)) -L5*(Z(71) + Z(8)**2) + Z(73)*C(8) +
 & Z(72)*S(8))
 Z(76) = (L3*Z(5)*Z(6) -L6*(Z(8)*Z(13) + Z(53)) + L5*(Z(7)*Z(13)
 & -Z(54)) + Z(68)*C(7) + Z(69)*S(7))
 Z(77) = (-L7*U(5)*U(4) + PC(2)*Z(60) + Z(65))
 Z(78) = (PC(2)*Z(61) + L7*(Z(62) + U(6)**2) + Z(66))
 Z(79) = (Z(78)*C(9) -Z(77)*S(9))

291

 Z(80) = (L7*Z(61) + PC(2)*Z(64) -Z(67))
 Z(81) = Z(17)*Z(22)
 Z(82) = Z(16)*Z(17)
 Z(83) = (L8*(Z(16)**2 + Z(22)**2) + Z(79)*C(10) -Z(80)*S(10))
 Z(84) = (L8*(Z(57) + Z(82)) + Z(80)*C(10) + Z(79)*S(10))
 Z(85) = (L8*(Z(59) -Z(81)) + Z(77)*C(9) + Z(78)*S(9))
 Z(86) = BI13*U(5)
 Z(87) = BI12*U(5)
 Z(88) = DI23*Z(7)
 Z(89) = DI13*Z(13)
 Z(90) = DI12*Z(7)
 Z(91) = DI13*Z(8)
 Z(92) = (DI12*Z(51) + DI22*Z(53) -DI23*Z(54) + Z(13)*(Z(88) +
 & Z(89)) + Z(8)*(PC(7)*Z(13) + Z(90) -Z(91)))
 Z(93) = DI23*Z(8)
 Z(94) = DI12*Z(13)
 Z(95) = (-DI11*Z(51) -DI12*Z(53) + DI13*Z(54) + Z(7)*(-DI33*Z(8)
 & + Z(88) + Z(89)) + Z(8)*(DI22*Z(7) -Z(93) + Z(94)))
 Z(96) = (DI13*Z(51) + DI23*Z(53) -DI33*Z(54) + Z(7)*(PC(8)*Z(13)
 & + Z(90) -Z(91)) + Z(13)*(Z(93) -Z(94)))
 Z(97) = DM*Z(29)
 Z(98) = DM*Z(28)
 Z(99) = DM*Z(26)
 Z(100) = DI13*Z(9)
 Z(101) = DI12*Z(10)
 Z(102) = DI11*C(7)
 Z(103) = DM*Z(32)
 Z(104) = DM*Z(31)
 Z(105) = DM*Z(30)
 Z(106) = (DI23*Z(11) -DI22*Z(12) + DI12*S(7))
 Z(107) = (DI33*Z(11) -DI23*Z(12) + DI13*S(7))
 Z(108) = DI13*Z(11)
 Z(109) = DI12*Z(12)
 Z(110) = DI11*S(7)
 Z(111) = (Z(108) -Z(109) + Z(110))
 Z(112) = DM*Z(33)
 Z(113) = (DI33*C(8) + DI23*S(8))
 Z(114) = (DI23*C(8) + DI22*S(8))
 Z(115) = (DI13*C(8) + DI12*S(8))
 Z(116) = FI2*(U(10)*Z(16) -Z(58)*C(10))
 Z(117) = (FI1*Z(59) -PC(11)*Z(81))
 Z(118) = (FI1*Z(57) + PC(11)*Z(82))
 Z(119) = FM*Z(39)
 Z(120) = FM*Z(38)
 Z(121) = FM*Z(37)
 Z(122) = FI1*C(9)
 Z(123) = FM*Z(42)
 Z(124) = FM*Z(41)
 Z(125) = FM*Z(40)
 Z(126) = FI1*S(9)
 Z(127) = FI2*Z(21)
 Z(128) = FI1*Z(20)
 Z(129) = FM*Z(46)
 Z(130) = FM*Z(44)
 Z(131) = FM*Z(43)
 Z(132) = FI2*S(10)
 Z(133) = FI1*C(10)

292

 Z(134) = FM*Z(45)
 Z(135) = -(-PC(1)*Z(65) + DM*(Z(9)*Z(74) -Z(10)*Z(75) +
 & Z(76)*C(7)) + FM*(Z(19)*Z(83) + Z(18)*Z(84)
 & -Z(85)*C(9)))
 Z(136) = (PC(1)*Z(66) -DM*(-Z(11)*Z(74) + Z(12)*Z(75) +
 & Z(76)*S(7)) + FM*(Z(21)*Z(83) + Z(20)*Z(84) +
 & Z(85)*S(9)))
 Z(137) = (PC(1)*Z(67) + DM*(Z(74)*C(8) + Z(75)*S(8)) -FM
 & *(Z(84)*C(10) -Z(83)*S(10)))
 Z(138) = ((PC(4)*U(5) + BI23*U(6))*U(6) + CI*(U(5)*Z(4) -Z(48))
 & -BI23*Z(63) + U(4)*(BI12*U(6) -Z(86)) -Z(10)*Z(92) +
 & Z(9)*Z(96) + Z(76)*Z(97) + Z(75)*Z(98) -Z(74)*Z(99) +
 & Z(19)*Z(116) -Z(18)*Z(117) -Z(85)*Z(119) -Z(84)*Z(120)
 & + Z(83)*Z(121) + FORCEM(5) + Z(95)*C(7) -Z(118)*C(9)
 & -FORCEM(1)*(Z(18)*C(10) -Z(19)*S(10)))
 Z(139) = -(-Z(10)*Z(98) -Z(9)*Z(99) -Z(18)*Z(120) + Z(19)*Z(121)
 & + Z(97)*C(7) + Z(119)*C(9))
 Z(140) = (Z(12)*Z(98) + Z(11)*Z(99) + Z(20)*Z(120) -Z(21)*Z(121)
 & + Z(97)*S(7) + Z(119)*S(9))
 Z(141) = (-Z(99)*C(8) + Z(120)*C(10) + Z(98)*S(8) + Z(121)*S(10))
 Z(142) = ((BI23*U(5) + BI13*U(4) + BI33*U(6))*U(4) -CI*(U(4)*Z(4)
 & -Z(47)) -U(6)*(PC(5)*U(4) + BI13*U(6) + Z(87)) +
 & Z(12)*Z(92) -Z(11)*Z(96) -Z(76)*Z(103) + Z(75)*Z(104)
 & -Z(74)*Z(105) -Z(21)*Z(116) + Z(20)*Z(117) +
 & Z(85)*Z(123) + Z(83)*Z(124) -Z(84)*Z(125) + FORCEM(6) +
 & Z(95)*S(7) -Z(118)*S(9) + FORCEM(1)*(Z(20)*C(10)
 & -Z(21)*S(10)))
 Z(143) = (Z(10)*Z(104) + Z(9)*Z(105) -Z(19)*Z(124) + Z(18)*Z(125)
 & + Z(103)*C(7) + Z(123)*C(9))
 Z(144) = -(-Z(12)*Z(104) -Z(11)*Z(105) + Z(21)*Z(124)
 & -Z(20)*Z(125) + Z(103)*S(7) + Z(123)*S(9))
 Z(145) = (-Z(105)*C(8) + Z(125)*C(10) + Z(104)*S(8) +
 & Z(124)*S(10))
 Z(146) = (BI12 -Z(29)*Z(103) + Z(28)*Z(104) + Z(26)*Z(105) +
 & Z(10)*Z(106) -Z(9)*Z(107) -Z(39)*Z(123) + Z(37)*Z(124)
 & + Z(38)*Z(125) -Z(19)*Z(127) -Z(18)*Z(128) +
 & Z(111)*C(7) + Z(126)*C(9))
 Z(147) = Z(76)*Z(112)
 Z(148) = Z(96)*C(8)
 Z(149) = Z(117)*C(10)
 Z(150) = Z(92)*S(8)
 Z(151) = Z(116)*S(10)
 Z(152) = Z(112)*C(7)
 Z(153) = (Z(19)*Z(130) + Z(18)*Z(131) + Z(152) + Z(129)*C(9))
 Z(154) = Z(112)*S(7)
 Z(155) = (-Z(21)*Z(130) -Z(20)*Z(131) + Z(154) + Z(129)*S(9))
 Z(156) = (Z(131)*C(10) -Z(130)*S(10))
 Z(157) = Z(29)*Z(112)
 Z(158) = Z(9)*Z(113)
 Z(159) = Z(10)*Z(114)
 Z(160) = Z(19)*Z(132)
 Z(161) = Z(18)*Z(133)
 Z(162) = Z(115)*C(7)
 Z(163) = (BI13 + Z(39)*Z(129) + Z(37)*Z(130) -Z(38)*Z(131) +
 & Z(157) -Z(158) + Z(159) -Z(160) + Z(161) + Z(162))
 Z(164) = Z(32)*Z(112)
 Z(165) = Z(11)*Z(113)

293

 Z(166) = Z(12)*Z(114)
 Z(167) = Z(21)*Z(132)
 Z(168) = Z(20)*Z(133)
 Z(169) = Z(115)*S(7)
 Z(170) = (BI23 -Z(42)*Z(129) + Z(41)*Z(130) -Z(40)*Z(131) -Z(164)
 & + Z(165) -Z(166) + Z(167) -Z(168) + Z(169))
 Z(171) = Z(33)*Z(112)
 Z(172) = Z(113)*C(8)
 Z(173) = Z(133)*C(10)
 Z(174) = Z(114)*S(8)
 Z(175) = Z(132)*S(10)
 Z(176) = (Z(147) -Z(148) -Z(150) + FORCEM(3))
 Z(177) = -(Z(157) -Z(158) + Z(159) + Z(162))
 Z(178) = -(-Z(164) + Z(165) -Z(166) + Z(169))
 Z(179) = (Z(171) + Z(172) + Z(174))
 Z(180) = (PC(9)*Z(74) -PC(10)*Z(75) -Z(95) + FORCEM(4))
 Z(181) = (PC(9)*Z(9) + PC(10)*Z(10))
 Z(182) = (PC(9)*Z(11) + PC(10)*Z(12))
 Z(183) = -(PC(9)*C(8) -PC(10)*S(8))
 Z(184) = -(PC(9)*Z(26) + PC(10)*Z(28) -Z(100) + Z(101) + Z(102))
 Z(185) = -(PC(9)*Z(30) + PC(10)*Z(31) + Z(108) -Z(109) + Z(110))
 Z(186) = (Z(85)*Z(134) + Z(149) + Z(151) + FORCEM(1))
 Z(187) = Z(134)*C(9)
 Z(188) = Z(134)*S(9)
 Z(189) = (Z(39)*Z(134) -Z(160) + Z(161))
 Z(190) = (Z(42)*Z(134) -Z(167) + Z(168))
 Z(191) = (Z(46)*Z(134) + Z(173) + Z(175))
 Z(192) = (Z(45)*Z(134) + Z(173) + Z(175))
 Z(193) = (PC(12)*Z(84) + Z(118) + FORCEM(2))
 Z(194) = PC(12)*Z(18)
 Z(195) = PC(12)*Z(20)
 Z(196) = PC(12)*C(10)
 Z(197) = (PC(12)*Z(38) + Z(122))
 Z(198) = (PC(12)*Z(40) + Z(126))
 Z(199) = PC(12)*Z(43)
 Z(200) = PC(18)*Z(196)
 Z(201) = PC(18)*Z(183)
 Z(202) = PC(18)*Z(141)
 Z(203) = PC(18)*Z(145)
 Z(204) = PC(18)*Z(156)
 Z(205) = Z(187)/Z(192)
 Z(206) = Z(188)/Z(192)
 Z(207) = Z(189)/Z(192)
 Z(208) = Z(190)/Z(192)
 Z(209) = Z(191)/Z(192)
 Z(210) = Z(152)/Z(179)
 Z(211) = Z(154)/Z(179)
 Z(212) = Z(115)/Z(179)
 Z(213) = Z(177)/Z(179)
 Z(214) = Z(178)/Z(179)
 Z(215) = (PC(17) -Z(196)*Z(200))
 Z(216) = Z(194)/Z(215)
 Z(217) = Z(195)/Z(215)
 Z(218) = Z(196)*Z(201)/Z(215)
 Z(219) = (Z(197) -Z(196)*Z(202))/Z(215)
 Z(220) = (Z(198) -Z(196)*Z(203))/Z(215)
 Z(221) = (Z(199) -Z(196)*Z(204))/Z(215)

294

 Z(222) = (PC(13) -Z(187)*Z(205) -Z(152)*Z(210) -Z(194)*Z(216))
 Z(223) = -(Z(187)*Z(206) + Z(152)*Z(211) -Z(194)*Z(217))/Z(222)
 Z(224) = (Z(181) + Z(152)*Z(212) + Z(194)*Z(218))/Z(222)
 Z(225) = (-Z(139) -Z(187)*Z(207) + Z(152)*Z(213) +
 & Z(194)*Z(219))/Z(222)
 Z(226) = (Z(143) -Z(187)*Z(208) -Z(152)*Z(214)
 & -Z(194)*Z(220))/Z(222)
 Z(227) = (-Z(152) + Z(153) -Z(187)*Z(209) -Z(194)*Z(221))/Z(222)
 Z(228) = -(Z(188)*Z(205) + Z(154)*Z(210) -Z(195)*Z(216))
 Z(229) = (PC(13) -Z(188)*Z(206) -Z(154)*Z(211) -Z(195)*Z(217)
 & -Z(223)*Z(228))
 Z(230) = (Z(182) -Z(154)*Z(212) + Z(195)*Z(218) +
 & Z(224)*Z(228))/Z(229)
 Z(231) = (Z(140) -Z(188)*Z(207) + Z(154)*Z(213) -Z(195)*Z(219)
 & -Z(225)*Z(228))/Z(229)
 Z(232) = (-Z(144) -Z(188)*Z(208) -Z(154)*Z(214) + Z(195)*Z(220)
 & -Z(226)*Z(228))/Z(229)
 Z(233) = (-Z(154) + Z(155) -Z(188)*Z(209) + Z(195)*Z(221)
 & -Z(227)*Z(228))/Z(229)
 Z(234) = Z(183)*Z(200)
 Z(235) = (Z(181) + Z(115)*Z(210) + Z(216)*Z(234))
 Z(236) = (Z(182) -Z(115)*Z(211) + Z(217)*Z(234) + Z(223)*Z(235))
 Z(237) = (PC(16) -Z(183)*Z(201) -Z(115)*Z(212) -Z(218)*Z(234)
 & -Z(224)*Z(235) -Z(230)*Z(236))
 Z(238) = (-Z(184) -Z(183)*Z(202) + Z(115)*Z(213) + Z(219)*Z(234)
 & + Z(225)*Z(235) -Z(231)*Z(236))/Z(237)
 Z(239) = (-Z(185) -Z(183)*Z(203) + Z(115)*Z(214) + Z(220)*Z(234)
 & -Z(226)*Z(235) + Z(232)*Z(236))/Z(237)
 Z(240) = (Z(183)*Z(204) -Z(221)*Z(234) + Z(227)*Z(235)
 & -Z(233)*Z(236))/Z(237)
 Z(241) = (Z(197) -Z(141)*Z(200))
 Z(242) = (-Z(139) -Z(189)*Z(205) + Z(177)*Z(210) + Z(216)*Z(241))
 Z(243) = (Z(140) -Z(189)*Z(206) + Z(177)*Z(211) -Z(217)*Z(241)
 & -Z(223)*Z(242))
 Z(244) = (-Z(184) -Z(141)*Z(201) + Z(177)*Z(212) + Z(218)*Z(241)
 & + Z(224)*Z(242) -Z(230)*Z(243))
 Z(245) = (PC(14) + FI1*Z(18)**2 + FI2*Z(19)**2 + Z(29)*Z(97) +
 & Z(28)*Z(98) + Z(26)*Z(99) + Z(39)*Z(119) + Z(38)*Z(120)
 & + Z(37)*Z(121) -Z(141)*Z(202) -Z(189)*Z(207)
 & -Z(177)*Z(213) -Z(219)*Z(241) -Z(225)*Z(242)
 & -Z(231)*Z(243) -Z(238)*Z(244) + (-Z(100) + Z(101) +
 & Z(102))*C(7) -Z(9)*(-DI33*Z(9) + DI23*Z(10) +
 & DI13*C(7)) + Z(10)*(-DI23*Z(9) + DI22*Z(10) +
 & DI12*C(7)) + Z(122)*C(9))
 Z(246) = (Z(146) -Z(141)*Z(203) + Z(189)*Z(208) -Z(177)*Z(214)
 & -Z(220)*Z(241) + Z(226)*Z(242) + Z(232)*Z(243)
 & -Z(239)*Z(244))/Z(245)
 Z(247) = (Z(163) + Z(177) + Z(141)*Z(204) -Z(189)*Z(209) +
 & Z(221)*Z(241) -Z(227)*Z(242) -Z(233)*Z(243)
 & -Z(240)*Z(244))/Z(245)
 Z(248) = (Z(198) -Z(145)*Z(200))
 Z(249) = (Z(143) -Z(190)*Z(205) -Z(178)*Z(210) -Z(216)*Z(248))
 Z(250) = (-Z(144) -Z(190)*Z(206) -Z(178)*Z(211) + Z(217)*Z(248)
 & -Z(223)*Z(249))
 Z(251) = (-Z(185) -Z(145)*Z(201) + Z(178)*Z(212) + Z(218)*Z(248)
 & -Z(224)*Z(249) + Z(230)*Z(250))
 Z(252) = (Z(146) -Z(145)*Z(202) + Z(190)*Z(207) -Z(178)*Z(213)

295

 & -Z(219)*Z(248) + Z(225)*Z(249) + Z(231)*Z(250)
 & -Z(238)*Z(251))
 Z(253) = (PC(15) + Z(32)*Z(103) + Z(31)*Z(104) + Z(30)*Z(105)
 & -Z(12)*Z(106) + Z(11)*Z(107) + Z(42)*Z(123) +
 & Z(41)*Z(124) + Z(40)*Z(125) + Z(21)*Z(127) +
 & Z(20)*Z(128) -Z(145)*Z(203) -Z(190)*Z(208)
 & -Z(178)*Z(214) -Z(220)*Z(248) -Z(226)*Z(249)
 & -Z(232)*Z(250) -Z(239)*Z(251) -Z(246)*Z(252) +
 & Z(111)*S(7) + Z(126)*S(9))
 Z(254) = (Z(170) + Z(178) + Z(145)*Z(204) + Z(190)*Z(209) +
 & Z(221)*Z(248) + Z(227)*Z(249) + Z(233)*Z(250)
 & -Z(240)*Z(251) -Z(247)*Z(252))/Z(253)
 Z(255) = (Z(199) -Z(156)*Z(200))
 Z(256) = (Z(153) -Z(191)*Z(205) -Z(179)*Z(210) -Z(216)*Z(255))
 Z(257) = (Z(155) -Z(191)*Z(206) -Z(179)*Z(211) + Z(217)*Z(255)
 & -Z(223)*Z(256))
 Z(258) = (Z(115) + Z(156)*Z(201) -Z(179)*Z(212) -Z(218)*Z(255) +
 & Z(224)*Z(256) -Z(230)*Z(257))
 Z(259) = (Z(163) + Z(156)*Z(202) -Z(191)*Z(207) + Z(179)*Z(213) +
 & Z(219)*Z(255) -Z(225)*Z(256) -Z(231)*Z(257)
 & -Z(238)*Z(258))
 Z(260) = (Z(170) + Z(156)*Z(203) + Z(191)*Z(208) + Z(179)*Z(214)
 & + Z(220)*Z(255) + Z(226)*Z(256) + Z(232)*Z(257)
 & -Z(239)*Z(258) -Z(246)*Z(259))
 Z(261) = Z(137)*Z(200)
 Z(262) = (Z(193) + Z(261))
 Z(263) = Z(186)*Z(205)
 Z(264) = Z(176)*Z(210)
 Z(265) = Z(216)*Z(262)
 Z(266) = (Z(135) -Z(263) + Z(264) + Z(265))
 Z(267) = Z(186)*Z(206)
 Z(268) = Z(176)*Z(211)
 Z(269) = Z(217)*Z(262)
 Z(270) = Z(223)*Z(266)
 Z(271) = (Z(136) -Z(267) + Z(268) -Z(269) -Z(270))
 Z(272) = Z(137)*Z(201)
 Z(273) = Z(176)*Z(212)
 Z(274) = Z(218)*Z(262)
 Z(275) = Z(224)*Z(266)
 Z(276) = Z(230)*Z(271)
 Z(277) = (Z(180) + Z(272) + Z(273) + Z(274) + Z(275) -Z(276))
 Z(278) = Z(137)*Z(202)
 Z(279) = Z(186)*Z(207)
 Z(280) = Z(176)*Z(213)
 Z(281) = Z(219)*Z(262)
 Z(282) = Z(225)*Z(266)
 Z(283) = Z(231)*Z(271)
 Z(284) = Z(238)*Z(277)
 Z(285) = (Z(138) -Z(278) + Z(279) + Z(280) + Z(281) + Z(282) +
 & Z(283) + Z(284))
 Z(286) = Z(137)*Z(203)
 Z(287) = Z(186)*Z(208)
 Z(288) = Z(176)*Z(214)
 Z(289) = Z(220)*Z(262)
 Z(290) = Z(226)*Z(266)
 Z(291) = Z(232)*Z(271)
 Z(292) = Z(239)*Z(277)

296

 Z(293) = Z(246)*Z(285)
 Z(294) = (-BI12*Z(62) -U(6)*(BI23*U(4) -Z(86)) + U(5)*(PC(6)*U(4)
 & + Z(87)) -Z(85)*Z(129) + Z(83)*Z(130) + Z(84)*Z(131) +
 & Z(147) -Z(148) -Z(149) -Z(150) -Z(151) -Z(176) +
 & Z(137)*Z(204) + Z(186)*Z(209) -Z(221)*Z(262) +
 & Z(227)*Z(266) + Z(233)*Z(271) + Z(240)*Z(277)
 & -Z(247)*Z(285) -Z(254)*(Z(142) -Z(286) -Z(287) + Z(288)
 & + Z(289) -Z(290) -Z(291) + Z(292) -Z(293)) +
 & FORCEM(7))/(BI33 + Z(46)*Z(129) + Z(44)*Z(130) +
 & Z(43)*Z(131) + Z(171) + Z(172) + Z(173) + Z(174) +
 & Z(175) -Z(179) -Z(156)*Z(204) -Z(191)*Z(209)
 & -Z(221)*Z(255) -Z(227)*Z(256) -Z(233)*Z(257)
 & -Z(240)*Z(258) -Z(247)*Z(259) -Z(254)*Z(260))
 Z(295) = (Z(142) -Z(286) -Z(287) + Z(288) + Z(289) -Z(290)
 & -Z(291) + Z(292) -Z(293) -Z(260)*Z(294))/Z(253)
 Z(296) = (Z(138) -Z(278) + Z(279) + Z(280) + Z(281) + Z(282) +
 & Z(283) + Z(284) -Z(259)*Z(294) -Z(252)*Z(295))/Z(245)
 Z(297) = (Z(180) + Z(272) + Z(273) + Z(274) + Z(275) -Z(276) +
 & Z(258)*Z(294) + Z(251)*Z(295) + Z(244)*Z(296))/Z(237)
 Z(298) = (-Z(136) + Z(267) -Z(268) + Z(269) + Z(270)
 & -Z(257)*Z(294) + Z(250)*Z(295) -Z(243)*Z(296) +
 & Z(236)*Z(297))/Z(229)
 Z(299) = -(Z(135) -Z(263) + Z(264) + Z(265) + Z(256)*Z(294)
 & -Z(249)*Z(295) + Z(242)*Z(296) + Z(235)*Z(297) +
 & Z(228)*Z(298))/Z(222)
 Z(300) = (Z(193) + Z(261) -Z(255)*Z(294) + Z(248)*Z(295) +
 & Z(241)*Z(296) + Z(234)*Z(297) + Z(195)*Z(298)
 & -Z(194)*Z(299))/Z(215)
 UP(6) = Z(294)
 UP(5) = Z(295)
 UP(4) = Z(296)
 UP(8) = Z(297)
 UP(2) = Z(298)
 UP(1) = Z(299)
 UP(10) = -Z(300)
 UP(7) = (Z(176) -Z(179)*Z(294) + Z(178)*Z(295) + Z(177)*Z(296) +
 & Z(115)*Z(297) -Z(154)*Z(298) -Z(152)*Z(299))/Z(179)
 UP(9) = (-Z(186) -Z(191)*Z(294) + Z(190)*Z(295) -Z(189)*Z(296)
 & -Z(188)*Z(298) -Z(187)*Z(299))/Z(192)
 UP(3) = -PC(18)*(Z(137) + Z(156)*Z(294) -Z(145)*Z(295)
 & -Z(141)*Z(296) + Z(183)*Z(297) + Z(196)*Z(300))

297

The above equations refer to precomputed constants, defined as follows:

 PC(1) = (BM + CM)
 PC(2) = (L1 -L2)*CM/(BM + CM)
 PC(3) = (L1 -(L1 -L2)*CM/(BM + CM))
 PC(4) = (CM*(L1 -L2 -(L1 -L2)*CM/(BM + CM))**2 + BM*((L1
 & -L2)*CM)**2/(BM + CM)**2 + BI22 -BI33)
 PC(5) = (CM*(L1 -L2 -(L1 -L2)*CM/(BM + CM))**2 + BM*((L1
 & -L2)*CM)**2/(BM + CM)**2 + BI11)
 PC(6) = (BI11 -BI22)
 PC(7) = (DI11 -DI33)
 PC(8) = (DI11 -DI22)
 PC(9) = L5*DM
 PC(10) = L6*DM
 PC(11) = (FI1 -FI2)
 PC(12) = L8*FM
 PC(13) = (BM + CM + DM + FM)
 PC(14) = (CI + BM*((L1 -L2)*CM)**2/(BM + CM)**2 + CM*(L1 -L2 -(L1
 & -L2)*CM/(BM + CM))**2 + BI11)
 PC(15) = (CI + BM*((L1 -L2)*CM)**2/(BM + CM)**2 + CM*(L1 -L2 -(L1
 & -L2)*CM/(BM + CM))**2 + BI22)
 PC(16) = ((L5**2 + L6**2)*DM + DI11)
 PC(17) = (FM*L8**2 + FI1)
 PC(18) = 1.0/PC(13)
 RETURN
 END

298

APPENDIX E — MANIPULATOR EQUATIONS

This appendix contains the equations of motion for the “Stanford Arm” manipulator

described in Section 9.6.

C Stanford arm simulation program.
C Version created December 22, 1989 by AUTOSIM
C
C (c) Mike Sayers and The Regents of The University of Michigan, 1989.
C All rights reserved.
C
C This program simulates the stanford arm by numerically integrating
C the 12 ordinary differential equations that describe the kinematics
C and dynamics of the system. The stanford arm is composed of 6 bodies
C and has 6 degrees of freedom.
C
C Each derivative evaluation requires 378 multiply/divides, 268
C add/subtracts, and 8 function/subroutine calls.
C
C Bodies:
C =======
C A; parent=N; 1 DOF: Q(1)
C B; parent=A; 1 DOF: Q(2)
C C; parent=B; 1 DOF: Q(3)
C D; parent=C; 1 DOF: Q(4)
C E; parent=D; 1 DOF: Q(5)
C F; parent=E; 1 DOF: Q(6)
C
C Generalized Coordinates:
C ========================
C Q(1): Rotation of A relative to the inertial reference about axis
C #2. (rad)
C Q(2): Rotation of B relative to A about axis #1. (rad)
C Q(3): Translation of C0 relative to the center of mass of B along
C [b2]. (m)
C Q(4): Rotation of D relative to C about axis #2. (rad)
C Q(5): Rotation of E relative to D about axis #1. (rad)
C Q(6): Rotation of F relative to E about axis #2. (rad)
C
C Independent Speeds:
C ===================
C U(1): Abs. rot. of A, axis 2. (rad/s)
C U(2): Rot. of B relative to A, axis 1. (rad/s)
C U(3): Trans. speed of C0 relative to center of mass of B along
C [b2]. (m/s)
C U(4): Rot. of D relative to C, axis 2. (rad/s)
C U(5): Rot. of E relative to D, axis 1. (rad/s)
C U(6): Rot. of F relative to E, axis 2. (rad/s)
C

299

C Active Forces:
C ==============
C FORCEM(6): (negative) force applied to C
C
C Active Moments:
C ===============
C FORCEM(1): torque applied to A
C FORCEM(2): (negative) torque applied to B
C FORCEM(3): (negative) torque applied to D
C FORCEM(4): (negative) torque applied to E
C FORCEM(5): torque applied to F

The computations that are performed “in the loop” are the following:

 S(2) = SIN(Q(2))
 S(4) = SIN(Q(4))
 S(5) = SIN(Q(5))
 S(6) = SIN(Q(6))
 C(2) = COS(Q(2))
 C(4) = COS(Q(4))
 C(5) = COS(Q(5))
 C(6) = COS(Q(6))
C
C
C Kinematical equations
C
 QP(1) = U(1)
 QP(2) = U(2)
 QP(3) = U(3)
 QP(4) = U(4)
 QP(5) = U(5)
 QP(6) = U(6)
C
C define expression for torque applied to A
C
 FORCEM(1) = (PC(56) -K1*Q(1) -K2*QP(1))
C
C define expression for torque applied to B
C
 Z(1) = C(5)*S(2)
 FORCEM(2) = -(PC(49) -K3*Q(2) -K4*QP(2) -(PC(55) +
 & PC(54)*Q(3))*S(2) -PC(53)*(Z(1) + C(2)*C(4)*S(5)))
C
C define expression for torque applied to D
C
 Z(2) = S(4)*S(5)
 FORCEM(3) = -(PC(48) -K5*Q(4) -K6*QP(4) + PC(5)*Z(2)*S(2))
C
C define expression for torque applied to E
C
 Z(3) = C(2)*S(5)
 FORCEM(4) = -(PC(47) -K7*Q(5) -K8*QP(5) -PC(5)*(Z(3) +
 & Z(1)*C(4)))
C
C define expression for torque applied to F
C

300

 FORCEM(5) = (PC(46) -K9*Q(6) -K10*QP(6))
C
C define expression for force applied to C
C
 FORCEM(6) = -(PC(45) -K11*Q(3) -K12*QP(3) + PC(7)*C(2))
C
C Dynamical equations
C
 Z(4) = U(1)*S(2)
 Z(5) = U(1)*C(2)
 Z(6) = -(Z(4)*C(4) -U(2)*S(4))
 Z(7) = (U(2)*C(4) + Z(4)*S(4))
 Z(8) = S(2)*S(4)
 Z(9) = C(4)*S(2)
 Z(10) = (U(4) + Z(5))
 Z(11) = (Z(6)*C(5) -Z(10)*S(5))
 Z(12) = (Z(10)*C(5) + Z(6)*S(5))
 Z(13) = (Z(3) + Z(9)*C(5))
 Z(14) = (C(2)*C(5) -Z(9)*S(5))
 Z(15) = C(5)*S(4)
 Z(16) = (U(5) + Z(7))
 Z(17) = (Z(11)*C(6) + Z(16)*S(6))
 Z(18) = (Z(16)*C(6) -Z(11)*S(6))
 Z(19) = (Z(13)*C(6) -Z(8)*S(6))
 Z(20) = (Z(8)*C(6) + Z(13)*S(6))
 Z(21) = (Z(15)*C(6) + C(4)*S(6))
 Z(22) = (C(4)*C(6) -Z(15)*S(6))
 Z(23) = S(5)*S(6)
 Z(24) = C(6)*S(5)
 Z(25) = (U(6) + Z(12))
 Z(26) = (PC(9) + Q(3))
 Z(27) = Z(26)*S(2)
 Z(28) = L1*S(2)
 Z(29) = L1*C(2)
 Z(30) = -(Z(27) -PC(9)*S(2))
 Z(31) = (PC(9) -Z(26))
 Z(32) = Z(31)*C(4)
 Z(33) = -(-L2*Z(8) + Z(29)*C(4) + Z(30)*S(4))
 Z(34) = -(Z(28)*C(5) -Z(33)*S(5))
 Z(35) = (L2*Z(9) + PC(10)*Z(13) -Z(30)*C(4) + Z(29)*S(4))
 Z(36) = (PC(10)*Z(8) + Z(33)*C(5) + Z(28)*S(5))
 Z(37) = (-Z(32) + L2*C(4))*S(5)
 Z(38) = (C(4)*(PC(10) + L2*C(5)) -Z(32)*C(5))
 Z(39) = (PC(10)*Z(15) + (L2 -Z(31))*S(4))
 Z(40) = PC(10)*S(5)
 Z(41) = U(2)*Z(5)
 Z(42) = U(2)*Z(4)
 Z(43) = -(U(4)*Z(7) -Z(41)*C(4))
 Z(44) = (U(4)*Z(6) -Z(41)*S(4))
 Z(45) = (U(5)*Z(12) + Z(43)*C(5) -Z(42)*S(5))
 Z(46) = -(-U(5)*Z(11) + Z(42)*C(5) + Z(43)*S(5))
 Z(47) = Z(4)*Z(5)
 Z(48) = 2.0*Z(41)
 Z(49) = Z(4)**2
 Z(50) = (Z(49) + U(2)**2)
 Z(51) = (-Z(26)*Z(50) + GEES*C(2))
 Z(52) = (2.0*U(3)*Z(4) + Z(26)*Z(48) -L1*(Z(49) + Z(5)**2))

301

 Z(53) = (-2.0*U(2)*U(3) + Z(26)*Z(47) + GEES*S(2))
 Z(54) = Z(6)*Z(10)
 Z(55) = Z(7)*Z(10)
 Z(56) = (PC(9)*Z(48) -Z(52))
 Z(57) = (-PC(9)*Z(47) + Z(53))
 Z(58) = Z(12)*Z(16)
 Z(59) = Z(11)*Z(12)
 Z(60) = (-L2*(Z(6)**2 + Z(7)**2) + PC(9)*Z(50) + Z(51))
 Z(61) = (L2*(Z(44) -Z(54)) + Z(57)*C(4) + Z(56)*S(4))
 Z(62) = (-PC(10)*(Z(11)**2 + Z(16)**2) + Z(60)*C(5) -Z(61)*S(5))
 Z(63) = (PC(10)*(Z(44) -Z(59)) + Z(61)*C(5) + Z(60)*S(5))
 Z(64) = (L2*(Z(43) + Z(55)) + PC(10)*(Z(45) + Z(58)) -Z(56)*C(4)
 & + Z(57)*S(4))
 Z(65) = PC(2)*Z(29)
 Z(66) = PC(2)*Z(28)
 Z(67) = PC(2)*Z(27)
 Z(68) = PC(2)*Z(26)
 Z(69) = (D3*Z(43) + PC(19)*Z(55))
 Z(70) = -(PC(21)*Z(6)*Z(7) -D2*Z(42))
 Z(71) = D2*C(2)
 Z(72) = D3*S(4)
 Z(73) = (PC(23)*Z(45) + PC(22)*Z(58))
 Z(74) = (PC(26)*Z(44) + PC(25)*Z(59))
 Z(75) = PC(3)*Z(36)
 Z(76) = PC(3)*Z(35)
 Z(77) = PC(3)*Z(34)
 Z(78) = PC(26)*Z(8)
 Z(79) = PC(3)*Z(39)
 Z(80) = PC(3)*Z(38)
 Z(81) = PC(3)*Z(37)
 Z(82) = PC(26)*C(4)
 Z(83) = PC(23)*Z(15)
 Z(84) = PC(3)*S(5)
 Z(85) = PC(3)*C(5)
 Z(86) = PC(3)*Z(40)
 Z(87) = PC(23)*S(5)
 Z(88) = (PC(27)*Z(18)*Z(25) + F3*(-U(6)*Z(18) + Z(45)*C(6) +
 & Z(44)*S(6)))
 Z(89) = (PC(28)*Z(17)*Z(25) + F1*(U(6)*Z(17) + Z(44)*C(6)
 & -Z(45)*S(6)))
 Z(90) = (PC(29)*Z(17)*Z(18) + F2*Z(46))
 Z(91) = F2*Z(14)
 Z(92) = F1*Z(22)
 Z(93) = F3*Z(21)
 Z(94) = F2*Z(2)
 Z(95) = F2*C(5)
 Z(96) = F3*Z(24)
 Z(97) = F1*Z(23)
 Z(98) = F3*S(6)
 Z(99) = F1*C(6)
 Z(100) = (D1*Z(44) + PC(20)*Z(54) + Z(74))
 Z(101) = -(PC(24)*Z(11)*Z(16) + E2*Z(46) + Z(90))
 Z(102) = (-Z(53)*Z(65) + Z(51)*Z(66) -Z(52)*Z(67) -Z(9)*Z(69)
 & -Z(13)*Z(73) + Z(63)*Z(75) -Z(64)*Z(76) -Z(62)*Z(77)
 & -Z(19)*Z(88) + Z(20)*Z(89) + Z(8)*Z(100) + Z(14)*Z(101)
 & + FORCEM(1) + Z(28)*FORCEM(6) + (PC(40)*Z(42) +
 & Z(70))*C(2) -(PC(43)*Z(41) + PC(44)*FORCEM(6))*S(2))

302

 Z(103) = (Z(82) + D1*C(4))
 Z(104) = (E2*Z(2) + Z(94))
 Z(105) = (-Z(29)*Z(68) -Z(9)*Z(72) -Z(35)*Z(79) + Z(36)*Z(80) +
 & Z(34)*Z(81) -Z(13)*Z(83) + Z(20)*Z(92) -Z(19)*Z(93) +
 & Z(8)*Z(103) + Z(14)*Z(104))
 Z(106) = (PC(2)*Z(51) + Z(63)*Z(84) + Z(62)*Z(85) + FORCEM(6))
 Z(107) = (Z(66) + Z(36)*Z(84) -Z(34)*Z(85))
 Z(108) = (Z(38)*Z(84) -Z(37)*Z(85))
 Z(109) = (-Z(70) + Z(64)*Z(86) + Z(24)*Z(88) -Z(23)*Z(89) +
 & FORCEM(3) -Z(101)*C(5) + Z(73)*S(5))
 Z(110) = (Z(95) + E2*C(5))
 Z(111) = (Z(71) + Z(35)*Z(86) + Z(13)*Z(87) + Z(19)*Z(96) +
 & Z(20)*Z(97) + Z(14)*Z(110))
 Z(112) = (-Z(39)*Z(86) -Z(15)*Z(87) -Z(21)*Z(96) + Z(22)*Z(97) +
 & Z(2)*Z(110))
 Z(113) = (-PC(4)*Z(63) -Z(74) + FORCEM(4) -Z(89)*C(6)
 & -Z(88)*S(6))
 Z(114) = (PC(4)*Z(36) + Z(78) -Z(19)*Z(98) + Z(20)*Z(99))
 Z(115) = (PC(4)*Z(38) + Z(82) + Z(21)*Z(98) + Z(22)*Z(99))
 Z(116) = PC(4)*S(5)
 Z(117) = -(Z(24)*Z(98) -Z(23)*Z(99))
 Z(118) = (-Z(90) + FORCEM(5))
 Z(119) = PC(33)*Z(116)
 Z(120) = PC(33)*Z(107)
 Z(121) = PC(33)*Z(108)
 Z(122) = PC(34)*Z(95)
 Z(123) = PC(34)*Z(91)
 Z(124) = PC(34)*Z(94)
 Z(125) = (D2 + Z(40)*Z(86) + Z(24)*Z(96) + Z(23)*Z(97)
 & -Z(95)*Z(122) + Z(110)*C(5) + Z(87)*S(5))
 Z(126) = Z(117)/Z(125)
 Z(127) = (Z(111) -Z(95)*Z(123))/Z(125)
 Z(128) = (Z(112) -Z(95)*Z(124))/Z(125)
 Z(129) = (PC(32) -Z(116)*Z(119) -Z(117)*Z(126) + Z(99)*C(6) +
 & Z(98)*S(6))
 Z(130) = (Z(114) -Z(116)*Z(120) -Z(117)*Z(127))/Z(129)
 Z(131) = (Z(115) -Z(116)*Z(121) -Z(117)*Z(128))/Z(129)
 Z(132) = (Z(111) -Z(91)*Z(122))
 Z(133) = (Z(114) -Z(107)*Z(119) -Z(126)*Z(132))
 Z(134) = (PC(30) + D3*Z(9)**2 + PC(23)*Z(13)**2 + F3*Z(19)**2 +
 & F1*Z(20)**2 + Z(29)*Z(65) + Z(28)*Z(66) + Z(27)*Z(67) +
 & Z(36)*Z(75) + Z(35)*Z(76) + Z(34)*Z(77) + Z(8)*(D1*Z(8)
 & + Z(78)) + Z(14)*(E2*Z(14) + Z(91)) -Z(107)*Z(120)
 & -Z(91)*Z(123) -Z(127)*Z(132) -Z(130)*Z(133) + (Z(71) +
 & PC(36)*C(2))*C(2) + PC(37)*S(2)**2)
 Z(135) = (Z(105) -Z(107)*Z(121) -Z(91)*Z(124) -Z(128)*Z(132)
 & -Z(131)*Z(133))/Z(134)
 Z(136) = (Z(112) -Z(94)*Z(122))
 Z(137) = (Z(115) -Z(108)*Z(119) -Z(126)*Z(136))
 Z(138) = (Z(105) -Z(108)*Z(120) -Z(94)*Z(123) -Z(127)*Z(136)
 & -Z(130)*Z(137))
 Z(139) = Z(118)*Z(122)
 Z(140) = (Z(109) + Z(139))
 Z(141) = Z(106)*Z(119)
 Z(142) = Z(126)*Z(140)
 Z(143) = (Z(113) + Z(141) -Z(142))
 Z(144) = Z(106)*Z(120)

303

 Z(145) = Z(118)*Z(123)
 Z(146) = Z(127)*Z(140)
 Z(147) = Z(130)*Z(143)
 Z(148) = (PC(35)*Z(47) -Z(53)*Z(68) -Z(15)*Z(73) -Z(64)*Z(79)
 & -Z(63)*Z(80) + Z(62)*Z(81) -Z(21)*Z(88) -Z(22)*Z(89)
 & -Z(2)*Z(101) + Z(106)*Z(121) + Z(118)*Z(124)
 & -Z(128)*Z(140) -Z(131)*Z(143) + Z(135)*(Z(102) -Z(144)
 & -Z(145) + Z(146) + Z(147)) + FORCEM(2) -Z(100)*C(4)
 & -Z(69)*S(4))/(PC(31) + Z(26)*Z(68) + Z(39)*Z(79) +
 & Z(38)*Z(80) + Z(37)*Z(81) + Z(15)*Z(83) + Z(22)*Z(92) +
 & Z(21)*Z(93) + Z(2)*Z(104) -Z(108)*Z(121) -Z(94)*Z(124)
 & -Z(128)*Z(136) -Z(131)*Z(137) -Z(135)*Z(138) +
 & Z(103)*C(4) + Z(72)*S(4))
 Z(149) = (Z(102) -Z(144) -Z(145) + Z(146) + Z(147) +
 & Z(138)*Z(148))/Z(134)
 Z(150) = (Z(113) + Z(141) -Z(142) -Z(137)*Z(148) +
 & Z(133)*Z(149))/Z(129)
 Z(151) = (Z(109) + Z(139) -Z(136)*Z(148) + Z(132)*Z(149)
 & -Z(117)*Z(150))/Z(125)
 UP(2) = -Z(148)
 UP(1) = Z(149)
 UP(5) = -Z(150)
 UP(4) = -Z(151)
 UP(6) = PC(34)*(Z(118) + Z(94)*Z(148) -Z(91)*Z(149) +
 & Z(95)*Z(151))
 UP(3) = -PC(33)*(Z(106) + Z(108)*Z(148) -Z(107)*Z(149) +
 & Z(116)*Z(150))

The above equations refer to constants that can be precomputed, and are define below.

 PC(1) = L5*MD
 PC(2) = (MC + MD)
 PC(3) = (ME + MF)
 PC(4) = (L6*ME + L3*MF)
 PC(5) = (L6*ME + L3*MF)*GEES
 PC(6) = (MC + MD + ME + MF)
 PC(7) = (MC + MD + ME + MF)*GEES
 PC(8) = L1*MB/(MA + MB)
 PC(9) = L5*MD/(MC + MD)
 PC(10) = (L6*ME + L3*MF)/(ME + MF)
 PC(11) = L1*(1 -MB/(MA + MB))
 PC(12) = (B1 -B2)
 PC(13) = (B2 -B3)
 PC(14) = (B1 -B3)
 PC(15) = (C1 -C2 + MD*(L5*(1 -MD/(MC + MD)))**2 + MC
 & *(L5*MD)**2/(MC + MD)**2)
 PC(16) = (C3 + MD*(L5*(1 -MD/(MC + MD)))**2 + MC*(L5*MD)**2/(MC +
 & MD)**2)
 PC(17) = (C2 -C3 -MD*(L5*(1 -MD/(MC + MD)))**2 -MC*(L5*MD)**2/(MC
 & + MD)**2)
 PC(18) = (C1 -C3)
 PC(19) = (D1 -D2)
 PC(20) = (D2 -D3)
 PC(21) = (D1 -D3)
 PC(22) = (E1 -E2 + MF*(L3 -(L6*ME + L3*MF)/(ME + MF))**2 + ME*(L6
 & -(L6*ME + L3*MF)/(ME + MF))**2)
 PC(23) = (E3 + MF*(L3 -(L6*ME + L3*MF)/(ME + MF))**2 + ME*(L6

304

 & -(L6*ME + L3*MF)/(ME + MF))**2)
 PC(24) = (E1 -E3)
 PC(25) = (E2 -E3 -MF*(L3 -(L6*ME + L3*MF)/(ME + MF))**2 -ME*(L6
 & -(L6*ME + L3*MF)/(ME + MF))**2)
 PC(26) = (E1 + MF*(L3 -(L6*ME + L3*MF)/(ME + MF))**2 + ME*(L6
 & -(L6*ME + L3*MF)/(ME + MF))**2)
 PC(27) = (F1 -F2)
 PC(28) = (F2 -F3)
 PC(29) = (F1 -F3)
 PC(30) = (A2 + MB*(L1*(1 -MB/(MA + MB)))**2 + (2.0*MA + MB)
 & *(L1*MB)**2/(MA + MB)**2)
 PC(31) = (B1 + C1 + MC*(L5*MD)**2/(MC + MD)**2 + MD*(L5*(1
 & -MD/(MC + MD)))**2)
 PC(32) = (E1 + ME*(L6 -(L6*ME + L3*MF)/(ME + MF))**2 + MF*(L3
 & -(L6*ME + L3*MF)/(ME + MF))**2 + (L6*ME + L3*MF)**2/(ME
 & + MF))
 PC(33) = 1.0/PC(6)
 PC(34) = 1.0/F2
 PC(35) = (PC(13) + PC(17))
 PC(36) = (B2 + C2)
 PC(37) = (B3 + PC(16))
 PC(38) = (B2 + PC(14))
 PC(39) = (C2 + PC(18))
 PC(40) = (PC(38) + PC(39))
 PC(41) = (B3 + PC(12))
 PC(42) = (PC(15) + PC(16))
 PC(43) = (PC(41) + PC(42))
 PC(44) = (PC(8) + PC(11))
 PC(45) = K11*CDISP
 PC(46) = K9*FROT
 PC(47) = K7*EROT
 PC(48) = K5*DROT
 PC(49) = K3*BROT
 PC(50) = L2*PC(3)
 PC(51) = (PC(2) + PC(3))
 PC(52) = (PC(1) + PC(50))
 PC(53) = GEES*PC(4)
 PC(54) = GEES*PC(51)
 PC(55) = GEES*PC(52)
 PC(56) = K1*AROT

305

REFERENCES

306

1. “Laboratory Testing Machines and Procedures for Measuring the Steady State Force
and Moment Properties of Passenger Car Tires.” Society of Automotive Engineers,
Inc., Handbook Supplement HS 210, (Recommended Practice SAE J1106), 1975.

2. “Users Manual for TREETOPS: A Control System Simulation for Structures with a
Tree Topology.” Honeywell (Space and Strategic Avionics Division), 784-19441,
1984.

3. “ADAMS Applications Manual.” Mechanical Dynamics, Inc, MDI 2001-00, 1987.

4. Common Lisp: The Reference. 1988, Addison-Wesley.

5. “SD/FAST User’s Manual.” Symbolic Dynamics, Inc, Mountain View, CA, 1988.

6. “Allegro Common Lisp for the Macintosh.” Apple Computer, Inc., 1989.

7. Abelson, H. and G.J. Sussman. Structure and Interpretation of Computer Programs.
The MIT Electrical Engineering and Computer Science Series. 1985, The MIT Press,
McGraw-Hill Book Co. New York.

8. Adeli, H. and Y.J. Paek. “Computer-aided Analysis of Structures in Interlisp
Environment.” Computers & Structures 23(3), 1986, pp. 393-407.

9. Amirouche, F.M.L. and S.K. Ider. “Determination of constraint forces in multibody
systems dynamics using Kane's equations.” Journal de Mecanique Theorique et
Appliquee 7(1), 1988, pp. 3-20.

10. Amirouche, F.M.L., T. Jia and S.K. Ider. “Recursive householder transformation
for complex dynamical systems with constraints.” Journal of Applied Mechanics,
Transactions ASME 55(3), 1988, pp. 729-734.

11. Antoun, R.J., P.B. Hackert, M.C. O'Leary and A. Sitchin, “Vehicle Dynamic
Handling Computer Simulation: Model Development, Correlation, And Application
Using Adams.” International Congress and Exposition - Society of Automotive
Engineers, Detroit, MI, SAE, paper 860574, 1986.

12. Ausiello, G. and F.M. Giovanni, “On the Design of Algebraic Data Structures with
the Approach of Abstract Data Types.” EUROCAL ’79 European Computer Algebra
Conference, Ed. E. W. Ng. Lecture Notes in Computer Science. Marseille, France,
Springer-Verlag, 1979.

13. Bae, D.-S., R.S. Hwang and E.J. Haug. “A Recursive Formulation for Real-Time
Dynamic Simulation.” Advances in Design Automation, ASME DE 14(September),
1988, pp. 499-508.

14. Baumgarte, J. “Stabilization of Constraints and Integrals of Motion in Dynamical
Systems.” Computer Methods in Applied Mech. and Eng. 1, 1972, pp. 1-16.

307

15. Benerjee, A.K. “Comment On 'Relationship Between Kane's Equation And The
Gibbs-Appell Equations'.” Journal of Guidance, Control, and Dynamics 10(6),
1987, pp. 596-597.

16. Bianchi, G. and W. Schiehlen. Dynamics of Multibody Systems. IUTAM/IFToMM
Symposium Udine/Italy 1985. 1986, Springer-Verlag. Berlin.

17. Caviness, B.F., “Computer Algebra: Past and Future.” EUROCAL ’85 European
Computer Algebra Conference vol 1: invited lectures, Ed. B. Buchberger. Lecture
Notes in Computer Science. Linz, Austria, Springer-Verlag, 1985.

18. Chace, M.A. “Methods and Experience in Computer Aided Design of Large-
Displacement Mechanical Systems.” Computer Aided Analysis and Optimization of
Mechanical System Dynamics. E. G. Haug ed., 1984, Springer-Verlag, Heidelberg.
233-259.

19. Chang, C.O. and P.E. Nikravesh. “An Adaptive Constraint Violation Stabilization
method for dynamic Analysis of Mechanical Systems.” ASME Journal of
Mechanisms, Transmissions, and Automation in Design 107(December), 1985, pp.
488-498.

20. Char, B.W., K.O. Geddes, W.M. Gentleman and G.H. Gonnet, “The Design of
MAPLE: A Compact, Portable, and Powerful Computer Algebra System.”
EUROCAL ’83 European Computer Algebra Conference, Ed. J. A. van Hulzen.
Lecture Notes in Computer Science. London, England, Springer-Verlag, 1983.

21. Crespo da Silva, M.R.M. and D.H. Hodges. “Role Of Computerized Symbolic
Manipulation In Rotorcraft Dynamics Analysis.” Computers & Mathematics with
Applications 12a(1), 1986, pp. 161-172.

22. Desloge, E.A. “A Comparison of Kane's Equations of Motion And The Gibbs-
Appell Equations of Motion.” American Journal of Physics 54(May), 1986.

23. Desloge, E.A. “Relationship Between Kane's Equation And The Gibbs-Appell
Equations.” Journal of Guidance, Control, and Dynamics 10(Jan-Feb), 1987, pp.
120-122.

24. Duffek, W., C. Fuehrer, W. Schwarz and O. Wallrapp, “Analysis and Simulation of
Rail and Road Vehicles with the Program MEDYNA.” Proceedings, 9th IAVSD
Symposium, dynamics of Vehicles on Roads and Tracks, Linkoping, 1985.

25. Featherstone, R. Robot Dynamics Algorithms. The Kluwer International Series in
Engineering and Computer Science. Robotics: Vision, Manipulation, and Sensors.
1987, Kluwer Academic Publishers. Boston.

26. Frisch, H.P., “A Vector-Dyadic Development of the Equations of Motion for N-
coupled Rigid Bodies and Point Masses.” Goddard Space Flight Center, D-7767,
1974.

27. Frisch, H.P., “A digital computer program for the dynamic interaction simulation of
controls and structures.” NASA, Tech memo 80546, 1979.

308

28. Ge, Z., -M. and Y.-H. Cheng. “Extended Kane's Equations for Nonholonomic Mass
System.” ASME Journal of Applied Mechanics 49(June), 1982, pp. 429-431.

29. Gear, C.W. Numerical Initial Value Problems in Ordinary Differential Equations.
1971, Prentice-Hall. Englewood Cliffs, N.J.

30. Gear, C.W. “Differential-Algebraic Equations.” Computer Aided Analysis and
Optimization of Mechanical System Dynamics. E. G. Haug ed., 1984, Springer-
Verlag, Heidelberg. 323-334.

31. Gilmore, B.J. and R.J. Cipra, “Simulation of Planar Dynamic Mechanical Systems
with Changing Topologies: Part 1 — Characterization and Prediction of the
Kinematic Constraint Changes.” ASME Design Technology Copnverences — The
Design Automation Conference, Ed. S. S. Rao. Boston, ASME, 1987.

32. Gilmore, B.J. and R.J. Cipra, “Simulation of Planar Dynamic Mechanical Systems
with Changing Topologies: Part 2 — Implementation Strategy and Simulation Results
for Example Dynamic Systems.” ASME Design Technology Copnverences — The
Design Automation Conference, Ed. S. S. Rao. Boston, ASME, 1987.

33. Golnaraghi, M., W. Keith and F.C. Moon. “Stability Analysis of a Robotic
Mechanism Using Computer Algebra.” Applications of Computer Algebra. R.
Pavelle ed., 1984, Kluwer Academic Publishers, Boston. 281-292.

34. Gomez, C., J.P. Quadrat and A. Sulem. “Computer Algebra as a Tool for Solving
Optimal Control Problems.” Applications of Computer Algebra. R. Pavelle ed.,
1984, Kluwer Academic Publishers, Boston. 241-261.

35. Greenwood, D.T. Principles of Dynamics. Second. 1988, Prentice-Hall, Inc.
Englewood Cliffs.

36. Hackert, P.B., M.C. O'Leary and A. Sitchin, “Dynamic Simulation Of Light Truck
Handling Maneuvers Using Adams.” Symposium on Simulation and Control of
Ground Vehicles and Transportation Systems. (Presented at the Winter Annual
Meeting of the American Society of Mechanical Engineers.), Anaheim, CA, ASME
(DSC v 2), 1986.

37. Hamming, R.W. Numerical Methods for Engineers and Scientists. 1962, McGraw
Hill. New York.

38. Haug, E.G. Computer Aided Analysis and Optimization of Mechanical System
Dynamics. NATO ASI Series, Vol. F9. 1984, Springer-Verlag. Heidelberg.

39. Haug, E.G. “Elements and Methods of Computational Dynamics.” Computer Aided
Analysis and Optimization of Mechanical System Dynamics. E. G. Haug ed., 1984,
Springer-Verlag, Heidelberg. 3-40.

40. Hirschberg, W. and D. Schramm. “Application of NEWEUL in Robot Dynamics.”
Journal of Symbolic Computation (7), 1989, pp. 199-204.

41. Howe, R.M., “Dynamics of Real-Time Digital Simulation: course notes.” Applied
Dynamics International, Ann Arbor, 1986.

309

42. Howe, R.M. and A. Nwankpa. “Some Improved Methods for Real-Time Integration
of State Variable Derivatives wit Discontinuities.” , 1988.

43. Hsu, S., “An Improved Method for Modeling Constrained Rigid Body Systems.”
PhD thesis, University of Mighigan, 1986.

44. Hussain, M.A. and B. Noble. “Application of Macsyma to Kinematics and
Mechanical Systems.” Applications of Computer Algebra. R. Pavelle ed., 1984,
Kluwer Academic Publishers, Boston. 262-280.

45. Hussain, M.A. and B. Noble. “Application of symbolic Computation to the Analysis
of Mechanical systems, Including Robot Arms.” Computer Aided Analysis and
Optimization of Mechanical System Dynamics. E. G. Haug ed., 1984, Springer-
Verlag, Heidelberg. 283-306.

46. Huston, R.L., “Useful Procedures in Multibody Dynamics.” Dynamics of
Multibody Systems, IUTAM/IFToMM Symposium, Ed. G. Bianchi and W.
Schiehlen. Udine, Italy, Springer-Verlag, 1985.

47. Huston, R.L. and C. Passerello. “On Multi-Rigid-Body System Dynamics.”
Computers and Structures 10, 1979, pp. 439-446.

48. Huston, R.L. and C.E. Passerello. “On the Dynamics of Chain Systems.” Automatic
Control Division of the American Society of Mechanical Engineers , 1974.

49. Huston, R.L. and C.E. Passerello. “Multibody Structural Dynamics Including
Translation Between the Bodies.” Computers and Structures 12, 1980, pp. 713-720.

50. Huston, R.L., C.E. Passerello and M.W. Harlow. “Dynamics of Multirigid-Body
Systems.” ASME Journal of Applied Mechanics 45(December), 1978, pp. 889-894.

51. Ider, S.K. and F.M.L. Amirouche. “Coordinate reduction in the dynamics of
constrained multibody systems - a new approach.” Journal of Applied Mechanics,
Transactions ASME 55(4), 1988, pp. 899-904.

52. Jaschinski, A., W. Kortuem and O. Wallrapp. “Simulation of ground vehicles with
the multibody program MEDYNA.” , 1986.

53. Kamman, J.W. and R.L. Huston. “Constrained Multibody System Dynamics, an
Automated Approach.” Computers and Structures 18(6), 1984, pp. 999-1003.

54. Kamman, J.W. and R.L. Huston. “Dynamics Of Constrained Multibody Systems.”
Journal of Applied Mechanics, Transactions ASME 51(4), 1984, pp. 899-903.

55. Kane, T.R. and D.A. Levinson. “Formulation of Equations of Motion for Complex
Spacecraft.” Journal of Guidance and Control 3(2), 1980, pp. 99-112.

56. Kane, T.R. and D.A. Levinson. “Multibody dynamics.” Journal of Applied
Mechanics, Transactions ASME 50(4b), 1983, pp. 1071-1078.

57. Kane, T.R. and D.A. Levinson. “The Use of Kane’s Dynamical Equations in
Robotics.” International Journal of Robotics Research 2(3), 1983, pp. 3-21.

310

58. Kane, T.R. and D.A. Levinson. Dynamics, theory and applications. McGraw-Hill
Series in Mechanical Engineering. 1985, McGraw-Hill Book Company.

59. Keat, J.E. “Comment on "Relationship Between Kane's Equations and the Gibbs-
Appell Equations".” Journal of Guidance, Control, and Dynamics 10(6), 1987, pp.
594-595.

60. Kessler, R.R. LISP, Objects and Symbolic Programming. 1988, Scott, Foresman
and Co. Glenview, Illinois.

61. Kim, S.S. and M.J. Vanderploeg. “QR Decomposition for State Space
Representation of Constrained Mechanical Dynamic Systems.” ASME Journal of
Mechanisms, Transmission, and Automation in Design 108(June), 1986, pp. 183-
188.

62. Kortuem, W., “Simulation of the dynamics of high speed ground transportation
vehicles with MEDYNA - potentials and case studies.” International Conference on
Maglev and Linear Drives, Las Vegas, NV, USA, IEEE, 1987.

63. Kortuem, W. and W. Schiehlen. “General Purpose Vehicle System Dynamics
Software Based on Multibody Formalism.” Vehicle System Dynamics 14(4-6), 1985,
pp. 229-263.

64. Kreuzer, E. and O. Schiehlen, “Generation of Symbolic Equations of Motion for
Complex Spacecraft Using Formalism NEWEUL.” AIAA Astrodynamics Specialist
Conference, 1983.

65. Kreuzer, E.J., “Dynamic Analysis of Mechanisms Using Symbolical Equation
Manipulation.” Proceedings, 5th World Congress on Theory of Machines and
Mechanisms, Montreal, 1979.

66. Kreuzer, E.J. and W.O. Schiehlen. “Computerized Generation Of Symbolic
Equations Of Motion For Spacecraft.” Journal of Guidance, Control, and Dynamics
8(2), 1985, pp. 284-287.

67. Krishnaswami, P. and M.A. Bhatti. “Symbolic Computing in Optimal Design of
Dynamic Systems.” The American Society of Mechanical Engineers , 1985, pp. 1-6.

68. Kurdila, A. and M. Kamat, “Concurrent nullspace methods for multibody systems.”
Parallel and Distributed Processing in Structural Engineering, Proceedings.
Presented in Conjunction with the ASCE National Convention., Nashville, TN,
USA, ASCE, 1988.

69. Levinson, D. “The Derivation of Equations of Motion of Multiple-Rigid-Body
Systems Using Symbolic Manipulation.” AIAA paper No. 76-816 , 1976.

70. Levinson, D. “Comment on "Relationship Between Kane's Equations and the Gibbs-
Appell Equations".” Journal of Guidance, Control, and Dynamics 10(6), 1987, pp.
593.

311

71. Liang, C.G. and G.M. Lance. “A Differentiable Null Space Method for Constrained
Dynamic Analysis.” ASME Journal of Mechanisms, Transmissions, and Automation
in Design 109(September), 1987, pp. 405-411.

72. Lilov, L. and V. Chirikov. “On the Dynamics Equations of Systems of
Interconnected Bodies.” Journal of Applied Mathematic and Mechanics 45, 1981, pp.
383-390.

73. Lin, L.-C. and Y. King. “Lagrange-Euler-assumed modes approach to modeling
flexible robotic manipulators.” Chung-kuo Kung Ch'eng Hsueh K'an/Journal of the
Chinese Institute of Engineers 11(4), 1988, pp. 335-347.

74. Lips, K.W.;.S., R. P., “Obstacles to high fidelity multibody dynamics simulation.”
Proceedings of the 1988 American Control Conference., Atlanta, GA, USA, IEEE,
1988.

75. Liu, Y. “Screw-matrix method in dynamics of multibody systems.” Acta Mechanica
Sinica/Lixue Xuebao 4(2), 1988, pp. 165-174.

76. Loos, H. and G. Doedlbacher, “Mathematical 'Prototype' Of The Vehicle To
Describe Vehicle Handling Behavior.” Dynamics of Vehicles on Roads and on
Tracks, Proceedings of 9th IAVSD Symposium., Linkoping, Swed, Swets North
America, 1986.

77. Magnus, K. Dynamics of Multibody Systems. IUTAM/IFToMM Symposium
Munich/Germany 1977. 1978, Springer-Verlag. Berlin.

78. Mani, N.K. and E.J. Haug. “Application of Singular Value Decomposition for
Analysis of Mechanical System Dynamics.” ASME Journal of Mechanisms,
Transmissions, and Automation in Design 107(March), 1985, pp. 82-87.

79. McConville, J.B. and J.C. Angell, “Dynamic Simulation Of A Moving Vehicle
Subject To Transient Steering Inputs Using The Adams Computer Program.” Design
Engineering Technology Conference, Cambridge, MA, ASME (84-DET-2), 1984.

80. McInnis, J.B. and W.H. ElMaraghy, “Automated bond graph construction and
analysis for multibody system dynamics.” Proceedings of the 1989 ASME
International Computers in Engineering Conference and Exposition, Anheim, CA,
USA, 1989.

81. Month, L.A. and R.H. Rand, “Stability Of A Rigid Body With An Oscillating
Particle: An Application Of Macsyma.” 1985 Joint ASME/ASCE Applied
Mechanics, Fluids Engineering and Bioengineering Conference., Albuquerque,
NM, ASME (85-APM-28), 1985.

82. Nielan, P. and T. Kane, “Symbolic Generation of Efficient Simulation/Control
Routines for Multibody Systems.” Dynamics of Multibody Systems,
IUTAM/IFToMM Symposium, Ed. G. Bianchi and W. Schiehlen. Udine, Italy,
Springer-Verlag, 1985.

312

83. Nielan, P.E., “Efficient Computer Simulation of Motions of Multibody Systems.”
PhD thesis, Stanford University, 1986.

84. Nikravesh, P.E. “Some Methods for Dynamic Analysis of Constrained Mechanical
Systems: A Survey.” Computer Aided Analysis and Optimization of Mechanical
System Dynamics. E. G. Haug ed., 1984, Springer-Verlag, Heidelberg. 353-367.

85. Nikravesh, P.E. and E.J. Haug. “Generalized Coordinate Partitioning for Analysis of
Mechanical Systems with Nonholonomic Constraints.” ASME Journal of
Mechanisms, Transmissions, and Automation in Design 105(September), 1983, pp.
379-384.

86. Orlandea, N. and M.A. Chace, “Simulation Of A Vehicle Suspension With The
Adams Computer Program.” SAE, Detroit, SAE preprint 770053, 1977.

87. Orlandea, N., M.A. Chace and D.A. Calahan. “A Sparsity-Oriented Approach to the
Dynamic Analysis and Design of Mechanical Systems, Parts I and II.” Journal of
Engineering for Industry 99(August), 1977, pp. 773-784.

88. Ormrod, M. and G. Andrews. “Advent: A Simulation Program for Constrained
Planar Kinematic and Dynamic Systems.” , 1986, pp. 1-9.

89. Park, K.C. and J.C. Chiou. “Stabilization of Computational Procedures for
Constrained Dynamical Systems.” Journal of Guidance and Control 11(4), 1988, pp.
365-370.

90. Park, T.W. and E.J. Haug. “A Hybrid Numerical Integration Method for Machine
Dynamics Simulation.” ASME Journal of Mechanism, Transmissions, and
Automation in Design 108(June), 1986, pp. 211-216.

91. Passerello, C.E. and R.L. Huston. “Another Look at Nonholonomic Systems.”
ASME Journal of Applied Mechanics 40(1), 1973, pp. 101-104.

92. Pavelle, R., “Macsyma: Capabilities and Applications to Problems in Engineering
and the Sciences.” EUROCAL ’85 European Computer Algebra Conference, Ed. B.
Buchberger. Lecture Notes in Computer Science. Linz, Austria, Springer-Verlag,
1985.

93. Press, W.H., B.P. Flannery, S.A. Teukolsky and W.T. Vetterling. Numerical
Recipes: the Art of Scientific Computing. 1986, Cambridge University Press.

94. Rayna, G. REDUCE software for Algebraic Computation. Springer Series, Symbolic
Computation—Artificial Intilligence. 1987, Springer-Verlag. New York.

95. Richard, M., R. Anderson and G. Andrews. “Generalized Vector-Network
Formulation for the Dynamic Simulation of Multibody Systems.” Journal of Dynamic
Systems, Measurement, and Control 108, 1986, pp. 322-329.

96. Roberson, R.E., “Constraint Stabilization for Rigid Bodies: an Extension of
Baumgarte’s Method.” Dynamics of Multibody Systems, Ed. K. Magnus.
International Union of Theoretical and Applied Mechanics. Munich, Springer-
Verlag, 1977.

313

97. Roberson, R.E. and Schwertassek. Dynamics of Multibody Systems. 1988,
Springer-Verlag. Berlin.

98. Rosenthal, D.E. “Comment On 'Relationship Between Kane's Equation And The
Gibbs-Appell Equations'.” Journal of Guidance, Control, and Dynamics 10(6),
1987, pp. 595-596.

99. Rosenthal, D.E. “Triangularization of equations of motion for robotic systems.”
Journal of Guidance, Control, and Dynamics 11(3), 1988, pp. 278-281.

100. Rosenthal, D.E. and M.A. Sherman, “Symbolic Multibody Equations via Kane’s
Method.” AAS/AIAA Astrodynamics Specialist Conference, Lake Placid, 1983.

101. Rosenthal, D.E. and M.A. Sherman. “High Performance Multibody Simulations via
Symbolic Equation Manipulation and Kane’s Method.” Journal of the Astronoutical
Sciances 34(3), 1986, pp. 223-239.

102. Sayers, M.W., “ERD Data-Processing Software Reference Manual, Version 2.00.”
University of Michigan Transportation Research Institute, UMTRI-87-2, 1987.

103. Sayers, M.W., “Automated Formulation of Efficient Vehicle Simulation Codes by
Symbolic Computation (AUTOSIM).” 11th IAVSD Symposium of Vehicles on
Roads and Tracks, Kingston, Ontario, 1989.

104. Sayers, M.W., “AUTOSIM: A Computer Language for Representing Multibody
Systems in Symbolic Form to Automatically Formulate Efficient Simulation Codes.”
The Seventh Army Conference on Applied Mathematics and Computing, West Point,
New York, 1989.

105. Sayers, M.W., “EP Users Manual, the ERD Plotter for the Macintosh.” University of
Michigan Transportation Research Institute, 1989.

106. Schaechter, D.B. and D.A. Levinson. “Interactive computerized symbolic dynamics
for the dynamicist.” Journal of the Astronautical Sciences 36(4), 1988, pp. 365-
388.

107. Schiehlen, W.O., “Dynamical analysis of suspension systems.” The Dynamics of
Vehicles on Roads and on Tracks. Proceedings. Amsterdam, Ed. A. Slibar and H.
Springer. Amsterdam, Swets and Zeitlinger, 1978.

108. Schiehlen, W.O. “Modeling of Complex Vehicle Systems.” Vehicle System
Dynamics 12(1-3), 1983, pp. 12-14.

109. Schiehlen, W.O. “Computer Generation of Equations of Motion.” Computer Aided
Analysis and Optimization of Mechanical System Dynamics. E. G. Haug ed., 1984,
Springer-Verlag, Heidelberg. 183-215.

110. Schiehlen, W.O. “Dynamics Of Complex Multibody Systems.” Solid Mechanics
Archives 9(2), 1984, pp. 159-195.

314

111. Schiehlen, W.O. “Vehicle Dynamics Applications.” Computer Aided Analysis and
Optimization of Mechanical System Dynamics. E. G. Haug ed., 1984, Springer-
Verlag, Heidelberg. 217-231.

112. Schiehlen, W.O. and E.J. Kreuzer, “Symbolic Computerized Derivation of
Equations of Motion.” Dynamics of Multibody Systems, Ed. K. Magnus.
International Union of Theoretical and Applied Mechanics. Munich, Springer-
Verlag, 1977.

113. Schwertassek, R. and R.E. Roberson, “A Perspective on Computer-Oriented
Multibody Dynamical Formalisms and their Implementations.” Dynamics of
Multibody Systems, IUTAM/IFToMM Symposium, Ed. G. Bianchi and W.
Schiehlen. Udine, Italy, Springer-Verlag, 1985.

114. Segel, L. “Theoretical Prediction and Experimental Substantiation of the Response of
the Automobile to Steering Control.” Proceedings of the Institute of Mechanical
Engineers Automobile Division , 1957, pp. 310-330.

115. Sheth, P. and J. Uicker. “IMP (Integrated Mechanicms Program), A Computer-aided
Design Analysis System for Mechanisms and Linkage.” Journal of Engineering for
Industry , 1972.

116. Singh, R.P., R.J. VanderVoort, C. Arduini, A. Festa, C. Maccone and D.
Sciacovelli, “DCAP: An automated analysis and design tool for strucutural control
of space structures.” Second ESA Workshop on Mechanical Technology for
Antennas - Proceedings of a Workshop held at ESTEC., Noordwijk, Netherlands,
European Space Agency, (Special Publication) ESA SP 261, 1986.

117. Singh, R.P., R.J. VanderVoort and P.W. Likins. “Dynamics Of Flexible Bodies In
Tree Topology - A Computer-Oriented Approach.” Journal of Guidance, Control,
and Dynamics 8(5), 1985, pp. 584-590.

118. Steele, G.L.J. Common Lisp: The Language. 1984, Digital Press.

119. Stoer, J. and R. Bulirsch. Introduction to Numerical Analysis. 1980, Springer-
Verlag. New York.

120. Striberski, A., P.S. Fancher, C.C. MacAdam and M.W. Sayers, “On Nonlinear
Oscillations in Road Trains at High Forward Speeds.” 11th IAVSD Symposium of
Vehicles on Roads and Tracks, Kingston, Ontario, 1989.

121. Trom, J.D., J.L. Lopez and M.J. Vanderploeg. “Modeling a Mid-Size Passenger Car
Using a Multibody Dynamics Program.” ASME Journal of Mechanisms,
Transmissions, and Automation in Design 109(December), 1987, pp. 518-523.

122. Tzou, H.S., “Multibody nonlinear dynamics and controls of joint dominated
flexible structures.” Symposium on Robotics Presented at the Winter Annual
Meeting of the American Society of Mechanical Engineers, Chicago, IL, USA,
ASME, 1988.

315

123. van Hulzen, J.A. and J. Calmet. “Computer Algebra Systems.” Computer Algebra
Symbolic and Algebraic Computation. B. Buchberger, G. E. Collins, R. Loos and
R. Albrecht ed., 1982, Springer-Verlag, Wien. 221-243.

124. Walker, M.W. and D.E. Orin. “Efficient Dynamic Computer Simulation of Robotic
Mechanisms.” Journal of Dynamic Systems Measurement and Control 104(3), 1982,
pp. 205-211.

125. Wampler, C.W., “Computer Methods in Manipulator Kinematics, Dynamics, and
Control: A Comparative Study.” PhD thesis, Stanford, 1985.

126. Wang, J.T. and R.L. Huston. “Computational methods in constrained multibody
dynamics: matrix formalisms.” Computers and Structures 29(2), 1988, pp. 331-338.

127. Wang, P.S., “Taking Advantage of Symmetry in the Automatic Generation of
Numerical Programs for Finite Element Analysis.” EUROCAL ’85 European
Computer Algebra Conference Vol 2: Research Contributions, Ed. B. F. Caviness.
Lecture Notes in Computer Science. Linz, Austria, Springer-Verlag, 1985.

128. Wehage, R. and A. Shabana. “Application of Generalized Newton-Euler Equations
and Recursive Projection Methods to Dynamics of Deformable Multibody Systems.”
Submitted to the ASME Journal of Mechanisms, Transmissions, and Automation in
Design , 1989, pp. 1-23.

129. Wehage, R.A., “Application of Matrix Partitioning and Recursive Projection to
Order n Solution of Constrained Equations of Motion.” 20th Biennial ASME
Mechanisms Conference, Orlando, FLA, 1988.

130. Wehage, R.A., “Symbolic Factors of Linear System Coefficient Matrices for Tree-
Structured Systems and their Efficient Solution.” Seventh Army Conference on on
Applied Mathematics and Computing, West Point, New York, 1989.

131. Wehage, R.A. and E.J. Haug. “Dynamic Analysis of Mechanical Systems with
Intermittent Motion.” ASME Journal of Mechanical Design 104(October), 1982, pp.
778-784.

132. Wehage, R.A. and E.J. Haug. “Generalized Coordinate Partitioning for Dimension
Reduction in Analysis of Constrained Dynamic Systems.” ASME Journal of
Mechanical Design 104(January), 1982, pp. 247-255.

133. Winkler, C.B. and M. Hagan. “A Test Facility for the Measurement of Heavy
Vehicle Suspension Parameters.” Transactions of Society of Automotive Engineers
(SAE) 89(paper 80096), 1980.

134. Wittenburg, J. Dynamics of Systems of Rigid Bodies. 1977, B.G. Teubner.
Stuttgart.

135. Wittenburg, J., “Dynamics of Multibody Systems.” Proceedings, XVth
IUTAM/ICTAM Congress, Toronto, 1980.

316

136. Wittenburg, J. “Analytical Methods in Mechanical System Dynamics.” Computer
Aided Analysis and Optimization of Mechanical System Dynamics. E. G. Haug ed.,
1984, Springer-Verlag, Heidelberg. 89-127.

137. Wittenburg, J. and U. Wolz, “MESA VERDE: A Symbolic Program for Nonlinear
Articulated-Rigid-Body Dynamics.” Proceedings of the 10th Design Engineering
division Conference on Mechanical Vibration and Noise, Cincinati, 1985.

138. Wolfram, S. Mathematica™. 1988, Adison-Wesley Publishing Company.

139. Wooff, C. and D. Hodgkinson. muMATH: A microcomputer algebra system. 1987,
Academic Press. London.

