SYMBOLIC COMPUTER METHODSTO
AUTOMATICALLY FORMULATE VEHICLE
SIMULATION CODES

by
Michael William Sayers

A dissertation submitted in partia fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Mechanical Engineering)
in The University of Michigan
1990

Doctora Committee;

Assistant Professor Sridhar Kota, co-chairman
Adjunct Professor Robert R. Ryan, co-chairman
Professor Donald T. Greenwood

Professor Robert Howe

Professor Emeritus Leonard Segel

Research Scientist Paul S. Fancher

© by Michad William Sayers 1990

All Rights Reserved

to my father, Robert E. Sayers

ACKNOWLEDGMENTS

The research reported in this dissertation was funded primarily by the United States
Army Tank Automotive Command (TACOM). Additional support was provided through
the University of Michigan Transportation Research Ingtitute (UMTRI) fellowship
program. Funding for a pilot study was provided by TACOM and the Applied Dynamics,
Inc. (ADI) company.

| would like to thank the six members of the dissertation committee for their support,
guidance, and editoria work on the manuscript.

| appreciate the enthusiasm and support of Ric Mousseau (Ford), Roger Wehage
(TACOM), and Paul Fancher (UMTRI) during the past two years. Ric'sskillsat “guerrilla
funding” were instrumental in getting the project off to a start, and the considerable time he
spent testing the software and emphasizing practical applications have strongly influenced
the AUTOSIM software that was developed. Long technica discussions with Roger
provided many insights into the dynamics of multibody systems. Also, the methods
described in Chapter 7 stem from Roger’ s observations. Paul waded through almost every
draft of the manuscript prepared over the past two year, and his discussions and
observations were very helpful in organizing and clarifying the material.

The first three examples in Chapter 9 were used to validate the equations generated
automatically with results obtained independently by Len Segel, Don Greenwood, and Ric
Mousseau. Thefirst two examplesidentified modeling simplifications made by Segel and
Greenwood that were later incorporated into the automated methods.

The dynamics course taught by Bob Ryan was very influential to thiswork. Although
we have never met, | would also like to thank Professor Thomas Kane (Stanford), whose
approach to dynamics proved to be a strong foundation for this work.

This dissertation isin part a consequence of early encouragement from Len Segel, Tom
Gillespie, James (Red) Gallagher, and Cesar Queiroz. More recent support and
encouragement were provided in copious quantities by my wife, Nancy, and daughter,
Samantha.

PREFACE

Simulating the behavior of mechanical systems comprised of rigid bodies and massless
elementsis awell-established technology that has been available with digital computers for
over twenty-five years. One of the main gpplication areas of multibody simulation is that of
vehicle dynamics. With faster, cheaper, and more versatile hardware, applications
involving simulation are almost limitless. Further, it is widely acknowledged that
simulation is useful for wide-ranging analytical activities, such as (1) evauating alternative
designs prior to building prototypes, (2) studying the behavior of existing systems and
design configurations, (3) reconstructing accidents, (4) studying the behavior of humans or
hardware components via “red-time€’ “man-in-the-loop” or “hardware-in-the-loop”
simulation. Y et, even with these recognized advantages, computer simulation of ground
vehiclesisnot atool used routinely by designers or other engineers. Why isthis?

Just as the potential utility of simulation iswidely known, it is also well known that
existing software is not sufficiently convenient to meet the needs of most engineers.
Although there have been great strides in devising ever better ways of formulating the
equations of motion of multibody systems, and also new methods for numericaly
“solving” the equations to compute the behavior numerically, thereisagreat deal of work
involved in translating these methods into robust, easy-to-use computer codes. Most
engineers who need answers that can be obtained through simulation are limited in the
types of computer that can be used (desktop) and the time needed to learn to use new
software (afew days, at most).

At the University of Michigan Transportation Research Institute (UMTRI), formerly
known as the Highway Safety Research Institute (HSRI), there isalong tradition of using
computer simulation to study the behavior of ground vehicles. Even so, we face some of
the same problems as engineersin industry. The computers available to us are primarily
(1) desktop computers, and (2) the mainframe computer of the university. Commercial
simulation software, such asthe ADAMS and DADS programs, have not been feasible
alternatives for us, due to the large amounts of computation required for simulating ground

vehicles. Desktop computers are too slow, and the CPU charges on our mainframe
computer are too high when such large amounts of computation are involved. Further,
considerable expertise in the use of the commercial codesisrequired to add the semi-
empirical models used to represent tires and suspensions (when such additions are even
possible.)

Instead, specialized simulation codes are used which are more computationally efficient
because they were developed for specific vehicle models. (These include the “Phase 4”
heavy truck simulation, the “Y aw-roll heavy truck model,” and others.) These are large
Fortran programs which were written in the 1970’sand early 1980’s. Unfortunately,
current smulation needs never seem to exactly match the capabilities of the existing
software. Hence, with every new research project, an existing program must be modified
dlightly to accommodate a new vehicle configuration, or to compute a new set of output
variables. Modifying these large programs, and then verifying their correctness, is a
daunting undertaking that limits their usefulness even here at UMTRI where they were
developed.

The task of developing equations of motion for a multibody system and the task of
putting those equations into a simulation code both both require a meticul ous attention to
detail and a considerable amount of time. Also, a specialized knowledge of dynamics and
numerical analysis methods is hecessary to even get started. The research reported in this
dissertation was begun shortly after noting that these tasks are ideally suited to some of the
technol ogies and methods that have been developed in the field of Artificial Intelligence
(AD).

One of the basic tools of Al isLisp, alanguage well-suited for symbol manipulation
and prototyping other computer languages. The basic strategy in thiswork wasto design a
language suited to developing simulation codes, and to implement that language in Lisp.
(In contrast, most past work in ssimulating ground vehicles has involved the devel opment of
equations by adynamicist in aform that can be coded in an existing computer language by
aprogrammer.) The programming techniques used in this work emphasize recursion,
“object oriented programming,” and manipulation of symbolic data, rather than numbers
and matrices. These concepts are well established in computer science, and are not even
considered a part of Al any more (although they are mainly the result of Al research).
However, they have not yet been applied extensively to the area of multibody simulation.

A primary reason that Al techniques are not widely used in analyzing multibody
systemsisthat Lisp and the associated programming techniques were, until afew years

ago, only feasible on mainframe computers, or on specialized (i.e., very expensive) Al
workstations. Advancesin computer hardware have now made these tools available on
virtually all computers used by engineers, ranging from Apple Macintosh and IBM PC
desktop computers to Cray supercomputers.

The objective of the research reported in this dissertation was to look at the process of
developing smulation codes, and to separate the creative engineering part from the
drudgery. ldeally, once the model is conceived by an analyst, the dynamics analysis and
program devel opment can be handled automatically by the computer.

Software was devel oped, called AUTOSIM, which demonstrates that, indeed, much of
the work formerly performed by specialists in dynamics and numerical analysis can be
handled automatically. Development time for a detailed simulation code is reduced from
months to hours.

One of the most significant practical result of the work is that the methods are
extendable to other types of engineering applications. The AUTOSIM software is
essentially an extension to the existing Lisp language. On top of Lisp, it adds computer
algebra, arepresentation of multibody systems, and a representation of anumerica analysis
computer program that will be generated as output. Although AUTOSIM also happensto
include a multibody formalism and design for generating a ssimulation code, that constitutes
arelatively small part of the overall software. Engineersinterested in applications that
involve multibody systems can build upon the AUTOSIM language to program almost any
type of analysis with only a modest incremental effort. Essentially, any job can be
automated if it can be specified as a sequence of operations involving algebra, kinematics
analyses, computer programming, and well-defined mathematical analyses (smilar to a
multibody formalism).

Mike Sayers
February 1990

Note: This copy of the dissertation was made by converting the original Microsoft Word 4
filesto MS Word 6, for conversion to the Adobe Portable Data Format (PDF). It is thought
to beidentical to the original, except the page breaks sometimes differ by afew lines. The
differences are due to changesin MS Word, not the thesis content.

April 1999

Vi

TABLE OF CONTENTS

DEDICATION ...ttt ittt e e ettt et et re e nenes ii
ACKNOWLEDGMENTS. ..o iii
PREF A CEE . .ot iv
LIST OF TABLES. .. .o e Xi
LIST OF FIGURES. ... oo Xiii
LIST OF APPENDICES.ot XV
1. INTRODUCTION ...t 1
1.1, OB OOV e 1

1.2 New ReSearCh.......ccooiiiiiii e 1

1.3. Organization of Dissertation.............cooeviiviiiiiiiiiiiiieieeeen, 3

2. BACKGROUND ...ttt 5
2.1. Generalized SMulation COOESovvvviiiii i 6

2.2. Symbolic Analysis by Computer...........coccoveiiiiiiieiiieeeeeeeen, 7

Generic Computer Mathematics Languages............cccooeevveeeneen 8

Computer Mathematics for DynamicCs..............eeveeeveeininneenee. 9

Automated Symbolic Multibody AnalySes...........ccccevvvvvvnnnnn.. 10

2.3. Research Approach..........cooiiiiiiii 13

3. CONVENTIONS ...t e e e 17
3.1. Elementsin a Multibody System............ccoeeiiiiiiiiieiiceeeenn, 17

Rigid Bodies, Reference Frames, and Coordinate Systems........... 17

Joints and CoNSLraiNtS.........coevveiieiiiiee e 18

32 State Variables........cooiiiiii 19

3.3 NOLALION. . 22
Subscripts and SUPErSCripLS......c.vveeiiiiieiieiieeeeeeeeeeeee 23

BodiesSand POINES.........couiuieiiiiii e 23

Vectors and dyadiCS.......covviiiiiiii e, 23

Position, Velocity, Acceleration, and Derivatives...................... 25

MatriCeS and ATTAYS. .. .uueuee et eeeee e e aneaeanees 27

Computer Data ODbJecCtS........ccvviiiiiii e 28

Parentheses, Braces, and Brackets..........cc.cccovvviiiiiiiineennnnen. 30

Vii

B4 TOPOIOGY . et 30

Degrees of Freedom........ccoviiiiiiiiiiicii e, 30
L= = PP 31
Additional CONSTAINTSoueeiieie e 33
4. SPECIALIZED SIMULATION CODES.......cccoiviiiiiiiiiiieeeee e, 34
N I @ Y 34
4.2. Simulation Start-up Operations............oceuuiviiiieiiiiieeiiieeeiieens 35
UL e 35
P DA . . 36
4.3. “In-The-Loop” Computations..........cccvvuuviiiniiiiiineineiineeines 36
=T | = L 38
UPOaLE . .. 39
1 11 39
5. SYMBOLIC COMPUTATION METHODS........ccciiiiiiiiiieiiiieeeciie e 40
5.1. Considerations of Numerical Efficiencyccovvviiiiiiiiiinnnnn. 41
5.2. Representing Symbolic Data..........ccooeeuiiiiiiiiiiiiiiieceeean 44
Overview of Data ObJeCtS........cccvvviiiiiiiiiieee e, 44
Computer Algebra........coooiiiiii 46
Multibody System........ ..o 48
Numerical Simulation Program............cccoeeveviieiieineinneenn. 52
5.3. Computer Algebra Operations............ccocoviiiiiiiiiii, 53
Making EXpression ODJECESoviviniieiiie i 53
Primitive Algebra Operations............cccocvevviiieiiieiiienieeeee, 55
Multibody Operations..........covviiiiiiiiiii e 58
Higher Level Operations............coocuviiiiiiiiiniiiiieeeeees 59
Operationson Program Codeccoviiiiiiiiii i ceeene 63
6. MULTIBODY DYNAMICSTHEORY ..ottt 67
6.1. Fundamental CONCEPLS.....oeuiuiniiiiiiiiiie e 68
Kinematical EQUatioNSoviieiiiiii e 69
Newton-Euler EQUationsS............coovviviiiiiii e, 70
Constrained SYStEMS.coiuiiiiiiiei e 72
6.2. Kan€sSAPProaChccovieiiii 74
6.3. Overview of Dynamics Analysis Method...............ccccoeeeeiinnnnn.n. 78
Additional DefinitioNS........ccoiuiiiiiii e 78
Implicit Dynamical EQUations............cccuvviiiiiiiiiniiiieeieeenn 83
7. UNCOUPLING ALGEBRAIC EQUATIONS.......oiiiiiieiiiiieceieeeeie e 84
7.1 Lower-Upper Triangular Decomposition (LUD).............cevuvevnnnee 84
7.2 Ordering of State Variables.........c.ccooviviiiiiiiiiiieeeen, 87

viii

8. AMULTIBODY FORMALISM ... 91

8.1. Describing the System.........cocoiiiiiiiiiiii 92
Joint Description for New BOdi€s............cccuovviiiiiiiiiiieiinns %!
Direction Transformations............cooeviviiiiiiiieiiieinececen 100
Recursive/Nonrecursive DesCriptions..........cc.eveeevneeeennneeennn. 104
INertia Properties.o 105
VOGBS ... 108

8.2. Kinematical ANalYSiS........oouiiniiiiiiiii e 110
Rotational SPeeds..........cocuviiiiiiiiii 111
Trandational SPeeds.........ccoviii i 112

8.3. Constraint ANalySIS......cc.viuiiiiiiie 113
Nonholonomic CoNStraiNtS.........cccovvviveniiieiieieeeeeenn 113
Kinematical LOOPS.......coviuiiiiiiiiicieecee e 117
Redundant CoNStrainNtS...........oouvieiiiiiiiiireeee e 122

8.4. DYNamMICSANAYSISt 122
Initialization of Dynamics ANalySiS........cccceeeeeeiiiieeeiiiieeeeennn. 125
RoOtation ANalySiS. ..o 126
Translation ANalysSiS. ..o 131
Form Dynamical EqQUations............ccooevieiviieiieeie e, 138

8.5 Write Fortran Program.........cco.ovviiiiieiiiieieeeeeeeee e 141

8.6 SUMMAIY ...t e 143

0. EXAMPLES. .o 147

9.1. Passenger Car Handling Model.............ccoooiiiiiiiiiiiiicen, 148
The Vehicle Model..........ooiiiiiii e 148
AUTOSIM TNPUES .. e e e e 150
RESUITS. ..o 161
Analysis DetailS.o 164

9.2 Four-Whegled Cartocoviiiiiii e 174
Model DeSCriptioNn........ocviiiiii e 174
AUTOSIM DESCIIPHON .. 176
RESUITS. . 178
Analysis Details.......cooiiiiiiii 182

9.3. Four-bar Linkage with Spring.........c.c.ccoovviiiiiiiiniiiees 194
Model DeSCription......cc.cuiiiiii e 194
AUTOSIM DesCIiptioN ...o.veiveeie it 194
RESUITS. . 196
AnalysisS Details......cccooviiiiii 198

9.4, “Spacecraft #l”o 204
Model DESCIiPtION.cuiiiiiiii e 204
AUTOSIM DESCHIPLON ... eeeenaaneas 206
RESUITS. .. 210

0.5, " SPACECIAlt #27 ..t 213

Model DeSCriptioNn........oovviiiiiie e 213

AUTOSIM DESCIIPHON .. 214

RESUITS. . 215

9.6. The “Stanford Arm” Manipulator............cccovevviiiieiiiiiieciieen, 217

Model DESCIiPtION.cuiiieiie e 218

AUTOSIM DESCIIPLON ... ee e e eeeenaaneas 219

RESUITS. ..o 220

10. SUMMARY AND CONCLUSIONS.. ...t 224
FO.1 SUMMAIY ..ottt et e aaeaenas 224

10.2 CONCIUSIONS . ..ttt 225

10.3 Further Research Opportunities........cocevveiiiiiiiieiiieeneeeeaen 228
APPENDI CES. .. it 230
REFERENCES ...ttt e e ees 305

Table
3.21
3.3.1
3.3.2
5.2.1
5.2.2
5.2.3
524
5.3.1
5.3.2
5.3.3
5.34
7.2.1
8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6
8.1.7
8.1.8
8.1.9
8.1.10
8.1.11
8.4.1

8.4.2
8.4.3

8.4.4
9.11

9.1.2

LIST OF TABLES

Categories of state variables............cooooveiiiiiii 20
Notational conventions for vectorsand dyadiCs.cooeoviviiinnnns 27
Conventions for computer data Objects.coovviiiiii i 29
Summary of AUTOSIM expression tyPeS.......cvevvruveruiieeernereneeennnnn 47
Some of the slots in a body that support algebra functions..................... 49
Some of the slotSin apoint.......ccoiiiiii e 51
Some of thedotsinaforcem.cooiiiiiiii 51
Simplifications performed by creator functions............cccccccceeeeeeeeeenns 54
Summary of primitive AUTOSIM mathematics operations..................... 56
Summary of AUTOSIM operations for bodiesand points. 59
Summary of higher-level mathematics operations...........cccccoeeeevvveeenne 60
Matrix-fill for several structuresof the A matriX...........cccoovviieiiinnnn.. 89
AUTOSIM macros for describing amultibody system.c....... 92
Parameters and degrees of freedom of abody/joint.ccoeeits 9
Body slots related to joint translational displacement............................ 96
Body slots related to joint rotation............coevveveiiiieii e, 98
Right-handed axis CONVENTION.c.uiviiiiiiiiie e 98
Representation of simple joints with “building-block” model.................. 100
Body dotsrelated to direction transformations.ccooevvviiiiinennnn. 100
Indices for three possible rotation axes.coovieviiiiiiiiiiiieaes 102
Body slots related to reCurSioNn...........ooevviiiiiiiiieiciee e 104
Body slotsrelated to inertia..........coovuveiiiiii e 105
Body slots related to VElOCITY........cc.uvieiiiiiiii e, 108
Slots in body worksheet object pertaining to rotational velocity and
ACCRI I AL ON.. .t 130
Formulas pertaining to rotational velocity and acceleration..................... 131
Slots in body worksheet object pertaining to trandationa velocity and
ACCRI I AL ON.. .t 138
Formulas pertaining to translational velocity and acceleration.................. 139
Parameters identified for the car model, with names and units deduced
FrOM CONTEXT. ..t 160
Performance comparisons between three simulation codes..................... 164

Xi

Table
9.1.3
9.14
9.1.5
9.1.6
9.1.7
9.1.8
9.2.1
9.2.3
9.24
9.25
9.2.6
9.2.7
9.2.8
9.2.9
9.2.10
9.3.1
9.3.2
9.3.3
9.4.1
9.4.2
9.4.3
95.1
9.5.2
9.6.1
9.6.1
A.21
A.3.1
A.3.2
A.3.3

Data associated with slots of body NRB...............coiiiiiiiiiiiieinnn. 165
Printed summary of state variables............cc.coooviiiiiiii i, 166
Summary of generalized speeds after constraint is added....................... 167
Listing of forces and MOmMENtS..........ccvviiiiiiiiiee e 168
Dynamics worksheet for the non-rolling body................cccooeeiiinn. 169
Dynamics worksheet for therolling body. ..., 170
List of output channels generated by simulation code for cart.................. 178
Generalized speeds before any constraintsareadded. 183
Generalized speeds and constraints, after four constraints are added. 184
Generalized speeds and constraints, after al constraints are added............ 184
Pointsin the cart example........ccoooiiiiiiii 185
SIOtSTNBOAY B. ... 186
SlotsS IN body LRWee e 187
Worksheet for body B of cart...........coooviiiiiiiiii 188
Worksheet for body RRW of cart.ccoovviiiiiiiiiiicceeee, 189
Points defined for four-bar linkage...........c.ocoiiiiiiiiiii e, 199
State variables and speed constraints for four-bar linkage...................... 200
Echo file for 4-bar linkage with displaced initial conditions.................... 202
Generalized coordinates for Spacecraft #1.............ccoevveviiiiiinneeiieennnns 208
Independent speeds for Spacecraft #1..........ccoveevviiiiiiiiiiiii e, 209
Performance comparisons between three simulation codes..................... 212
State variables for Spacecraft #2...........ccoovviiiiiiiiii 215
Performance comparisons for Spacecraft #2............cccoeevviiiiiiiiiiineennn. 217
Parameters and values for Stanford Arm.ccooiiiiiiiiiiiiias 219
Performance comparisons between four simulation codes. 223
Mathematical functions that can be used in F-strings..........ccccccceeeieennn. 235
AUTOSIM functions for analyzing the multibody system...................... 237
AUTOSIM macros for describing amultibody system.coceeees 238
AUTOSIM functions for specifying OUtpULS...........cccccveviiiiiiineiinnnns 247

Xii

Figure
3.2.1
3.4.1
3.4.2
3.4.3
3.4.4
3.45
4.1.1
431
4.3.2
5.2.1
5.3.1
7.2.1
8.1.1
8.3.1
8.3.2
9.11
9.1.2
9.1.3
9.14
9.15
9.1.6
9.1.7
9.1.8
9.1.9
9.1.10
9.1.11
9.1.12
9.1.13
9.1.14
9.2.1
9.2.2

LIST OF FIGURES

Categories of state variables............coooveiiiiiiii 19
EXAMPlE tree. ..o 31
Rigid bodiesin atree topology.........ccovviiiiiiiiiiii e 32
TWO-IINK SYSteM.. oo e 32
Four-bar linkage....... .o 33
Tree for closed 100P......o.oviiii i 33
Overview of asimulation Program.coevvveieeieiieiei i eeiaaneennn 34
Block diagram for “In-the-loop” computations.covevieiiiienn. 37
Example frequency of “in-the-loop” tasks..........ccooevviiiiiiiiiiicciineenn, 38
Hierarchy of AUTOSIM and Lisp dataobjects.coovvviiiinnnn.n. 45
ANgle calCulation.o 60
View of the computation of an element inthe LU matriX....................... 88
Geometry of body relativetoitsparent.ooeveiiiiiiiiii i 95
Four-bar linkage....... .o 117
Treefor [inkage........coooiiiii 117
ROIl @xXiS N @ PaSSENQEN Ca........ccuiiuneeieiieiiieiiee e eeeeie e eneeneeaees 148
TR gEOMELIY. .ot 150
Points and dimensions for example vehiclemodel. 151
Description of car model in AUTOSIM........cocviviviiieiiieeeeeeeeeeen, 152
Inputsfor “small” variables. ... 156
Definition of direction for lateral acceleration.cooeiviiiiiiinnnnnn. 157
Specification of output variables.............ccovvviiiiiiiiii e 158
Inputs to specify characteristics of system parameters..............ccoocueeee. 161
Step responses of two modelsin lateral acceleration...............occeeeveeis 162
Step responses of two modelsin yaw rate............ccccevveveiiieeeiiieennnnnn. 162
Use of automated plotter to view simulation results...........cccccevvvveeeeenn. 163
Fortran code for precomputing constants............ccccoeevviveiiieiieeinnenn. 171
First part of Fortran code for computing derivatives of state variables........ 172
Continuation of Fortran code for computing derivatives of state variables... 173
Four-wheeled cart.o 174
Bodies, reference points, and dimensions for cart.............cccccevvvvnnnnnnn. 175

Xiii

Figure
9.2.3
9.24
9.25
9.2.6
9.2.7
9.2.8
9.2.8
9.2.9
9.2.10
9.3.1
9.3.2
9.3.3
9.34
9.35
9.3.6
9.3.7

9.3.8

9.3.9
94.1
9.4.2
9.4.3
9.4.4
9.45
9.4.6

9.4.7
9.4.8
9.5.1
9.5.2
9.5.3
9.6.1
9.6.2
9.6.3
9.6.4

AUTOSIM description of cart example............cooviiiiiiinieiiiiinecennnn, 176
AUTOSIM description of nonholonomic constraints for cart example........ 177
AUTOSIM description of cart output variables and parameter values......... 178
Transient responses of yaw rate and steer rate...........ccoeveeevevveiieennnnnn 179
Transient responses of yaw angle and steer angle...........ccccoeeeeerveennnes 180
AUTOSIM responses to constraint definitions..............ccccccceeevieeeeenn. 183
Constants that are precomputed for thecart. ..., 191
Kinematical equationsforthecart. ..o, 192
Dynamical equations for the cart..............ccooooiiiiiiiiin i, 193
Four-bar linkage.........cooiii 194
Description of kinematics of four-bar linkage..............ccccceeiiiiiieennnnnn. 195
Time histories of rotation angles for nominal initial conditions................ 197
Time histories of rotation angles for displaced initial conditions............... 197
Time histories of Strut force..........oooviiiiiiii e, 198
Trajectory of masscenter of body B. ..o 199
Jacobian matrix (ALPHA) and error function (BETA) used to compute

initial conditionsfor four-bar linkage. ... 201
Correction of integration error in computed coordinates Q(2) and Q(3) for

four-bar lINKage.o 203
Force object created to represent Strut............cooevevieveiineiiiineeiieeennn. 203
Sketch of bodiesin Spacecraft #1.ccoovviiiiiii 204
Subroutines for computing control signals and couples from thrusters....... 205
Description of spacecraft bodies for AUTOSIM........ccccoevevviiiieeeennnnn. 207
Modifications to define “small” variables...........ccccccoeiiiiiiiiiiiiiiinnnn. 208
AUTOSIM description of active moments............cceuvvvevveiineeeiiinnennnns 209
Define units, default values, output variables, and name of multibody

5 V1] 1 1 210
Time histories of satellite attitude variables during slew maneuver............ 211
Time histories of boom deflection during slew maneuver...................... 212
Dimensions of “Spacecraft #2.”ccoiiii i 213
Description of Spacecraft #2in AUTOSIM.ooiiiiiiiiiiieeee 214
Time histories for Spacecraft #2..........coooviiiiiiiiiiii e 216
Sketch of “ Stanford Arm” points, dimensions, and coordinates............... 217
Description of uncontrolled Stanford Arm..........ccvvviiiinieeiieeiiinnnnnn. 220
Description of control torques and force for Stanford Arm..................... 221
Time history plots of generalized coordinates................ccoevvvveiieeennnns 222

Xiv

LIST OF APPENDICES

Appendix
A. AUTOSIM REFEIeNCe......c.ieiiiiiiiie e 231
B. Passenger car handling model...............cooiiiiiiiiiii e 248
C. Four-Bar Linkage........coiiiiiiiii e 267
D. Spacecraft #1 eqUAaLIONS........cuiiuiiiii e 288
E. Manipulator eqUatioNS...........couveuiiiiiiiiie e 298

XV

XVi

1. INTRODUCTION

This dissertation deals with the modeling and computer ssmulation of mechanical
systems composed of rigid bodies and massless force- and torque-producing elements.
Motions of the rigid bodies are predicted by numerically integrating differential equations
developed from principles of mechanics. The mechanical system is called a multibody
system, the computer program that integrates the differential equationsis caled asmulation
code, and the differential equations are called the equations of motion for the system.
Multibody systems pertaining to ground vehicles are of particular interest.

1.1. Objective

The main objective of thiswork was to create a means for automatically generating
highly efficient simulation codes for ground vehicles, while incorporating realisticaly
modelled components. To do this, the dissertation includes (1) a software design for
representing the mechanical system in symbolic form as a set of computer data objects, (2)
a multibody formalism (i.e., a formal strategy for deriving equations of motion for a
multibody system) that is valid for systems with various types of connections between the
bodies, (3) methods to manipulate symbolic expressions automatically within the multibody
formalism, (4) the design of an interface to the analyst that permits the description of
unconventional force- and torque-producing components, and (5) a way to accommodate
external computer subroutines that may have already been developed. A software package
called AUTOSIM was written in the Lisp computer language to validate and demonstrate
the methods. The software also includes an interface with the analyst that permits
immediate evaluation of expressions involving scalars, vectors, points, bodies, etc., and
the ability to generate complete simulation codes that are correct, properly documented, and
reasonably easy to use.

1.2 New Research

Multibody formalisms that have been used to automaticaly formulate equations,
whether numerically or symbolically, have not been representative of how human analysts

2

approach the same job. The multibody formalisms have represented well-structured
analysis strategies that can be programmed easily, whereas the human analyst usually
applies modeling and engineering knowledge to simplify the representation of parts of the
model, if for no other reason than to reduce the algebrainvolved in deriving the equations.
Of course, by reducing the algebra, the numerical computations based on the equations are
usually reduced aswell. This dissertation develops severa new analysis methods that are
based on concepts previously used only by human analysts.

First, an object-oriented symbolic computer language is developed so that the methods
can be programmed. Data objects represent (1) algebraic expressions, (2) physical
components in the multibody system, and (3) software components of the numerica
simulation code being created. The algebra portion of the system isimplemented using an
original design such that vector expressions can be freely developed and manipulated
without concern for which coordinate systems are involved. Unit-vectors are represented
not as 3x1 matrices, but as primitive data objects that define three-dimensional directions.
With this representation, vector operations are performed with information contained in the
unit-vector objects, rather than by matrix operations as has been done in other computer
algebralanguages. Consequently, vector expressions can be developed and manipul ated
with the full degree of flexibility that a human analyst uses.

The multibody representation is also new. Components and geometric entities such as
bodies, points, forces, and moments are represented with data objects tailored to describe
those elements and their relationships to each other. Past methods have not directly
represented elements of the system, but have instead constructed matrices to represent
information related to the elements.

Finally, the inclusion of the output simulation code as a group of objects subject to
automated manipulation is a new approach.

The simplification methods developed in this work incorporate methods that have not
been used before in automated multibody analysis methods. In previous work, algebraic
simplifications have been based only on rules of algebra. In thiswork, simplifications are
based not only on rules of algebra, but also on (1) engineering judgements (e.g., terms that
can be proven to be numerically negligible are thrown out), (2) recognition of modeling
equivalences (e.g., grouping inettid terms to form composite bodies), and (3)
programming techniques used for numerical analysis (e.g., recursion, factoring out
constants that can be precomputed, introducing intermediate variables, etc.).

3

Another product of the research is a*complete’” symbolic multibody formalism that
permits the analyst to include any forces and torques that can be modeled mathematically,
even if the models are unorthodox. Also, output variables computed by the simulation
code can be defined by the analyst in terms of arbitrary combinations of directions from all
coordinate systems present in the multibody system. (Past symbolic multibody formalisms
place many restrictions on the sorts of forces and variables that can be referenced.) In
addition to dealing with issues of multibody dynamics, the formaism includes
considerations of how the equations of motion are eventually programmed for numerical
solution.

A symbolic method is presented for expressing the equations of motion in explicit
form, eliminating the need for numerically solving sets of simultaneous equations. For
vehicle systems, the symbolic method can be much more efficient than numerical methods
commonly used.

Techniques are developed for handling constraints in a more automated manner than
has been possible before with symbolic multibody analyses. Nonholonomic constraints
and closed kinematic loops are described by the analyst with simple vector expressions that
are processed automatically to obtain scalar constraint equations.

Kinematic “closed loops’ (e.g., four-bar linkage, slider-crank mechanism, etc.) with
complicated constraint equations are handled by automaticaly writing numerica
computation code to satisfy the constraintsin such away that singularities are unlikely to
occur. That is, the symbolic computation methods are used not only to derive conventional
differential equations, but also Jacobian coefficients and source code to recursively
compute values for variables when closed-form solutions are not feasible.

The combined effect of these new techniquesis significant in at least two ways: (1) the
simulation codes generated are more efficient for vehicle dynamics models than any other
formulations that have been published, and (2) the input description prepared by the analyst
isminimal and does not require knowledge of the formalism details.

1.3. Organization of Dissertation

Chapter 2 presents background materia for the work, covering key concepts and
previous work. Chapter 3 summarizes conventions in terminology and notation used
throughout this dissertation. Chapter 4 describes the sort of numerical computer code that
isdesired as the output of the automated symbolic software.

4

Chapter 5 develops the computer representation of symbolic objects needed to
completely describe a multibody system and a simulation code. Most of this material deals
with computer algebra, and the representation and manipulation of vector/dyadic quantities.

Chapter 6 presents an overview of the dynamics theory needed to develop the formal
strategy for automatically analyzing multibody systems. The method advocated by Kane for
manualy analyzing a system is presented, and then extended to include details for
formulating the equations of motion for numerical solution.

Chapter 7 develops the symbolic solution for sets of simultaneous linear equations,
such as those obtained by the method presented in Chapter 6.

Chapter 8 presents the multibody formalism. It describes how the model conceived by
the analyst is described in smple terms and trand ated into a computer representation. Once
the system is described, the equations of motion are developed automatically and a self-
contained Fortran ssimulation code is generated.

Chapter 9 describes six example multibody systems that were analyzed using
AUTOSIM and presents results of investigations into the significance of the various
techniques. Conclusions are summarized in Chapter 10.

Appendices are included to provide more detail about the examples. Appendix A
briefly describes the AUTOSIM commands used in the examples. AppendicesB, C, D,
and E contain Fortran source code generated by AUTOSIM for some of the examples.

Those readersinterested in al details of the work are encouraged to read the ten
chaptersin sequence. Those interested mainly in the practical aspects can skip right to
Chapter 9, and refer to Chapter 3 and Appendix A as necessary to understand the
conventions and notation. Those interested mainly in the dynamics formalism should read
Chapters 3, 6, 7, and 8. Readers interested mainly in the symbolic computation methods
should read Chapters 3 and 5, and skim through 7 and 8.

2. BACKGROUND

The numerica simulation of multibody systems has been receiving an escaating
amount of attention in the past twenty years. The interest has been driven in part by the
ever-increasing capabilities of the digital computer, both in the areas of hardware
performance and and in programming concepts. Further, increasing design challenges for
complex spacecraft, robot manipulators, and high-speed mechanisms mandate simulation
during the design process. Even when established mechanical systems such as ground
vehiclesare considered, simulation is essential for (1) designing future products in a
globaly competitive environment, (2) evaluating the suitability of novel vehicle
configurations on public roads, (3) reconstructing accidents, and (4) investigating the
behavior of humans in simulated conditions through driving simulators involving “real-

time” “man-in-the-loop” smulation.

Given that most complex multibody systems that are of greatest interest can only be
understood with the aid of computer simulation, modern textbooks in dynamics now
emphasize analyses suited for computer solution (e.g., [35, 58]). Symposia and sessions
have been held on the subject of multibody systems [16, 38, 77], and specialized textbooks
are starting to appear that describe multibody dynamics from the perspective of
programming the dynamics in a computer agorithm [25, 97]. In the literature of
mechanical dynamics, papers dealing with analytical and computational methods pertaining
to multibody systems are too numerous to cite here (for example, Ref. [97] includes 257
citations). However, several overviews are available [38, 63, 74, 110, 113, 135].

Thejob of simulating a multibody mechanical system involves three steps: (1) creating
an idealized model of the system, (2) formulating equations of motion, and (3) solving the
equations numerically. The first step is the most critical, for it requires the crestive
application of engineering knowledge and judgement to determine (a) what characteristics
of the system are important, (b) what characteristics should be neglected, and (c) a strategy
for modeling the important characteristics using rigid bodies, massless springs, and other
idedlized elements. The third step can be performed by numericaly integrating the
nonlinear ordinary differential equations of motion with a computer program caled a
smulation code. It isthe second step that is of primary interest in thiswork.

6

Approaches that are taken to formulate and solve equations for a system after a model
has been conceived by an analyst can be organized into three categories:

1. Equations of motion of the multibody system are derived by the analyst and
trandated by a programmer into a specialized simulation code that pertains to one
particular multibody system.

2. A generalized smulation code is used in which the equations have been formulated
and programmed once and for all in ageneralized fashion.

3. Symbolic analysis software is used to aid the analyst and programmer in the
formulation of equations and the development of a specialized simulation code.

The manual derivation of the equations of motion for even a modestly complex system
is atedious undertaking that involves considerable algebra, a nagging uncertainty regarding
the correctness of the equations, and a considerable programming and debugging effort.
To avoid these problems, the process of formulating equations is automated in the second
and third of the above approaches, which are discussed at length in the following two
sections.

2.1. Generalized Simulation Codes

Generdized (numerical) ssimulation codes are computer programs that employ a
multibody formalism established for all systems. They first build a set of equations from a
description provided by the analyst, and then proceed to numerically integrate the equations
to ssimulate behavior of the system. Available multibody codes that are used for simulation
of spacecraft, robots, mechanisms, biomechanics, and vehicles have been reviewed
elsawhere [39, 63]. With respect to simulations of ground vehicles, the codes ADAMS [3,
11, 18, 36, 76, 79, 86, 87] and DADS [85, 121] are primarily used by industry in North
America. These, and other generalized codes (e.g., [2, 26, 27, 80, 88, 95, 115, 116,
117]), are appedling to many engineers because they offer a “complete solution” that
handles the entire simulation effort, from model description to the numerical integration of
equations. Of course, there are some compromises made to achieve the generality.

One compromise is that the generalized codes often run slowly relative to specialized
simulation codes. A human dynamicist usually tries to obtain equations of motion that are
as simple as possible, using a number of techniques that will be detailed later. Further,
good programmers can improve computationa efficiency when the equations are
incorporated into the smulation code. Because general-purpose smulation codes are

7

written to apply to all multibody systems, most simplification techniques cannot be used.
For vehicle simulations, the eventual differencein simulation speed between a specia-
purpose code and a generalized code can be more than an order of magnitude (differences
in run-time speeds have been observed to vary by afactor ranging from 10 to severa
hundred). The inefficiency of the general-purpose software makes it less than ideal for
highly repetitive design studies, and unfeasible for rea-time, hardware-in-the-loop
operations.

Another compromise is that the generalized codes are not completely general when it
comes to introducing force- and torque-producing components. This can be a problem
with multibody systems that include elements characterized by semi-empirical models that
are not likely to have been fully anticipated by the programmer. For example, ground
vehicles include tires, nonlinear springs, complex shock absorbers, etc. that are modelled
differently based on the intended use of the ssimulation. Assuming that an engineer is able
to develop a computer representation of such an element as an external subroutine, the
subroutine must be incorporated into the multibody simulation. If the smulation program is
written by hand, it is a simple matter to incorporate external subroutines. However, for a
generalized ssimulation code, external subroutines are limited to cases that were anticipated
by the origina programmer. Variables needed as inputs to the externa subroutine
(positions, angles, speeds, etc.) are not always readily available, and may require the
analyst to develop interface software to compute the needed val ues from variables provided
in the multibody program.

2.2. Symbolic Analysis by Computer

Symbolic computation offers the potential to combine the high reliability of a general-
purpose code with the efficiency and modeling flexibility associated with the devel opment
of anew special-purpose code. In this approach, the computer generates a simulation code
that issimilar in structure and efficiency to one written by a human programmer.

There are three variations on this approach that have been taken for performing the
symbolic computation needed for analyzing multibody systems:

1. A generic symbolic manipulation language is used by a dynamicist who performs
the analysis in the same manner as would be done “by hand,” except that the
computer aids in performing the algebra.

8

2. A symbolic manipulation language tailored for dynamicistsis used by an analyst
who guides the analysis, but uses the computer to perform algebraic manipulations
and to apply routine kinematical and dynamical formulas.

3. A complete, self-contained multibody analysis program is used to formulate
eguations automatically, based on a description of how bodies in the multibody
system are connected to each other.

Generic Computer Mathematics Languages

Generic symbolic mathematics software has been employed to devel op equations of
motion for multibody systems. Most of the work reported to date has been done with the
MACSY MA language [21, 33, 34, 44, 45, 73, 81, 82, 92], possibly because it has been
available on mainframe computers for over fifteen years. Other generic symbolic languages
that have been used are FORMAC [69] and REDUCE [67, 94]. Newer languages with
similar capabilities are MAPLE [20], MuMath [139], and Mathematica™ [138]. MuMath
and Mathematica can be used by a much greater audience than MACSY MA, asthey run on
personal desktop computers. Further, more commercial symbolic computation languages
are rapidly appearing for the new generations desktop computers.

The generic mathematical languages include capabilities far beyond the basic “high-
school algebra’ needed for analyzing multibody systems. For example, the language
MACSY MA consists of about 3000 compiled Lisp functions, accounting for over 300,000
lines of Lisp source code [92]. In past work, powerful computers have been required for
acceptable performance [82]. Also, the analyst must not only be an expert at dynamics, but
also in the use of the symbolic computer language.

Published equations generated with computerized symbolic manipulation have not been
particularly efficient [82]: the main advantages of this approach have been (1) that algebra
errors on the part of the analyst are eliminated, and (2) that the time needed by the analyst to
obtain the equations is reduced.

Part of the difficulty in using generic computer mathematical languages stems from their
lack of capability to represent the vector and dyadic expressions that occur naturally when
analyzing multibody systems. For example, consider a system that includes rigid bodies
A, B, and C, where A is connected to ground by a hinge joint, B is connected to A by a
hinge, and C is connected to B. Using unit-vectors fixed in each body, the angular velocity
of C might be written by an analyst as

-C . . —
W~ =UuinNi+uUay+ugbs (2.2.1)

where Uy, Uy, and us are state variables with units of rotational speed, and ri1, @, and b
are unit-vectors fixed in bodies N (ground), A, and B, respectively. This vector
expression is written without concern for the coordinates needed to represent the unit-
vectorsny, ap, and bs. Assuch, it cannot be represented in any of the languages cited thus
far. Instead, a coordinate system must be chosen so that the vector can be represented by
an array of three scalar expressions, where each expression corresponds to one coordinate
in the chosen coordinate system. Two problems with choosing a coordinate system for
each vector expression are (1) the analysis is made more complicated because the
coordinate systems must be kept track of, and (2) it is not always clear right away whichis
the “best” coordinate system to choose.

Computer Mathematics for Dynamics

At least one symbolic computation language has been developed specifically for
interactive use by a dynamics expert [106]. W.ith this language, called AUTOLEV
(Automated L evinson), the dynamicist guides the analysis by introducing state variables,
defining coordinate systems, etc. Essentially, the dynamicist analyzes the system using
Kane's method (described in Chapter 6), and the computer acts as an assistant that
performs most of the algebra. When the analysis is complete, the equations of motion are
written into a complete, self-contained Fortran program that is ready to compile and run as
asimulation code customized for the multibody system that was just analyzed. Although
the analyst is required to be well-versed in the Kane method of dynamic analysis, the
software is simpler to use than other symbolic mathematics computer languages. It is
designed for use on the IBM PC, and is therefore more accessible than many symbol
manipulation languages. AUTOLEV does not automaticaly generate nonholonomic
constraints or constraints for kinematic loops, nor does it have afacility for solving linear
equations in symbolic form.

Automated Symbolic Multibody Analyses

With a sufficiently detailed multibody formalism, equations of motion can be devel oped
automatically using only rudimentary computer algebra. Sef-contained symbolic
multibody codes have been written to formulate equations that can be merged into a
simulation program. This area of symbolic multibody analyses is the most significant for
the research reported in the dissertation. In the following summaries, the dynamica

10

formulations used in the programs are noted, but will not be described in any detail until
Chapter 6.

Rosenthal and Sherman developed the symbolic multibody program SD/FAST, known
earlier as SD/EXACT [100, 101]. SD/FAST demonstrates that highly efficient equations
of motion can be derived automatically by a self-contained program with its own built-in
computer algebra capabilities, using Kane's equations [55, 58]. SD/FAST includes
provisions for dealing with some kinds of closed kinematical loops via Lagrange
multipliers [35, 97]. If a system has a linkage involving ball joints and pins, the
congtraints can be handled automatically.

A modified, highly recursive version of Kane’'s analysis method was published by
Wampler in his PhD dissertation [125]. Wampler isolated portions of acceleration terms,
called acceleration remainders, to build equations of motion in aform that is explicitly
suited for numerical solution. Some of his techniques are also used in this dissertation.
The main application of Wampler’ s dissertation involved robotics, so the techniques are not
completely generalized. They include provisions for actuator dynamics, and lack
provisions for topologies other than chains. Wampler demonstrated his formalism with
several numerical multibody codes that offer efficiency better than anything available at that
time (1985).

The methods of Wampler were adopted by Nielan, who wrote a computer program
cdled SYMBA to generate multibody equations symbolicaly, in a fashion smilar to
SD/FAST [83]. Nielan aso included part of the more general Kane formulation, to handle
topologies other than chains. The formulation obtained by Nielan produced equations for a
robotic system called “ The Stanford Arm” that were the most efficient obtained to date
(1986) [45, 57, 82, 124, 125]. For systems more characteristic of spacecraft, the
formul ations were comparable to those obtained by SD/FAST.

There are serious practical limitations in both SD/FAST and SYMBA with respect to
ground vehicle simulations. First, they only derive expressions for inertia forces and
inertiatorques. That is, the programs offer no way for the analyst to specify active forces
and torques, asis normally done with generalized simulation codes such as ADAMS. The
analyst must still develop some of the equations by hand, program them, and manually
merge the code generated by SD/FAST or SY MBA with the hand-written code. Theinertia
forces and inertia torques dominate equations of motion in some fields, notably spacecraft

11

and robotics simulation. However, equations of motion for ground vehicles have fairly
simple inertiaterms and very complicated force and torques descriptions. For ground
vehicle models, the bulk of the simulation code would still have to be developed by hand.

A second limitation is that SD/FAST or SYMBA cannot generate and apply
nonholonomic constraints. Although SD/FAST will generate code with constraint
coefficients, it is up to the analyst to obtain expressions for those coefficients and manually
edit them into the ssimulation code.

A third limitation is that the above symbolic computation algorithms keep al nonlinear
termsin all equations. A human analyst typically throws out terms that are known to be
small, such as some Coriolis accelerations, products of small trigonometric functions, etc.
Even for a simple vehicle model studied as an example, these simplifications were shown
to have improved efficiency by afactor of 3[103].

Several symbolic multibody programs have been developed in Europe specifically for
handling vehicle systems. These are NEWEUL, MESA VERDE, and MEDYNA. Unlike
the SD/FAST and SYMBA software, these programs properly include forces and moments
from tires, suspensions, and other force- and moment-producing components in a
multibody system. Also, they can be used to derive linearized equations of motion.

The program NEWEUL is based on a multibody formalism that can be applied to
systems of rigid bodies constrained by both holonomic and nonholonomic constraints. The
program has been used for applications involving ground vehicles, spacecraft, and robots
[40, 64, 65, 66, 108, 109, 111, 112]. The nonlinear terms in the equations of motion
appear in an isolated matrix, making it simple to obtain either linearized or fully nonlinear
equations. (However, it is not possible to derive equations where some variables are small
and others are not.) The NEWEUL program was originadly written in Fortran and
performs the symbolic manipulations by representing expressions by integer codes in
arrays [112]. This method permits symbolic manipulation in alanguage not designed for
that purpose, but with severe limits in comparison with other symbolic manipulators.
NEWEUL cannot represent “nested” expressions. That is, products of sums are always
“expanded.” (For example, the expression (A + B)*(C + D) contains two “nested” sums:
(A +B)and (C + D).) Also, the automated replacement of repeated expressions is not
performed by NEWEUL. Hence, equations generated by NEWEUL that have been
published include many redundant expressions that would be taken out by almost any
human programmer. Further, when symbolic expressions are always expanded, great
demands are placed on the computer resources, and analysis of complex systems becomes

12

impossible. For example, for a simple three degree-of-freedom vehicle model, the
computational efficiency of equations derived with nested expressions and intermediate
expressions was about a factor of seven better than when those capabilities were disabled
[103]. The exact form of the input to NEWEUL has not been described in the literature,
other than to define matrices that must be provided by the analyst usng NEWEUL.

The program MESA VERDE stands for “M Echanism, SAtdllite, VEhicle and Robot
Dynamics Equations” and is based on a multibody analysis strategy developed by
Wittenburg and Roberson, and programmed by Wolz [136, 137]. The multibody systemis
described by several matrices with integer and symbolic elements, which are provided as
inputs by the analyst. The analyst can define state variables in avariety of ways, and can
apply arbitrary force- and moment-producing elements. An interesting method is used to
specify closed kinematical loops[72]. One body in the loop is entered twice, with half the
mass and inertiaeach time. MESA VERDE istold that the two entered bodies are the same,
and constraint equations are automatically generated. The output of the program is the set
of equations of motion, written in either PASCAL or FORTRAN. Example equations
generated by the program have not appeared (to this author’ s knowledge) in the English
literature, nor have example input requirements. However, the published descriptions
indicate that the analyst is expected to be familiar with the multibody representation
devel oped by Wittenburg and Roberson.

The program MEDYNA [24, 52, 62] formulates equations of motion in ACSL
(Advanced Continuous Simulation Language) that are linear with respect to state variables,
but which can involve nonlinear force and moment-producing elements. MEDY NA was
developed specifically for ground vehicles, especidly those that travel on tracks and
guideways. Although its multibody dynamics analysisis limited to alinear representation,
it includes anumber of pre-defined component models such astires, railcar wheels, etc. to
facilitate its use with vehicles.

2.3. Research Approach

Although simulation of mechanical systemsiswidely acknowledged as a necessary
engineering tool, the technology is not yet mature in the sense that simulation of complex
nonlinear systems is not performed with the ease of other engineering analyses, such as
linear system analysis, CAD, etc. Each of the three general approaches described at the
start of this chapter has associated limits.

13

1. To develop a smulation code without computer aid requires (1) expertise in
dynamics, (2) agreat deal of time to perform the pencil-and-paper analysis of the
system to be simulated, and (3) more time and programming expertise to put the
equations of motion into aform that can be solved by computer.

2. Tousethe generalized ssimulation codes described in Section 2.1, the engineer must
(1) have accessto general-purpose simulation software and computer powerful
enough to run the software (generally, a mainframe computer or minicomputer), (2)
have extensive experience in dynamics, and (3) also have extensive knowledge and
experience with the simulation software. Even with the required software,
hardware, experience, and knowledge, the generdized smulation codes may
require too much computer time per run to be used for some analyses.

3. Thesymbolic analysis software packages mentioned in the previous section serve to
aid the analyst (in various degrees) in the development of simulation codes as might
be done “by hand.” However, much of the work must still be done by the
analyst, particularly in specifying forces and torques acting on bodiesin the system,
and in specifying constraints. Also, the symbolic programs generate only a portion
of the overall specialized simulation code.

The third approach is the most recent, and least developed. With recent developments
in computer programming from artificial intelligence applications, many procedures that
used to be difficult or impossible to program can now be automated. Symbolic multibody
programs devel oped previously have been developed from the view: “Given the ways that
data can be represented symbolically in existing computer languages, how can equations of
motion for a mechanicd multibody system be generated automaticaly?” Multibody
formalisms have been complicated, in order to compensate for the limited representation
possible in a conventional computer language. Because the symbolic manipulation
capabilities have been rudimentary, some important simplification methods have not been
applied. (Simplification techniques that are not included in the computer algebra can still be
applied by including them in the multibody formalism, asis the case with the linearization
option in NEWEUL, but there is aloss of modeling flexibility because the formalism must
include specific “plans’ for dealing with all algebraic combinations that can occur in the
systems being modeled.) The methods are less general than approaches taken by human
analysts, because al of the possible combinations of multibody systems must be anticipated
in the formalism. Also, the smulation codes are generally not nearly as efficient as can be
obtained with better symbol manipulation capabilities.

14

In contrast, this dissertation takes the view: “How can the ways that humans analyze
multibody systems be automated? To start, a symbolic mathematics language called
AUTOSIM is developed in Lisp to automaticaly generate simulation codes [104].
Although a number of mathematical symbol manipulation languages exist, none have the
capabilities needed to easily support the generation of efficient simulation codes. Much of
the literature in computer symbol manipulation has focused on the manipulation of
polynomials and the development of integrals and derivatives of complex expressions[12,
17,92, 94, 123, 127]. In contrast, AUTOSIM neglects these types of manipulations.
Instead, the language is built upon representations of three aspects of the overall systemin
symbolic form as data objects:

1. vector and dyadic algebra expressions,
2. components of the multibody system (bodies, forces, etc.), and
3. piecesof computer code that go into the numerical simulation code being generated.

The above data have been represented with scalar expressions and matricesin all work
done prior to this. The representation of vectors and dyadicsin AUTOSIM issimilar to the
“component-free vectors’ in MuMath, except that the dot-product operator generates a
scalar expression (using knowledge of the multibody system), rather than a symbolic
vector expression.

Another novel aspect of AUTOSIM isthe way in which intermediate expressions are
introduced to obtain efficient Fortran code. All of the symbol manipulation languages can
print equations in FORTRAN, but AUTOLEV is the only one that identifies
subexpressions that can be replaced by intermediate variables. None of the existing
software packages have the capability to identify constants that can be precomputed. (To
obtain maximum efficiency with existing software, the analyst is required to specify
numerical valuesfor all parameters. A new set of equations must be formulated if any of
the parameter values are changed.)

Next, amultibody formalism is needed that parallels the process employed by a human
analyst. The formalism must be specified in sufficient detail that it can be programmed in
the new symbolic language. Ideally, the best features of existing multibody simulation
methods should be included, namely:

15

* A *“complete solution” such asis provided by many generalized simulation codes
minimizes the time needed to proceed from amodel concept to aworking simulation
code if the processis entirely automated.

e Virtualy any force- or moment-producing component can be included in a
simulation code devel oped by hand, even if the force/moment characteristics include
such behavior as (1) friction, hysteresis, and other discontinuities; (2) behavior that
is dependent on its past history (in addition to current states); and (3) dynamic
behavior of variables not directly a part of the multibody system.

e Virtualy any motion variable, no matter how unorthodox, can be defined for usein
codes developed by hand. Such variables are typically needed as inputs to external
subroutines, or as output variables.

The generalized codes, both numerical and symbolic, are (hopefully) debugged
once and for al. Once debugged, equations produced are aways valid and correct.

* The symbolic methods (automated and manual) can result in highly efficient
simulation codes, needed for use with desktop computers or for interacting with
hardware in real-time applications.

The advantages can be combined by creating a generalized symbolic multibody analysis
program that offers a“complete solution” and still allows the modelling freedom available
when simulations are developed by hand. Accordingly, AUTOSIM formulates equations of
motion and then generates a complete simulation code. When the source code for the
smulation is compiled, the resulting program reads input files with parametric data,
simulates the system, and writes output files in a form suitable for automated post-
processing software.

To match the “ease of use” that can be obtained with specialized simulation codes, the
analyst describes input parameters and output variables with algebraic expressions, such
that the simulation code generated by AUTOSIM reads input and writes output that is
exactly the input and output of interest to the end user—the engineer using the simulation
code generated by AUTOSIM. To accomplish this, the analyst can define multibody
parameters as arbitrary expressions involving constants familiar to the end user. (For
example, the location of the mass center of a vehicle might be described with an expression
involving a wheelbase and static axle loads.) Any force, torque, or motion variable can be
specified as an output without referring directly to state variables. External subroutines and

16

functions can be freely introduced into the system to handle complicated and unusual
elements.

3. CONVENTIONS

There is no standard convention for describing the elements and topologies of
multibody systems. Even with established areas of mathematics such as vector algebra,
different notations are used by different authors. In the hope of simplifying the discussions
that follow in subsequent chapters, this chapter isincluded to detail the conventions used
throughout this dissertation.

The first convention is that a word or phrase that represents an important technical
concept isshown initalics the first time it appears, unless the name is adready well-
established. A definition is usually supplied in the material that follows. Subsequent
appearances of the term or phrase appear in normal typeface.

3.1. Elementsin a Multibody System

The multibody systems under consideration in this dissertation are mechanical systems
composed of rigid bodies and massless elements that apply forces and torques to the
bodies.

Rigid Bodies, Reference Frames, and Coordinate Systems

A reference frame is an environment in which points remain fixed with respect to each
other at all times. A rigid body is an object in which every point is fixed in the same
reference frame. Thus, each rigid body in a mechanical system has an associated reference
frame. Itis possibleto conceive of reference frames for which there are no corresponding
rigid bodies. For example, consider arolling disk. In addition to the reference frame that
rolls with the disk, it is convenient to define an auxiliary reference frame that follows the
disk but which does not roll.

In the remainder of this dissertation it is not essential to distinguish between reference
frames and rigid bodies, and some of the descriptions are simplified by using the two
names interchangeably. That is, rather than writing “the reference frame associated with
body B,” the shorter phrase “body B” isused. Reference frames that do not correspond to

17

18

aphysical body in the system are treated as rigid bodies with zero mass and zero moments
of inertia. Intherolling disk example, the system is modelled as two rigid bodies. (1) a
massless body A which (a) slides over the ground, (b) steers, and (c) leans, and (2) a body
B that spinsrelativeto A and has mass and inertia.

A coordinate system is a numbering convention used to assign a unique ordered trio of
numbers to each point in space. All coordinate systemsinvolved in thiswork are right-
handed Cartesan coordinate systems, defined by three mutually orthogonal axes
intersecting at an origin. Further, each coordinate system is fixed in one of the bodies of
the system. In general, any number of coordinate systems can be defined for a given body.
However, in thiswork, only one coordinate system is introduced with each body. That is,
there is a one-to-one correspondence between bodies, reference frames, and coordinate
systems for all multibody systems as they are described in this dissertation.

Joints and Constraints

Kinematic relationships between bodies are defined by joints In the context of how a
multibody system is described, ajoint defines a set of zero or more holonomic constraints
that limit the geometric relationships that are possible between the bodies. Forces, torques,
and speeds are not factors in a holonomic constraint. Holonomic constraint equations are
caled rheonomic if they include explicit functions of time, and scleronomic if they do not.
Unless stated otherwise, holonomic constraints are assumed to be scleronomic.

Joint constraints are handled in two ways in the multibody formalism developed later.
Most of the joints appear in atree topology, as described in Section 3.4. Additional joints,
if they exist, are handled by adding constraint equations.

In addition to the holonomic constraints applied by joints, a system may also be subject
to nonholonomic constraints. These are constraints on motion but not position or
orientation. For example, atwo-axled vehicle slowly navigating aturn is constrained such
that the instantaneous vel ocity vector of each wheel center is oriented in the same direction
asthewheel. That is, thereisno lateral dipping. Thus, movement of the vehicle from one
position to another is constrained. However, the vehicle is not limited with respect to the
positionsit could possibly occupy after sufficient maneuvering.

19

3.2 State Variables

A simulation code computes values for a number of output variables at discrete points
in time, based on initial conditions, applied forces and moments, and the parameter values
for the system. The set of variables written as output by the simulation code is completely
arbitrary and can be defined as the analyst seesfit.

To compute the output variables, a set of differentia equations is numericaly
integrated. Those differential equations are written in terms of state variables. The state
variables are selected to mathematically describe the state of the system, such that any
position or speed variable of interest can be written as an explicit function of the state
variables. Selecting state variablesis an essential analytical step that will be developed at
length in Chapter 8. The state variables are grouped into nested categories, shown
schematically in Figure 3.2.1 and listed in Table 3.2.1.

4 State Variables R
é Coordinates N[Speeds h
é Multibody Coordinates h é Multibody Speeds h
/" Generalized /" Generalizetc

Coordinates (n) Speeds ()
Independent Independent

Coordinates (p) Speeds (p)
Computed Nonholonomi
Coordinates (M) Speeds (m)

Extra Dependent Extra
Coordinates Dependent Speeds

_ RN /
(Extra Coordi nates> < Extra Speeds >
_ NS /
_ /

Figure 3.2.1. Categories of state variables.

20

Table 3.2.1. Categories of state variables.

Name Nomenclature| Description
Independent di, --- dp Generdized coordinates computed by
coordinates integrating their derivatives.

Computed coordinates | dp+1, --- On Generalized coordinates computed both by
integrating derivatives and with iterative
numerical procedures. (m=n-p)

Dependent coordinates | expressions Coordinates defined as functions of time or
as explicit functions of independent and
computed coordinates.

Extra coordinates symbols Coordinates added by the analyst that are
not a part of the multibody system.

Independent speeds ug, ... Up Speeds computed by integrating their
derivatives.
Nonholonomic speeds | Up+1, ... Un Speeds defined as linear combinations of

independent speeds. The dependencies
involve forces and moments of constraint
that influence the system dynamics.
(m=n-p)

Extra Dependent speeds| expressions Speeds defined as linear combinations of
independent speeds. The dependencies do
not involve forces and moments of
condgtraint that influence the system
dynamics.

Extra speeds symbols Speeds added by the analyst that are not a|
part of the multibody system.

Thefigure shows how the most specific categories are nested. The broadest set
includes all state variables, and is divided into two groups: coordinates (scalar variables
involving position) and speeds (scalar variables involving velocity). Coordinate variables
are further divided into two sets: multibody coordinates and extra coordinates. The
multibody coordinates include all variables that represent displacement in either trandation
or in rotation between the rigid bodies. Multibody coordinates have units of length or
angular displacement (e.g., in, rad). The extra coordinates are variables added by the

21

analyst that are computed in the simulation code, but which do not describe kinematics of
the mechanical system. For example, air pressure in an accumulator might be avariablein
a hydraulic system coupled to the multibody system. Similarly, the speeds are grouped in
two categories. multibody speeds and extra speeds. The multibody speeds include all
variables that describe velocity between rigid bodies, and have units of length/time or
angular rate (e.g., in/sec, rad/sec). Extra speeds are variables added by the analyst that are
not directly related to the multibody system.

The choice of whether an extravariable is classified as a speed or a coordinate is made
by the analyst and is arbitrary. These are simply variables, not directly related to the
multibody system kinematics, that are computed by integrating their derivatives in the
simulation code.

The multibody coordinates are divided into two sets. generalized coordinates and extra
dependent coordinates. The extra dependent coordinates are variables that can be written as
explicit functions of generalized coordinates. When such expressions are found, they are
used in place of the coordinates wherever they appear in the equations of motion. Thus,
the extra dependent coordinates are coordinates that were removed from the equations.

The multibody speeds are divided into generalized speeds and extra dependent speeds.
The dependent speeds are variables that can be written as functions of generalized speeds,
and which have no influence on forces and moments of constraint.

The extra coordinates, extra speeds, extra dependent coordinates, and extra dependent
speeds are shown in the figure and table for the sake of completeness, given that the
AUTOSIM software has provisions for using them. However, they do not appear in the
remainder of the dissertation. It isthe four categories enclosed in the shaded boxesin the
figure that are used in the methods developed later, and which are described further below.

The generalized coordinates are introduced to allow the position of any point in the
multibody system to be written in terms of those coordinates and system parameters. The
generalized coordinates are further divided into two groups. independent coordinates and
computed coordinates. The independent coordinates are the coordinates that can be
computed only by integrating their time derivatives. The computed coordinates are
variables that are defined implicitly as functions of independent coordinates by constraint
equations. If aconstraint equation is “solved” to obtain one coordinate as an explicit
function of the others, it is classified as an extra dependent coordinate and removed from
the equations of motion. However, when the constraint equations are too complicated,

22

explicit solutions are not easily found. Instead, numerical aternatives are used that will be
described in section 8.3. Asindicated in the figure and table, there are n generalized
coordinates, p independent coordinates, and mcomputed coordinates, wheren=p + m

The generalized speeds are defined such that the speed of any point in the multibody
system can be written in terms of system parameters, the generalized coordinates, and the
generalized speeds. The generalized speeds are divided into two sets. independent speeds
and nonholonomic speeds. The independent speeds are the speeds that can be computed
only by integrating their time derivatives. Nonholonomic speeds can be written as
functions of the independent speeds. The nonholonomic speeds are mathematically not
independent due to the presence of forces and moments of constraint that influence the
behavior of the system. (The nonholonomic speeds are distinguished from the extra
dependent speeds that are not incorporated in the equations of motion.) There are n
generalized speeds, p independent speeds, and m nonholonomic speeds, wheren=p + m.

In all six of the examplesin Chapter 9, the state variables are defined such thatn=n, m
=m and p = p. However, the multibody formalism developed in Chapter 8 is made more
general by not presuming this relationship.

Table 3.2.1 showed the convention for writing the state variables. Their time
derivatives are written by putting a dot over the variable. When the state variables are
printed by AUTOSIM as Fortran source code, the generalized coordinates are printed as an
array named Q (e.g., Q(1), Q(2), etc.), the derivatives of the coordinates are printed as an
array named QP (e.g., QP(1), QP(2), etc.), the independent speeds are printed as an array
U, and the derivatives of the independent speeds are printed as an array UP. Symbols for
dependent coordinates, dependent speeds, and nonholonomic speeds are not used. These
variables are ways replaced with expressions involving independent variabl es.

3.3. Notation

The analyses presented in the following sections are developed from the method for
analyzing a multibody system described by Kane and Levinson in their dynamics textbook
[58]. Their notational conventions are adopted, although some modifications have been
made with the intent of improving clarity and simplicity within the scope of this
dissertation.

23

Subscripts and Superscripts

Subscripts are used (1) to distinguish related coefficients and variables, (2) to identify
array elements, and (3) to annotate parameters.

In many of the formulations that follow, a convention is employed in the letters used as
subscripts. A subscript i indicates a number between 1 and n, where n is the number of
generalized coordinates; a subscript j refersto a positive number associated with a body or
joint (e.g., rotational degrees of freedom of ajoint); asubscript o isan offset that relatesa
joint index j to an index i for the generalized coordinates (that is, i =] + 0); asubscriptrisa
number between 1 and p, where p is the number of independent speed variables; and a
subscript s designates the index of a dependent variable (either a nonholonomic speed or a
computed coordinate).

Superscripts are used to identify points, bodies, and reference frames associated with a
variable or parameter. (Several examples appear in following subsections.)

Bodies and Points

Bodies are identified with capital letters written in a plain typeface. In following
material, N always refersto the inertial reference, B generally refersto an arbitrary body
under consideration, and A refers to the parent of B.

Each body has three associated points that are written according to a standard
convention. For body B, these points are: (1) Bg, the origin of the coordinate system
associated with B, (2) B*, the center of mass of B, and (3) B3, the “joint point” of B,
whichisapoint fixed in A that coincides with Bg when all generalized coordinates are zero.

Other points are written as capital |etters, and are defined as they are introduced.

Vectors and dyadics

A unit-vector is afundamental algebraic element that has a unity magnitude and defines
adirection in three-dimensional space. A vector is a sum of one or more products of unit-
vectors and scalars. Vectors and unit-vectors are designated with an overhead vector
arrow, e.g., ¥. A dyadisanotational convenience that occurs when two vectors appear
side by side in an expression,! and adyadicis an expression that contains dyads. A dyadic

1 A dyad is a simple product of two unit-vectors. For example, the expression (a« b) cis a vector

24

is designated with a dyadic arrow (T). Vectors and dyadics represented by English letters
are also shown in boldfacel

The coordinate system associated with each body is defined by three axes whose
directions are defined by three mutually orthogonal unit-vectors, and which all pass
through the origin (a point). The unit-vectors are named with a lower-case letter that
matches the body, and subscripted with indices 1, 2, and 3. For example, the unit-vectors
for theinertial reference N are N1, N, and n3. Similarly, the unit-vectors for body B are
named b1, by, and bs. A dyadic called a basis dyadic is associated with each body and is
obtained by “doubling” the unit-vectors. For body B, the basis dyadic is
b=Dbiby+ byby+ bsbs. Thedot product of abasis dyadic and a vector is equivalent
to the origina vector. That is, it is agebraically equivaent to multiplying by unity.
However, the result is expressed in the basis of B, such that the only unit-vectors
appearing in the expression areby, by, and bs.

In Chapter 9, example multibody systems are analyzed and a great deal of computer
input and output code islisted. The computer printouts include no formatting, such as bold
typeface, subscripts, vector arrows, etc. Inthat chapter, unit-vectors are written with
enclosing square brackets. Symbolic names are written in upper-case lettersif they are
“outputs’ from the computer, and in lower-case lettersif they are “inputs’ from the analyst.
For example, the unit-vectorsny, Ny, and Nz might be written [N1], [N2], and [N3], or, as
[n1], [n2], and [n3]. (Upper or lower case is not significant with respect to the meanings
of symbols.)

Position, Velocity, Acceleration, and Derivatives

Vectors representing position are generally written with the letter “r.” A superscript is

used to identify the two points connected by the vector. For example, FA°B¢ is a vector that

whose direction is € and whose scalar magnitude is the dot product ae B The same expression could also

be written ae (B ©), where the expression (B ¢)isadyad. A dyadisanotational convenience that is useful
for indicating quantities that are eventually projected (by the vector dot product operator) onto arbitrary
directions.

1 Vectors represented with Greek letters are not shown in boldface, due to alimitation of the Apple
printer used to create this document.

25

goes from point Ag to point Bg. When only one point is shown, the implicit first point is
the origin of theinertial reference. For example, the absolute position of Bg is given by the
vector FNBe, written more simply as .

Vectors representing direction are also written with the letter “r.” The body associated
with the direction is shown with a superscript, and a descriptive subscript defines the type
of direction. For example, arotation axisfor body B iswritten e

Reference frames for derivatives are indicated with preceding superscripts. For
example, the derivative of the vector r& with respect to the reference frame A is written
AL . _ . .

d(;tBO' When no preceding superscript is shown, the derivative is with respect to the
inertial reference. Derivatives taken with respect to the inertial reference are also shown
with an overhead dot for brevity. That is,

#Bo_dT®

N%
_ dr (3.3.1)
dt dt

Vectors representing velocity are generally written with the letter “v.” A superscript is
used to indicate the point whose velocity is represented. A leading superscript is used to
indicate areference frame other than the inertial one. For example, the velocity of Bg in the
reference frame of A iswritten *vE¢. If the velocity isrelative to the inertial reference, the
leading superscript is usually omitted. That is, the absolute velocity of point Bg is written

VB¢, rather than NvBe,

Acceeration iswritten with the letter “a” in afashion similar to velocity. For example,
AgB is the acceleration of Bg with respect to the reference frame of A, and &t is the

absolute acceleration of the same point.

Incremental velocities and accelerations are defined as the difference in velocity or
acceleration between two points. For example,

VAR = B —y P (332)

and

—d (3.3.3)

26

The name “incremental” is used instead of “relative,” because the terms “relative vel ocity”

and “relative acceleration” are sometimes defined as velocities and accelerations relative to a
specified reference frame. (The incremental velocity is the time derivative of the position

vector connecting the two points, with respect to the inertia reference. Similarly, the
incremental acceleration is the second derivative of the same position vector, with respect to
theinertial referene.)

Angular velocity iswritten with the letter “w.” Here, superscripts refer to bodies. For
example, the angular velocity of B relativeto A iswritten A\TVB, and the absolute angular
velocity of B iswritten w®,

Angular acceleration is written with the letter “a.” Thus, the angular acceleration of
body B iswrittena .

Incremental angular acceleration iswritten by putting the symbols for both bodies in the
superscript on the right-hand side of the symbol, e.g., the incremental acceleration from A
toBis

a*®=a”-a" (3.3.4)

The incremental angular velocity from A to B is aso the relative velocity of B with
respectto A. Thatis,

BB A = AR (335)

Because they are equivaent, incremental angular velocities are always written as
relative velocities (that is, the incremental angular velocity between A and B is equal to the
angular velocity of B relative to the reference frame of A). The same equival ence does not
hold for angular acceleration, and therefore the notation of eq. 3.3.4 is used. (The
incremental angular acceleration is the time derivative of Aw® with respect to the inertial
reverence, not the reference frame of A.)

Table 3.3.1 provides a summary of the vector and dyadic notation that will be used
extensively in Chapters 6 and 8.

27

Table 3.3.1. Notational conventions for vectors and dyadics.

Notation Description
a, bj, etc., i=1,2,3 unit-vectors for body (body A for a;, ay, as; body B for by, ..)
3, b, etc. basis dyadic for associated body
&R direction associated with joint between body and its parent.
Superscript specifies body, subscript describes type of direction.
[position vector from fixed origin to point in superscript.
vP a absolute velocity or acceleration of point in superscript.
\TVB, a° absolute rotational velocity or acceleration of body in superscript.
¥ inertia dyadic of body about its mass center. (Superscript specifies
center of mass.)

we, vE" holonomic partiad angular and central velocities for body B
associated with speed uj. (Body/mass center is shown in
superscript, speed index is subscript.)

\f\,?, Ve nonholonomic partial angular and central velocities for body B
associated with speed ur. (Body/mass center is shown in
superscript, speed index is subscript; tilde indicates that partia
velocity is nonholonomic.)

atm, 5?9,“, holonomic and nonholonomic acceleration remainders. Without a|
grBe’;n, erem tilde, the symbol represents the portion of acceleration comprised

of quadratic termsinvolving generalized speeds. With atilde, it'g
the portion of acceleration not accounted for by derivatives of
independent speeds.

—SA*R* —A*R*
VAB,VfA\B

SARBY _pxge =B* _=A* TA*B* B _ A _ —AB
Vi ,8em Vi =Vy +Vy :Qrem=aremt arem:
—~AB —AB

, @rem, €ElC

incremental terms appearing in recursive relationships, e.g.,

Matrices and Arrays

Matrices and arrays are represented by underlined lettersin plain typeface. Lower case
letters are used to represent one-dimensional arrays, e.g., f. Capital letters are used to
represent two-dimensional matrices, e.g., M. An overhead dot indicates that the derivative
istaken of every element of the array. For example, the array of independent speedsis u,
and the array of the derivatives of the independent speedsis u.

28

A one-dimensional array is called avector by many authors. To avoid confusion with
the concept of avector described earlier, the word “vector” isreserved here for unit-vectors
and expressions involving products of scalars and unit-vectors.

As amatter of stylein this dissertation, two-dimensional matrices are called matrices
and one-dimensional matrices are caled arrays. Also, it so happens that al two-
dimensional matrices that appear in this dissertation are square (that is, the number of rows
equals the number of columns).

In past work involving computer representations of vectors and dyadics, vectors are
often represented as 3-element arrays and dyadics are represented as 3x3 matrices. Aswill
be seen in Chapter 5, that representation is not used in thiswork. Matrices and arrays are
used sparingly, particularly in comparison to other multibody formalisms.

Computer Data Objects

The multibody system is eventually represented as a set of symbolic computer data
objectsthat are manipulated by the computer. An “object” is a set of datathat can be
handled as a single entity by the computer. The set might be a number, an alphanumeric
character, a string (a string is a sequence of alphanumeric characters usually written in
guotes, e.g., “thisisastring”), an array, a list (alist is a sequence of objects, usually
enclosed in parentheses), a subroutine, a symbol (a symbol is an object that associates a
name and value), and others. In Chapter 5, many new types of objects are defined to
represent algebraic expressions and elements of a multibody system. Names of computer
objects are written in the Courier typeface, e.g., synbol . All symbols are represented
internally in upper-case letters, but are often written in lower-case. For example, the same
symbol can appear asr ot or , ROTOR, Rot or, or RoToR.

Computer procedures are caled subroutines in some languages, in Lisp, they are
usually functions or macros. In the context of computer methodst, the word “function”
refers to a computer object that performs a sequence of operations, possibly involving data
provided asarguments. For example, the Lisp object

11n adifferent context, the word “function” is used to indicate an expression that includes certain
variables, e.g., “Y isafunction of X" indicatesthat X appearsin the expression that represents Y.

29

(add 2 3)

invokes the function add and provides values for two arguments (2 and 3). The object is
evaluated by applying the function add to the values of the arguments, yielding the result
of 5.

The names of formal arguments to computer functions are written in italics. For
example, the function add works by adding the two arguments argl and arg2. When the
function is evauated, the names shown initalics are replaced by the actua arguments.

Data objects introduced in Chapter 5 have slots, where each slot has a name and value.
The dot names are dways written in italics, e.g., the termsslot of asumcontains the terms
of a summation.

Some of the functions have arguments that are are used to override default values.
They are optional, and, if used, must be identified with keywords. All keywords are
shown in the Courier font, and begin with the character “:” (without the quotes). Example
keywords are: body, : nane, and : coor di nat e- system

Appendix A presents a short summary of Lisp syntax and provides afew more details
about how the computer data objects are written. Table 3.3.2 summarizes the conventions
just described.

Table 3.3.2. Conventions for computer data objects.

Convention Description |

courier typeface used for (1) function and macro names, (2) types of data]
objects, and (3) names of Lisp symbols.
italics typeface used for (1) formal argumentsto Lisp functions, and (2)

names of slotsin Lisp structures.

[N1] short names enclosed in square brackets and ending in the number
1, 2, or 3 are unit-vectors for the body associated with the short
name (e.g., [N1] indicates the unit-vector ny, associated with N).

: keywor d symbols shown in Courier typeface that begin with acolon are
keywords used to specify optional arguments.

30

Parentheses, Braces, and Brackets

Parentheses and sguare brackets are used conventionaly in equations and in text.
However, additional meanings apply when computer objects are described or printed in
Chapters 5, 8, and 9.

Parentheses are used to indicate Lisp forms and other | i st's. Expressions printed by
AUTOSIM use parentheses according to Fortran conventions for (1) nesting expressions
and (2) showing arguments of subroutines and functions.

Square brackets[] are used in expressions printed by AUTOSIM to indicate unit-
vectors, e.g., [N2].

Curly brackets {} are used in descriptions of AUTOSIM functions and macros to
indicate optional arguments.

Continental brackets « » are used to indicate that the enclosed expression is replaced
with an intermediate variable and that the intermediate variable is used for subsequent
appearances of the expression.

3.4 Topology

Thetopology of the multibody system is the description of how bodies are connected to
each other. The connections can be thought of as introducing degrees of freedom for
bodies that would otherwise be completely constrained. (Alternatively, they can be thought
of as constraining bodies that are otherwise free to move in any manner.)

Degrees of Freedom

The number of degrees of freedom for a multibody system is the number of
independent generalized speeds, p.

In this dissertation, it is useful to also consider the number of generalized coordinates
associated with each rigid body in the system. For lack of a better name, this number is
called the number of degrees of freedom of the joint connecting the body to another body.
There can be up to three rotational degrees of freedom, and up to three trandational degrees
of freedom.

31

The total number of joint degrees of freedom for al of the bodiesin a system equals the
number of multibody coordinates. If a system has kinematical 1oops or nonholonomic
constraints, the number of degrees of freedom for the entire system is less than the sum of
the degrees of freedom of the body/joint pairs. Constraint equations account for the
difference.

Trees

A treeisatype of graph constructed from entities called nodes. One node is the “root
node” that starts the tree, and which has no “parent node.” Every other nodein thetreeis
defined as a“child” of a previously defined node. An example tree is shown in Figure
3.4.1, for 8 nodes |abeled by capital letters. Parent-child relations are shown by lines, with
the parent node above the child node(s). The root node is N; nodes A and B have N as
their “parent.” Thus, A and B arethe “children” of N. B hasthree children. NodesG, C,
D, and E all have no children, and are called “leaves’ of thetree.

Many multibody systems are well suited for

N
m description by trees. The nodes of the tree arerigid bodies
LT and the connecting lines are joints between the bodies. If
F CDE . . .
G the body has no physical connection to its parent (e.g., a
Figure 3.4.1. Example free body whose parent isthe inertia reference N), the
tree joint simply imposes zero constraints. In the other

extreme, abody rigidly attached to the parent involves a
joint that imposes six constraints. For example, thetreein 3.4.1 could be used to represent
the multibody system shown in Figure 3.4.2, with ovals used to designate rigid bodies.
Theroot in the multibody tree isafixed inertial reference, N.

32

Figure 3.4.2. Rigid bodiesin a tree topology.

A tree-type multibody systemis one in which all holonomic constraints are accounted
for inthetree. That is, as each body is added to the tree, ajoint relating the body to its
parent is also introduced. The number of degrees of freedom added with the new body isa
number between 0 and 6, depending on the constraints imposed by the joint.

A tree-type multibody system is shown
in Figure 3.4.3. There are two bodies, A
and B, and ground, N. Body A has N as
its parent, and body B has A asits parent.
The motions of A and B are restricted due
to the holonomic constraints imposed by
the pin joints. Forces and moments are
generated by the two pins as needed to
constrain the motions, but the constraint
forces and moments do no work and cannot
actively move the bodies.

N

OESES

Figure 3.4.3. Two-link system.

A third element is also shown, namely, a massless spring C that connects B to N. The
spring does not apply akinematic constraint. Instead, it applies aforce based on the force-
deflection properties of the spring. The spring is aforce-producing component. Under the
convention developed here, the spring does not involve ajoint and is not a member of the
tree. With or without the spring, the system still has two degrees of freedom.

33

Additional Constraints

The tree representation does not directly N
accommodate systems with kinematical ‘
loops of the sort shown in Figure 3.4.4. In

this system, the spring has been replaced
with arigid link, creating a four-bar-linkage
with just one degree of freedom. It cannot
be represented directly with a tree because
there is a loop, in which the number of
bodies equals the number of joints. That
is, if we start with N and build atreewith ~ Figure 3.4.4. Four-bar linkage.

N the parent of A, A the parent of B, and B the parent of C, we must stop without
including the joint between C and N. C can have only one parent, and C cannot be the
parent of N because N (as the root node of the tree) by definition has no parent.

A multibody system with closed kinematical

loops can be represented with a tree if it is ANAC
augmented with additional information to account B—

for the extrajoint(s). Theloopisclosed by adding Figure 3.4.5. Tree for closed
the additional joint(s) in the form of congtraint loop.

equations. For example, the four-bar linkage is

described by the tree shown in Figure 3.4.5, where the dotted arc indicates the joint
between B and C. Without the arc, the system represented in the tree has three degrees of
freedom, rather than one. The constraint relationship represented by the dotted arc must
include two scalar equations that can be applied to reduce the degrees of freedom from three
to one.

Many of the analysis methods that follow involve “traversing the tree.” With the tree
drawn as shown (with the root at the top), traversing “up” the tree implies considering the
parent of abody, then the parent of the parent, and so on until the root is reached.
Traversing “down” the tree involves considering the children of a body, then the children
of the children, and so on until all bodies that have the initia body “up” the tree are
considered.

4. SPECIALIZED SIMULATION CODES

This chapter describes the general method used to simulate a multibody system when
the ssimulation code is specific to a particular multibody system.

4.1. Overview

Figure 4.1.1 shows the flow chart for the simulation code. There are three basic tasks
that the software must perform:

1. Thedatathat distinguish this run from other runs are read as input. Inputs of this

START

INPUT

Read fileswith
parameter values and
known functions of time

Set initial conditions,
PREPARE I start output file, and
echo input data

Step through ssmulated
SIMULATE I time, integrate equations

over small time steps,
QUIT

write variables into
Figure 4.1.1. Overview of a simulation program.

output file

34

35

sort include parameter values, initid conditions, and specifications for
predetermined functions of time (i.e., forcing functions from controllers and
disturbances). Thisactivity is shown by the block labelled INPUT in the figure.

2. Computations are made to prepare the simulation by setting initial conditions and
constants computed from parameter values. An output fileis started, in which
values of the output variables will be written. Also, the input values might be
“echoed” by writing them into afile. These activities are identified by the block
labeled PREPARE.

3. Thesmulationisperformed. The equations of motion for the multibody system are
used to compute values of state variables at discrete pointsin time. These values
may also be written into one or more output files. Thistask involves operations
that are repeated for each point in time, using a program loop. Thus, they are
referred to as “in-the-loop” computations. These tasks are represented in the figure
by the block labelled SSIMULATE.

The validity and efficiency of the simulation is primarily determined by the computer
code that performs the third task, SIMULATE, because it is executed many times as the
simulation “steps’ through time over small intervals.

4.2. Simulation Start-up Operations

If the simulation software is to be used productively, the input requirements should
closely match the form of the data employed by the user to describe the system. Theinput
files should be easily understood, and allow the user to make minor modifications easily
for sensitivity studies. Also, the design of the input files should facilitate the building of
libraries, in which subsystems are described in separate files that are combined to define the
entire system. And finally, the simulation output should be written such that viewing of
results requires minimal post-processing. To attain these goals, the portion of the codein
the simulation code that performs the two tasks labelled INPUT and PREPARE is often
complex, and can account for more of the computer code than the portion that performs the
simulation.

I nput

All parameters of the multibody system that are used in formulating kinematical and
dynamical equations are generally programmed in the program as variables, so that they can

36

be changed with each ssmulation run. New values for the parameters are read from one or
more input files, and then “echoed” in one or more output files to allow the user to confirm
that parameters were interpreted properly by the smulation code. The design of the
interface between the simulation code and the user has a significant practical affect on how
easy the codeisto use. Thistopicisnot apart of this dissertation, and therefore details of
how a simulation program reads and verifies new parameter values will not be explored.
However, complete simulation codes are included in Appendices B and C, and the
interested reader can review the methods used to provide areasonably user-friendly file
format.

It is desirable that the input parameters for the simulation codes be familiar to typical
users. This has an implication when devel oping methods for automatically formulating
simulation codes. Generating simulation codes with the “ correct” parameter definitions can
only be accommodated if the analyst is free to describe the system using symbols that are
aready familiar. If the parameters commonly used do not correspond to constants
appearing in the equations of motion, the simulation code should compute the required
constants from the parameters defined by the analyst.

Prepare

Before starting the iterative “in-the-loop” simulation computations, a number of
computations are performed involving the data read from the input files. Terms that
involve constants are “precomputed” to reduce the number of arithmetic operations required
intheloop. The output fileis created, and the labels associated with the output variables
are written. For a constrained system, the values of dependent variables may need to be
computed to start the simulation with arealizable state. For some kinds of user-supplied
subroutines, variables used by those subroutines must be given starting values. Scale
factors are applied as necessary to convert parameter and initial condition variables from
“user-convenient units’ (Ibm, deg, etc) to “equation-convenient units’ (in-Ib/sec?, rad,
etc.). (Seethe subroutine INPUT in Appendices B and C for example code that performs
such conversions.)

4.3. “In-The-Loop” Computations

The actual simulation is performed by numerically solving the equations of motion of
the mechanical system over and over, in aloop. Figure 4.3.1 breaks down this part of the
simulation software into three operations. These are performed many times, as multiples of

37

abasic “time step,” selected on the basis of the frequency response of the system and the
use made of the simulation. Figure 4.3.2 shows approximately the frequencies in which
these operations are performed. Typically, the evaluation of the derivativesvia DIFEQN is
performed the most frequently, while the OUTPUT operation is performed the least.

> Calculate values of variablesfor time T+DT
using numerical integration
T+h, {X ... X
INTEGRATE I = DIFEON I
-

{)‘(l %) o
Compute derivatives,

givent, %, ... X

DIFEQN I Calculate derivatives for T+DT

UPDATE Update auxiliary variables

T< T+DT

yes

OUTPUT I

Write variablesto file
for timeT+DT

Figure 4.3.1. Block diagram for “In-the-loop” computations.

38

Simulation Time

| | | | | .
000 O OOQDOO O
Callsto DIFEQN 000 O AOTTHOO O
Callsto UPDATE O 0 0 u H
Callsto OUTPUT - n

Figure 4.3.2. Example frequency of “in-the-loop” tasks.

Integrate

The equations of motion for a multibody system are ordinary single-order differential
equations that are linear with respect to the derivatives but nonlinear with respect to other
variables. A subroutine DIFEQN contains the equations of motion for the multibody
systemin a form suitable for computer solution. That is, it computes as output the
derivatives of the state variables for time T, given as input the values of state variables and
thevalueof T.

The derivatives provided by DIFEQN are used by a numerical integration algorithm
(shown in the figure as the subroutine INTEGRATE) to compute values of the state
variables at different times T+h, where h usually ranges between 0 and DT, and DT isa
time step that is“small” with respect to the highest frequency associated with the response
of the multibody system.

The subroutine DIFEQN is called after INTEGRATE, so that the accelerations for time
T+DT are available when the UPDATE and OUTPUT operations are performed. For
maximum efficiency, the INTEGRATE procedure can use these values also, and thus
should not call DIFEQN to obtain derivatives for the new time T.

Hundreds of numerical integration algorithms exist (Euler, Runge-Kutta, Predictor-
Corrector, Gear, etc.). The choice of which to use depends on the characteristics of the
system being simulated, the uses to be made of the results, and personal preferences of the
engineers developing the software [29, 37, 41, 93, 119]. Overall, the simulation algorithm
is but a small part of the simulation code which is easily changed as necessary. The
numerical integration algorithm can be an essential part of the computer representation of
the multibody system, by forming the equations of motion to tie in directly with the
integration equations [42, 81, 90, 122, 131].

39

The automated selection of an integrator algorithm is aworthy research topic, but it is
not covered in this dissertation other than to emphasize how important the code in the
subroutine DIFEQN is with respect to the computational efficiency of the simulation code
asawhole. (Therewill beamix of analytical and numerical methods used in the equations
of motion as developed in Chapter 8, but the numerical methods are not directly related to
the integration algorithm,)

Nearly all numerical integration methods work by invoking a function such as DIFEQN
one or more times per time step. The plot of frequency shown in Figure 4.3.2 is
representative when a variable-step integrator is used. It shows the frequency of callsto
DIFEQN varying between time steps as needed to obtain a required numerical accuracy.
Also, it shows the routine being called at least twice for each value of T at which itis
invoked.

Update

There may be external subroutines which read values from files, or which “remember”
histories of system variables to compute forces and moments. Once per time step these
activities are performed.

Periodic updating is aso necessary for real-time simulation, with hardware in the loop.
Once per time step, a subroutine is invoked that communicates with hardware, passing
computed values to the digital/analog converter (D/A), and grabbing new values of input
variables from the analog/digital converter (A/D).

The UPDATE operation is used only when such subroutines are incorporated into the
simulation code.

Output

Values of selected variables are written into one or more files for viewing. These can
include motion variables, forces and moments, and variables derived from state variables.
The sample frequency for the output file isamultiple of the time step. Depending on which
variables are of interest, and whether the post-processing software has its own sampling
reguirements, the multiple can be as small as 1, or as large as severa hundred. Typically,
it is between 2 and 20. Because the OUTPUT routine isinvoked less frequently than
DIFEQN, output variables that are derived quantities should be computed in this routine,
rather than in DIFEQN.

5. SYMBOLIC COMPUTATION METHODS

This chapter develops a symbolic mathematics language tailored specificaly for
analyzing multibody systems and generating numerical simulation codes. The language
directly represents three aspects of the overall system in symbolic form:

1. vector and dyadic algebra expressions,
2. components of the multibody system (bodies, forces, etc.), and
3. piecesof computer code that go into the numerical smulation code being generated.

In the remainder of this chapter, techniques are presented for representing and
manipul ating these components as computer data objects, with emphasis on eventualy
generating numerically efficient source code in atarget language (e.g., Fortran).

The symbol manipulation language described in this chapter (caled AUTOSIM) is
written in Lisp, or more specifically, the language “ Common Lisp” [4, 118] (called smply
“Lisp” throughout this dissertation). The Lisp language has long been associated with
symbolic manipulation languages, and with prototyping other languages. The programs
MACSYMA, REDUCE, and MuMath were developed in various versions of Lisp [92, 94,
139]. Rudimentary computer algebra systems even appear in some introductory Lisp and
computer science textbooks as case studies, e.g., [7, 60].

Thereis another aspect of Lisp that is convenient for the intended work. Lisp systems
typically are provided with an interactive environment that allows the Lisp programmer to
interact easily with the computer. Basic functions such as opening, printing, editing, and
creating files are supported. Further, Lisp “forms’ (aLisp form issimilar to acommand in
other languages) can be entered and evaluated interactively. Thisenvironment isideally
suited to the needs of adynamicist analyzing amultibody system. (The advantages of Lisp
systems for general engineering analysis (i.e., not computer science) have aso been noted
[8, 34].) Aswill be seen in the examples of Chapter 9, the anayst is free to view
intermediate results as the analysis proceeds, and to inspect various expressions in great
detail. Also, the symbol manipulation capabilities can be used interactively to derive
expressions of interest to the analysts which may or may not eventualy appear in the

40

41

equations of motion for the system. Because Lisp isawell documentated language, it is
unecessary to invent a new syntax for AUTOSIM. That is, AUTOSIM isimplemented
simply as an extension to the existing language.

Although Lisp has existed for almost as long as Fortran, it has mainly been used on
mainframe computers and specialized (i.e., very expensive) workstations until the past
several years. The full Common Lisp language is now available from a variety of
companies for machines ranging from IBM and Apple desktop computers up to Cray
supercomputers. (The computer work described in this dissertation was all performed on
Apple Macintosh computers using the Allegro Common Lisp compiler [6].)

5.1. Considerations of Numerical Efficiency

Choices made by an analyst deriving equations of motion for a multibody system have
adirect impact on the complexity of the resulting equations. Some of the techniques that
aretypically employed to smplify equations are the following:

1. Statevariablesareintroduced that are “natural” to the system being analyzed (joint
displacements, speeds oriented in body-based directions, Euler angles, etc.),
avoiding transformations to a predefined choice (e.g., Cartesian global coordinates)
[35].

2. Termswhich are known to be zero for the specific system (but which could be non-

zero for amore general formulation) are omitted from the equations.

3. Forces and moments that cancel due to symmetry or because they involve no work
are eliminated when possible [9, 46, 54, 55, 57, 58, 126].1

4. Equations are written in “factored form,” involving products and ratios of sums of
terms. For example, computing a value for the expression (A + B + C)2 requires
two additions and one integer power. In contrast, the expanded form (A2 + 2AB +

1 The effectiveness of this technique is controversial, as a trade-off is made between a small number of
complicated equations and a large number of simple equations. The question of whether large sets of simple
equations are better or worse than small sets of complicated equations has not been resolved, and is atopic
of current research. When the objective is solely to simulate motions due to forces and moments, forces
and moments of constraint are of no interest and additional computations made to determine them slow
down the simulation. However, when the objective is to obtain the forces and moments of constraint as a
means to evaluate alternate designs, formulations that compute the constraint forces and moments in
addition to the motions are necessary.

42

B2 * 2AC + 2BC + C?) requires five additions, six multiplications, and three
integer powers.

Termsinvolving products or powers of quantities known to be “small” are dropped
if they are of order 2 or higher. In many mechanical systems, some of the motions
are limited such that variables associated with those motions are much smaller than
other expressions arising in the equations of maotion.

Trigonometric functions of small quantities are replaced with truncated Taylor
expansions.

Technique no. 2 (removing zero terms) can only be partidly implemented for
generalized numerical multibody simulation methods (via the use of sparse matrix
operations). However, virtualy all symbolic multibody programs employ it. Techniques 1
through 4 have been used by some programs, and techniques 5 and 6 have not been used in
ageneralized sense until the implementation described in this dissertation. (In past work,
“small” variables, when used, are built into the multibody formalism. The analyst could
not utilize knowledge that some variables and parameters were small and that others were

not.)

A given set of equations can be programmed into a simulation code so as to minimize
computation by using the following techniques:

7.

Complicated expressions that occur in several places are replaced with intermediate
variables. Thistechniqueis particularly important for multibody systems because
the equations of motion are inherently redundant. Some of the redundancy is
eliminated by using a recursive dynamics analysis method. Even so, inspection of
the equations of motion usually reveals that some subexpressions appear more than
once. A human programmer, concerned with numerica efficiency, will avoid
performing the same computation more than once by saving the results the first time
and then using the result when the same computation is called for again.

Compurtations that do not have to be performed in the DIFEQN part of the program
are performed elsewhere. Constant expressions are “precomputed’ in the
PREPARE portion of the simulation code to avoid performing identical
computations more than once. Computations involving output variables (units
conversions, direction transformations, etc.) are performed in the OUTPUT part of
the program, which is executed less frequently than the DIFEQN part.

43

9. A human programmer will (hopefully) not introduce code that serves no purpose.
This obvious technique can be difficult to implement in an automated analysis
method. For example, details of the dynamics analysis are often recursive. Hence,
it is convenient at times to introduce expressions knowing that they will be
referenced in alater stage of the recursion. However, if the recursion stops, they
may not be needed. Or, an expression might be developed which is later multiplied
by zero. Determining whether a particular expression will be needed later can be
very difficult at the time the expression is formulated, although it istrivial to do
after all equations are formulated.

Once a simulation code is working correctly, a programmer concerned with
computational efficiency can look over the code for sections that can be eliminated.

10. Large matrices are partitioned into smaller matrices, based on the topology of the
system, before general numeric matrix solution methods are invoked. For example,
it ismuch less work to solve three sets of six simultaneous equations than to solve
one set of 18 simultaneous equations, because as n (the number of equations)
increases, the “ cost” increases approximately in proportion to n3.

11. Thereisacertain amount of overhead in computer codes that do not explicitly
perform arithmetic, due to code generated by the compiler to support “higher level”
concepts in alanguage such as Fortran. Some examples:

* counters must be created and updated to perform DO LOOPS.

* computations must be made to determine the locations in memory of array
elements with variable indices.

* saving intermediate resultsin variables requires moving data from high-
speed working registers and CPU caches into predefined memory locations.

Thus, codes can run faster if DO LOOPS, variable indices in arrays, and
intermediate variables are used sparingly.

Techniques 7 and 11 have been applied by some, but not al, symbolic analysis
programsin the past [83, 101]. Techniques 8 and 9 have not been automated before as part
of amultibody analysis program. Technique 10 will be employed in the most efficient
manner possible, by obtaining a recursive symbolic solution for matrix equations in which
no “wasted” arithmetic operations are included.

44

5.2. Representing Symbolic Data

The methods required to manipulate symbolic expressions are derived from the design
of the computer data types that are used to represent algebraic expressions and other
entities. In past work, expressions have generally been represented with alist structure,
where the first element of the list provides the type of data (sum, product, function, etc.)
and the remaining items represent other expressions. Inthe NEWEUL and SYMBA codes,
such lists are used to represent most expressions implicitly as sums[83, 107]. Inthe more
general MAPLE language, alarger number of data types are accomodated with abasic list
structure [20]. An alternative to using existing computer data structures such as lists or
arraysisto define new types of data objects for the computer that correspond exactly to the
entities that they represent. This approach is a part of the “object oriented programming”
style, and isused in AUTOSIM.

Overview of Data Objects

Lisp includes over 40 types of data objects. In addition, new types are included by the
use of structures. Internally, the structure contains a number of slots which are essentially
variables defined locally within the structure. Each slot has a name and can be assigned a
vaue. In AUTOSIM, structures are used as objects to support object-oriented
progranming.l Objects facilitate data abstraction by allowing programs to manipulate the
objects, without requiring the programmer to know about details of their interna
representation. Further, “generic functions” work by obtaining procedures for
mani pul ating objects based on the types of the objects. For example, the generic function
dxdt (used to take the absolute derivative of an expression) works by looking at the type
of the argument, and looking up that type in a dispatch table of “installed” specialized
functions. The specialized function from the table isthen invoked. To define the derivative
of anew type of expression (e.g., a user-defined function), a new specialized function is
written and “ingtalled” in the system. (Theinstallation is simply an updating of the function
dispatch table.) However, the original dxdt function is not modified. Thus, the object-
oriented style of programming allows new types of objects and new operations to be
incorporated into the system without modifying existing software.

1 Extensive object-oriented versions of Lisp are readily available, but are not standardized. To ensure
portability, AUTOSIM iswritten completely in standard Common Lisp. The object-oriented extensions are
apart of AUTOSIM.

Computer Algebra

— complex integer
number —— rational ratio
— float
— dyad trig cos
__ func asin : sin
L power atan
expression—— prod
[sum
[sym indexed-sym
L uv
structure body force
forcem
. < moment
point
Multibody System
eqgs
outvar Numerical Simulation
. Program
—+ declaration
smple-array string
array / vector A simple-vector
—sequenceé list

symbol
Figure 5.2.1. Hierarchy of AUTOSIM and Lisp data objects.

Figure 5.2.1 shows a hierarchy of datatypes used in AUTOSIM, asthey relate to data
types already in Lisp. Each type of object “inherits’ from the type to itsimmediate left in
the figure. For example, an object of type cos is also of typestrig, func, and
expressi on. Characteristics of the types trig, func, and expression ae

46

“inherited” by objects of type cos, and many functions that work with objects of type
trig, func,and expressi on asowork with objects of type cos.

The data objectsin the figure are shown in four groups, related to (1) computer algebra,
(2) the multibody system, (3) the numerical simulation program, and (4) additional native
Lisp objects. All native Lisp forms are shown in italics, and those used extensively in
AUTOSIM are shown in bold italics. The multibody analyses and simplification
techniques are applied by manipulating these objects.

Computer Algebra

Expressions in AUTOSIM can represent scalars, vectors, or dyadics. They are
composed of nunber s and expr essi ons, whose characterigtics are listed in Table
5.2.1. Of the expressions defined in the table, four are e ementary types from which the
other compound types are built. The elementary types are the nunber, the sym the
i ndexed- sym and theuv. When printed as Fortran source code, the sy mdesignates a
variable and an i ndexed- symusually designates an array element. Unit-vectors are
never written in the final Fortran output, but can be entered and read by the analyst. (They
are printed with enclosing square brackets.)

In the next chapter, we will see that most of the quantities appearing in the dynamics
equations are vectors and dyadics. Virtualy al previously developed automated multibody
analysis methods formally define directions ahead of time, so that vectors can be described
using three-element arrays of scalar quantities with predefined directions. This approach
works fine for many kinds of rigid-body analyses, because expressions can be formulated
in terms of unit-vectorsfixed in the body with which they are associated. However,
simpler equations are sometimes obtained by writing expressions for velocity or
acceleration vectors using unit-vectors fixed in a different body. Also, an inflexible
approach becomes cumbersome when dealing with forces and moments between bodies,
because forces and moments are often defined in orientations that defy conventions of any
single multibody formalism. Introducing arbitrary forces has not been been possible with
symbolic analysis programsin the past, limiting the level of automation that is possible in
the modeling.

Table 5.2.1. Summary of AUTOSIM expression types.

Type Primary Slots Definition Examples ||
nunber number 2, 1/3,-.3333 ||

47

expressi on| type small-order, meta-type for dl
sort-code, dxdt, expression objects
sym-value, const-or-
var, units, name
sym symbol, default, symbol for ascalar M
hide, exp parameter or variable
i ndexed- i, category indexed symbol for a Q(2)
sym scalar parameter or
variable
uv symbol, body, unit-vector [A]]
dot-products,
cross-products
dyad uvl, uv2 dyad ([A1] . [A2])
power base, exponent base expression raised to U(1)**2
power
prod coef, factors product of numerical 2.0*M*SIN(Q(1))
coefficient and list of
expressions
sum terms sum of expressions | + M*L**2
func function, args function that will be TIRE(FZ, SLIP)
written into numerical
program
trig symbol Sin or cos
cos CoS COS(Q(2))
sin sn SIN(Q(2))
asin arc-sine ASIN(X)
at an arc-tangent ATAN2(X,Y)

Limitsinvolving the choice of unit-vectors used in vector expressions are averted by
including unit-vectors as a primitive entity in the computer algebra representation. Vector
and dyadic expressions can be introduced using simple mathematics notation, and then
manipulated automatically. Also, vector velocities and accel erations can be projected in any

48

direction (viathe dot-product operation) to define scalar output variables or scalar constraint
equations.

Nested expressions (simplification technique no. 4 from Section 5.1) are supported in
the designs of the compound expression types. For example, the expressions in the list of
factors of apr od can be suns, power s, f uncs, etc. There are no limitsto the level of
nesting allowed (other than computer memory).

The metatype expr essi on defines a repertoire of qualities associated with all
expression types. For example, the units of any expression (if known) are kept in the units
dot; the name of the expression (if there is one) is kept in the name dot; the derivative with
respect to time, if known, is kept in the slot dxdt.

Expressions are classified in several ways besides their object type. The type slot tells
whether an expression is a scal ar, vector, or dyadic. Powers, syns, and
i ndexed- synsaways have their type slot set to the value scal ar. Also, all numbers
are by definition scal ar. A uv has its dot set to vector, and a dyad is set to
dyadi c. The pr od and sumobjects can be any one of the three types, depending on the
types of their components.

The congt-or-var slot tells whether an expression is a constant or a variable. It is
mainly used for scalar expressions, to identify expressions that can be precomputed. The
value of thisslot is set for a symor an i ndexed- sym when it is created. When
compound expressions are examined, the const-or-var slot is set to const if all
expressions contained in the compound object are constants; otherwiseitisset tovar.

Some of the other slots are described later, in the context of the algebraic operations
used on expressions.

Multibody System

A multibody system is composed of bodies influenced by forces and moments and
connected to each other by joints. Points are fixed geometric locations in bodies used to
define joint attachments, force attachments, and points of interest needed to define output
variables or constraint equations.

body — A datastructure called abody is used to represent each body in the system. A
body contains about 30 dlots that are used to access information about (1) the kinematics
of ajoint associated with the body, (2) properties of the rigid body, (3) the position and

49

orientation of the coordinate system fixed in the body, and (4) expressions that arise in the
dynamics analysis applied to the multibody system. Because the vector dot-product and
cross-product operations involve transformations between coordinate systems, some of the
information in a body will be used to perform those operations. A few slotsin a body
that support algebra functions are shown in Table 5.2.2. Many more slots exist and are
described in Chapter 8.

Table 5.2.2. Some of the slotsin a body that support algebra functions.

Slot Name Type Definition
symbol synbol synbol for user to reference the body.
name string descriptive name written into output files produced by
asimulation code.
parent body parent body in tree topol ogy.
children list list of bodies that have this body astheir parent.
uvs array 3 unit-vectors that define 1-2-3 axis directions of
coordinate system.
cos-matrix array direction cosine matrix relating the unit-vectors of this
body to those of its parent.
level nunber level of the body in tree.
O-point poi nt origin of coordinate system of this body.
joint-point poi nt point in parent body that coincides with the 0-point
when all generalized coordinates are zero.
abs-w expr essi on | absolute rotational velocity of this body.
abs-v0 expr essi on | absolute velocity of the 0-point.

Massless bodies can be used to introduce compound joints or intermediate reference
frames. Also, bodies with zero degrees of freedom can be used to add (or subtract) mass
or inertiato an existing body.

Because each body (except the body used as the inertial reference) is explicitly achild
of another body in the system, this design for the body organizes the multibody system into
atreetopology. (Thetreetopology isdescribed by the parent and children slots.)

Methods used previously to represent multibody systems have involved arrays that
indicate relationships between bodies. Asaminimum, a body-connection matrix is needed
to indicate which bodies are connected by joints [46, 53]. Other matrices are needed to

50

indicate parent-child relationships and applications of constraint equations [32, 51, 75,
126]. The representation presented here is much simpler and permits reconstruction of the
entire tree starting from any body in the tree, using only body objects. It also facilitates
analyses that require that the bodies be processed in a certain sequence. For example, lisp
code is shown below to apply afunction f unc to each body in an order such that the
parent is always processed before the child.

71, apply function func to each body fromthe root down

(defun appl y-func-to-tree-top-down (func body)
(funcall func body)
(dolist (b (body-children body))
(appl y-func-to-tree-top-down func b)))

The order of processing occurs from parent to child because the function isfirst applied to
the body, and then the appl y-func-to-tree-top-down function is recursively
applied to the children of the body. By reversing two operationsin the above function, so
that the recursion occurs before the body is processed, the children are always processed
first:

;; apply function func to each body fromthe | eaves up

(defun appl y-func-to-tree-bottomup (func body)
(dolist (b (body-children body))
(appl y-func-to-tree-bottomup func b))
(funcall func body))

When the motion of a body relative to its parent is constrained due to the connecting
joint, the vector expressions developed for the body motions can be defined recursively,
based on the motions of the parent and the relative motion between the body and its parent.
The example function appl y-func-to-tree-top-down is representative of the
functions employed in AUTOSIM to apply recursive formulations developed in Chapter 8.

Additional information is needed to fully describe multibody systems with
nonholonomic constraints, or systems with holonomic constraints that define closed
kinematical loops. The additional constraint information associates two bodies that are not
already linked by a parent-child relationship. Thisinformation is not kept with either body.
Aswill be seen later, constraint equations are included by modifying the i ndexed- sym
objects used to represent state variables.

poi nt — Points are used to define locations of interest in bodies, such as origins of the
coordinate systems, mass centers, attachment points, etc. Each body contains at |east four
poi nt s. (Inaddition to the two points listed in Table 5.2.2, athird point isintroduced at

51

the mass center of the body as defined by the analyst, and a fourth point isintroduced at the
mass center as defined in the multibody formalism.) Additional poi nt s can be defined as
needed to identify attachment points for forces or as points of interest for output variables
and constraint equations. Table 5.2.3 shows how apoi nt isdefined in the system.

Table 5.2.3. Some of the slotsin a poi nt .

Slot Name Definition
symbol Symbolic name (synbol) for user to identify the poi nt .
name descriptive name (st r i ng) of thepoi nt .
body body that containsthe poi nt .
coordinates ar r ay of 3 coordinates of the poi nt in the coordinate
system of thebody.

f or cem— Force-producing elements are represented by objects called f or ces and
moment-producing el ements are represented by noent s. Both types, which inherit from
the meta-typef or cem are summarized in Table 5.2.4.

Table 5.2.4. Some of the slotsin aforcem

Slot Name Definition
symbol Symbolic name (synbol) for user to identify f or cem
name descriptive name (st r i ng) of f or cem

direction vector expression that gives direction of f or cem

magnitude | scalar expression that gives magnitude of f or cem

bodyl first body on whichf or cemacts.

body?2 second body from whichf or cemacts.
pointl poi nt online of action of forceon body 1 (f or ce only).
point2 poi nt online of action of forceon body 2 (f or ce only).

Thepointl and point2 lotsin af or ce are used to obtain expressions for the moment
applied to a body about its mass center. That is, the moment is defined as

— —

T =¢8P § (5.2.1)

52

where P is the position vector going from the center of mass, B*, to the point P on the
body through which the force passes, and f isthe force vector (i.e., the product of the
expressionsin thedirection and magnitude slots of thef or ce object).

Numerical Smulation Program

In addition to expressions and the multibody system, the numerical simulation program
produced as output by AUTOSIM is represented with objects. Three that are the most
significant are the typeseqs, out var , and decl ar at i on.

eqs — A sequence of assignment statements is represented by an object called an egs.
Some of the sequences that are generated and manipulated are the kinematical equations, the
dynamical equations, the trigonometric functions used in other equations, and the output
variables.

out var — Information about a variable that will be produced as output by the ssimulation
code is represented by the out var object. It includes a short name, a long name, a
generic name, an expression, and units. Before the simulation code is written, the list of
out var sis processed to ensure that statements are generated to compute all dependent
variables defined by the analyst. The labeling information is written by the simulation in
such away that output files can be handled automatically by post-processing software for
graphics and analysis.

decl arati on — A list of dl variables of acertain type (REAL, INTEGER, etc.) that
must be declared in a specific subroutine module of the simulation code is represented in a
decl ar at i on object.

Inits present form, all output source code is written in the Fortran language. However,
the representation of the smulation program in eqs, outvar, and decl arati on
objects is not dependent on the language. Generating simulation code in a different
language (e.g., C) is mainly a matter of augmenting the print functions for each type of
object, so that they are printed according to the syntax of the target language.

5.3. Computer Algebra Operations

The mathematical operations needed to derive equations of mation for a multibody
system and generate source code for a numerical simulation program can organized into
five categories for the purpose of implementing the operations in software: (1) operations

53

are implicitly performed when a compound expression object is created (e.g., a power
object represents an expression raised to a power, a prod object represents the
multiplication of expressions, etc.), (2) severa primitive algebra operations are defined that
use information obtained from slots in the expression objects to create a new expression
object and assign values to some of its slots, (3) operations are defined to easily obtain
variables associated with rigid bodies and their coordinate systems (e.g., angular rotation
of abody), (4) higher-level algebra operations are defined in terms of primitive operations,
and (5) some operations are performed on computer code that has already been generated.
This last category of operations is analogous to a human programmer “looking over” the
code he or she has written, to possibly make improvements.

Making Expression Objects

Each definition of a compound expression object implies an operation. The functions
that make objects check their arguments and create simpler objects when possible. In fact,
dgnificant algebraic smplifications are performed in these operations. Table 5.3.1
summarizes ssimplifications that are performed by creator functions.

Most of the “small” quantity simplifications occur in the make- sumoperation. The
term with the minimum order of “smallness’ is used as areference and al other terms are
compared to it. Terms whose order of smallnessis more than the reference by some
threshold are dropped. Normally, the threshold for dropping small termsis 2. However,
this value can be modified if needed to perform alternate analyses that require higher order
terms. For example, AUTOSIM has been used to generate equations needed for a
bifurcation stability analysisin which al state variables are “small” and terms are kept up to
the fifth order [120].

Table 5.3.1. Simplifications performed by creator functions.

Function Simplifications

make- asi n « if argument is the inverse function, return argument of argument
make- cos (e.g.sin(sinlx) ® x).

make- sin * if argument isanumber, evauate.

* if argument issmall, return truncated Taylor expansion.

make- at an » same smplifications asfor make- asi n.
oif there are two arguments, divide both by GCF.
[e.g., tan"}(A*X, A*Y)® ATAN2(X,Y)]

54

make- power * if baseisapower , change exponent.
* if baseis number, evaluate.
« if base includes small terms, drop if possible.

make- prod « if the coefficient is O, return O.

« if the coefficient is 1 and there is one factor, return the factor.

e« if any numbers are included as factors, remove them from the
list of factors and multiply them with the coefficient.

e« if any factors are pr ods, multiply coefficients and combine
lists of factors (i.e., expand nested pr ods).

e« if any factors can be combined into a power, make the
substitution.

* else, sort factors and create pr od object.

make- sum e compare “small-order” values of terms and remove those which

arenegligible.

e check for trig identities: Sin?x + cos?x ® 1; 1 —si’x ® cos?x;
1—cos?X ® sin2x.

e« if any terms are suns, remove them and append terms from

nested sunsto existing list (i.e., expand nested suns).

« if sym-value of sum would be negative, negate all terms and

return negative sum(pr od with coefficient of —1).

* else, sort terms and create s umobject.

Note: simplifications marked with s mean that after the smplification is
performed, the make- operation is called again recursively using
updated arguments.

The other places that “small” simplifications occur are in the trigonometric functions.
Truncated Taylor series are used to create expressions for these functions when the
argumentsare small. Otherwise, the appropriate tri g or f unc object is made and
returned.

Care has been taken to ensure that equivalent occurrences of a compound expression
always are created the same way. Suns nested within suns and pr odswithin pr odsare
removed. For example, the sum (A + B) + Cyields (A + B + C), rather than ((A + B) +
C). Terms and factors are sorted in the make- prod and make- sumfunctions. For
example, the product of B and A*C is A*B*C rather than B*A*C. A sign convention for
sunsisused that results in arepeatable formulation for a given sum, regardless of how it

55

isobtained. For example, the expression (<A — B — C) would never be generated: instead,
that result is aways represented as—(A + B + C).

Primitive Algebra Operations

Table 5.3.2 summarizes the primitive mathematical operations. These operations
involve one or two arguments. In the object-oriented environment, each operator has an
associated dispatch table which is used to find afunction for dealing with a specific type of
expression (for unary functions) or combination of types (for binary operations). For
example, to add asumand apr od, the appropriate table is searched for the combination (sum pr ¢
new types of expression objects and new functions are “installed” in the system without
modifying any of the existing software.

Most of the operators in the table work as might be expected. Exceptions and special
notes are provided below.

mul — When devel oping expressions through multiplication, further simplifications are
atempted. That is, numbers are multiplied on the spot, multiple appearances of an
expression are combined into a power , multiple power s with the same base expression
are combined, etc. Products are usually not expanded, in order to keep factored forms.
However, there are times that expanded forms are preferred. For example, when solving
for a symbol in an expression, it is necessary to subtract two potentially complex
expressions such that the result contains no reference to the symbol being solved for. The
expressions are expanded to ensure that the symbol is not buried in a subexpression, such
that complete cancellation takes place.

Table 5.3.2. Summary of primitive AUTOSIM mathematics operations.

Operation Argument(s) Description
add X, y X+y
const - or - var X IS X constant or variable?

Cross vl, v2 Vi~ Vo
dot vl, v2 VieVo

dxdt X X
gcf X, y find symbolic greatest common factor.
nul X, Y Xy (ether x or y must be ascalar)
neg X —X

56

parti al Y, X TY/qx_(xisscalar) ||

gcf — The symbolic “greatest common factor” (GCF) between X and Y is determined.
(If X and Y have no factorsin common, or one of them is a number, then the GCFis 1.

add — The general method for adding two expressions X and Y iswith the formula
X+Y = GCK(X,Y)* (X/(GCFKX,Y)+Y/GCFX,Y))

After the GCF is factored out, the results are combined with make- sum For example,
when the expressions A* X and B* X** 2 are added, the result is X* (A + B*X).

dot — The dot product operation isvalid for two vectors, a vector and a dyad, or two
dyads. The method used for applying the operation is to recursively expand expressions
into multiplications and additions of subexpressions, and dot products of uv/dyad pairs.
This approach eventually expands the original dot product to an expression involving
operations defined for scalar algebra, together with dot products between unit-vectors.
Thus, the only new primitive operation needed is the dot product between two uvs.

Recall that the uv containsaslot called dot-products. This contains atable with all
pairs of uvswhose dot product isknown. Initially, each table contains three entries for the
threeuvsin the body in which the uv isdefined. (The values are 1 for the dot product of
theuv with itself and O for the other two uvs of thetrio.) If the table contains the answer,
itisused. Otherwise, the dot product is between two uvs associated with different bodies
that have not yet been analyzed. In that case, an analysisis performed as described below.

Eachbody hasadot with adirection cosine matrix relating the uvs for that body with
the uvs of the parent. The uv whose body is furthest “down” the topology tree is
transformed into an expression involving the three uvs of its parent body. The dot product
is then taken between the new expression and the uv that was “up” the tree.

This method is recursive—the dot operator is defined in terms of itself. It works,
because with each recursion, the expressions being considered are simpler, and/or the uvs
are closer inthe tree. Eventually, the process is guaranteed to stop when both arguments
areuvs associated with the same body.

The results of the process are stored in the table of dot-products for one of the uvs, so
that the “tree-climbing” and transformations (via the direction cosine matrices) are not
required the next time the dot product is needed.

57

The method of “tree climbing” ensures that the minimum number of direction
transformations is performed for each dot product operation. Thus, trigonometric
simplifications are not required for this operation.

Note that the dot-product operator makes use of information from both the uv object
from the computer algebra part of the system, and also the body object from the multibody
part of the system.

cr oss — The cross product operation is performed using the same recursive approach as
described above for the dot product. A uv crossed with auv is obtained from the table of
values in the cross-product slot of either uv if available (with amultiplication by —1 if the
table of the second uv isused). Otherwise, the cross-product isformulated using the
expansion:

— —

a" b® |(a*by)by+(asby)by+(a+bsbs b (5.3.1)

whereaisthefirstuv, b isthe second, and Bl, 62, and 63 are the unit-vectors for the
body containing b. Aswasthe case for the dot product, some of the information needed to
perform the operation is obtained from the body object from the body dlot of the uv
object.

dxdt — Thederivative of an arbitrary expression is determined using elementary rules of
caculus to recursively expand the expression into products and sums of simpler
expressions and their derivatives. The expansion stops when a sym i ndexed- sym
nunber , or uv isreached. Thetime derivative of asymor i ndexed- symis zero if the
expression is a constant, otherwise it is obtained from the dxdt slot.

Thetime derivative of auv (U) isdefined as
RN —~B., .
u® w" " u (5.3.2)
where w® is the absolute rotational vel ocity of the body containing U, obtained from the
abs-w dot of thebody found from thebody slot of theuv.

There are other ways in which the time derivative might be defined. For example, one
could project the uv into the coordinate system of the fixed inertial reference and then take
derivatives of the scalar components. However, eg. 5.3.2 has two strong advantages.

1. itleadsto smple expressions, matching the conventional definition of the derivative
of avector fixed in arotating reference frame.

2. the cross-product operation remains valid after small terms have been dropped and
trigonometric functions have been replaced with truncated Taylor series. Thus,
simplifications from small angles and small speeds can be made as soon as the
small quantities appear in the analysis without causing errorsin derivatives of unit-

vectors taken later.

After the absolute time derivative of an expression is derived, the result is put into the

dxdt dot for further reference.

parti al — Partial derivatives are obtained using the same basic process as used for
dxdt, except that (1) results are not saved, (2) the partial derivative of a sym or
i ndexed- symiszero unlessit is equal to the argument symbol, in which case the partia

58

is1, and (3) partia derivatives of uvsare zero.

Multibody Operations

A few operations for dealing with points and bodies are useful for specifying forces,

moments, and dependent variables of interest. These are summarized in Table 5.3.3.

The effect of vel can be obtained using the pos operator together with dxdt.
However, the result usually involves derivatives of generalized coordinates, whereas the

vel function providesthe result as an expression involving generalized speeds.

Table 5.3.3. Summary of AUTOSIM operations for bodies and points.

Operation Argument(s) Description
pos point position vector from origin of inertial
reference to point
pos pointl, point2 position vector from point2 to pointl
rel -vel point, body relative velocity of point in reference frame
body
r ot body rotational velocity of body
vel point velocity vector from origin of inertial
reference to point
vel pointl, point2 absolute velocity of pointl minus the

absolute velocity of point2

Accelerations are obtained by combining thedxdt functionwithr ot and/orvel .

Higher Level Operations

59

Table 5.3.4 lists mathematics operations that are derived from the above primitive
functions. Some of the operators in the table have standard meanings and are implemented
according to their definitions. Others are not standard, and are defined below.

angl e — The angle between two vectors v, and v is determined by defining three unit-
vectors and projecting one onto the other two to obtain an expression for the arctangent of
theangle. The steps are described below and illustrated in Figure 5.3.1.

1. Thedirections of the two vectors are obtained:
(5.3.3)

2. A third direction is defined that liesin the plane defined by v, and vV, and is
orthogonal toV1:

Us :(ﬁl ’ G2) Ug (5.3.4)
3. Theangle q, isdefined as
q = tar? (M) sigvs « U1 " Uz (5.3.5)
Ug * Uz
Table 5.3.4. Summary of higher-level mathematics operations.
Operation Argument(s) Description
angl e vl, v2, {v3} angle between vl and v2, with sign
determined by optional v3
const ant - part exp constant part of expression
convert - coordinates, convert coordinates from coordinate
coor di nat es | oldbody, newbody, | system of oldbody to the coordinates
{ offset-p} system of newbody.
dir v direction of vector, i.e., V/|v .
di v expl, exp2 invert exp2, then multiply with expl.
dot - pl ane vl, v2 project vexpl onto plane normal to vexp?2.
i nv exp make-power with exponent of —1
mag Vv scalar magnitude of vector, |Vi| ® VV V.
nom nal exp find expresson when all generdized
coordinates are zero.

60

sol ve-for X, L, R, {num} solve for x, given relationship of form:
L(X) =R.
squar e exp multiply exp with itself.
sub expl, exp2 negate exp2 and add to expl.
Te=(m ™

This method is valid for angles of A
any size. Results are expressed using
the Fortran ATAN2 function, which v
accepts two arguments and is valid for Ty o Uz U= ﬁ
the range of —180° £ q £ +180°. The
make- at an function is used to create
the resulting expression, with the g > T = Vi
possible simplifications noted earlier in Uy, V1l
Table5.3.1. Note that an optional third Figure 5.3.1. Angle calculation.

vector, V3, is used to establish the sign
of theangle. (The sign function in eq. 5.3.5 has avalue of +1, with a sign that matches
that of its argument.)

const ant - part — Thisfunction returns zero unless (1) the expression is a constant,
or (2) itisasum (or anegative sum) with at least one constant term. It is used to obtain the
part of an expression that is constant, and is useful for selecting potential divisors (for
constraint equations) that are unlikely to have zero values, regardless of the values of the
state variables.

convert-coordi nat es — This function returns an array of three coordinates
based in newbody, when provided an array of three coordinates based in oldbody. It is
used to permit the analyst to define points and directions using a specified coordinate
system, rather than the coordinate system of the body containing the new point or direction.
To perform the conversion, the coordinates are multiplied by the unit-vectors of oldbody
and added to define avector ¥. If the optional argument offset-p is omitted or given a
value of NIL, the coordinates are converted without considering the possible offset
between the origins of the coordinate systems of oldbody and newbody. That is,

r'=ad; + &dy + 383 {—Pos(Bo, Ao)} (5.3.6)

61

where a1, ap, and ag are the three coordinates in the input array, and @, ay, and az arethe
three unit-vectors fixed in the oldbody, Ag is the origin of oldbody, Bg is the origin of
newbody, and the curly braces indicate that the offset is optional, depending on whether the
offset-p argument was given anon-NIL value. The output coordinates by, by, and bz are
then defined as

b1 = nom nal (? -El)
b, = nom nal (? -52)

b3z = nom nal (? -53) (5.3.7)

(The nom nal function is defined below.) When converting the coordinates of a
direction, it is appropriate to omit the offset-p argument. On the other hand, when
converting the coordinates of a point, the offset-p argument should be provided with the
valueT.

dot - pl ane — Thisfunction describes a procedure in which avector V1 is projected
onto a plane perpendicular to asecond vector, V,. Thisis done by defining the plane as a
dyadic, and then taking the dot product of the vector with that dyadic. The new vector is
defined asvy (V3 V3 + V4 V4) where

Vi’V _ V3 'V
Va= 2 Va= o 2 (5.3.8)
‘V]_ Vﬁ ‘Vg Vﬁ
nom nal — Thisfunction simplifies an expression by setting all state variablesto zero.

Asnoted above, it isapplied intheconvert - coor di nat es function. Also, it isuseful
for obtaining a nominal spring length.

sol ve-for — This function is used to “solve” a congtraint equation. Given an
equation of the form

L) = R (5.3.9)

where x isthe symbol to eliminate, this returns an expression that can be used to replace x.
The expression R is assumed to be independent of x. First, alinear solution is sought. If
L(x) isasum, the terms not containing x are subtracted from both sides of the equation and
the function recursively callsitself with new arguments. Otherwise, the candidate solution
is

62

x="/L (if 1122:) (5.3.10)
T T

If Lis not linear with respect to x, as is the case for many constraint equations
involving position, then a numerical “solution” is obtained if the optional argument numis
T. Inthis case, the “solution” is based on the assumption that the current value of x is
closeto the correct value, such that (L — R) isclose to zero. (Thisassumptionisvalidin
the one placeit isused in AUTOSIM, as will be seen in Section 8.3.) Call the current
value Xg and the corrected value X¢, and consider an expression F that isidentically zero

when X has the correct value. That is,

F(Xc) = L(x) —R (5.3.11)
Expanding in a Taylor series gives the following:
0=F (Xo)
F (x
= F(xo) + ﬂﬂ(XO)) (Xc —Xo) + O[(Xc —X0)?] (5.3.12)
Ignoring the higher order terms, and solving for X in terms of X yields the following:
F (Xo)
Xe»Xo ==~ — 5.3.13
TR (X0)/qx ()

The solution generated by the function sol ve-for is a recursive computationa
formulation that replaces the old value of x in aFortran program with anew value. That is,

F (x)

X=a X THE ())1 (5.3.14)

where the symbol “= ” indicates replacement. The example system analyzed in section 9.3
illustrates code of this nature.

Operations on Program Code

The equation simplifications noted earlier (simplification techniques 8, 9, and 10 in
Section 5.1) are easy to implement after the simulation code has been generated and can be
inspected. This means that equations are not written as they are derived, but are kept in
computer memory aseqs objects.

63

Introduction of Intermediate Variables and Constants

The smulation code generated by AUTOSIM includes two sets of intermediate symbols

used to replace expressions. One set isfor constant expressions and the other is for
variables. (Both are cdled intermediate variables below, since that is how they are
implemented in a Fortran program.) A functioncaled i ntro-var-if-newisused to
process expressions and introduce new variables as needed. The method for doing this
involves atable of all expressions that have been replaced by intermediate variables. The
replacements are i ndexed- symobjects, which print as elements of a Fortran array PC
(for precomputed constants) or Z (for variables). A simplified version of the algorithm in
intro-var-if-newisasfollows:

If the expressionisani ndexed- sym asymor anunber , it isreturned.

Else, if the expression is avector or dyadic, terms are collected so that each unit-
vector or dyad appears only once. (For example, the terms in the expression
“Liag + Ly 51 —L3a” would be collected, to vyield the expression
“(Ly—L3) @1 + Lo by.") Then,intro-var-if-newisapplied to every scalar in
the expression.

Else, if the expression is in the table of existing intermediate variables, the
correspondingi ndexed- symis returned.

Else, if the expression is a constant, defineanew i ndexed- sym put it at the end
of the list in the eqs object for intermediate constants, put the expression and
symbol into the table of intermediate variables, and return the new i ndexed- sym

Else, if any constant expressions can be factored out, do so. Apply i ntr o-var -
i f- newto the constant part and the variable part, then apply i ntro-var-if-
newto the product.

Else, apply i ntro-var-i f - newto all components of the compound expression
(argumentsinaf unc, factorsin apr od, etc.), then continue.

— If theexpressionisapr od, process the scalar factorstwo at atime. If the
pr od included afactor that isauv or dyad, skip over it. Multiply thefirst
two scalar factorsand apply i nt r o- var - i f - newto theresult. Multiply
the result with the next scalar factor and apply i ntro-var-if-newto
that result. Proceed until all scalar factors have been processed. The

64

definitions of the new i ndexed- syns are variables, and are placed at the
end of aneqs object used for the intermediate variables.

— Else, introduce anew i ndexed- sym put its definition at the end of the
appropriate eqs object, update the table, and return the new i ndexed-
sym

This algorithm isrecursive, and results in a number of intermediate expressions being
introduced for a single compound expression. For example, consider the expression
A*(B*X + C*Y), where A, B, and C are constantsand X and Y are variables. Processing
thisexpresson with thei nt r o- var - i f - newfunction leads to the following eqs object
for intermediate constants,

PQ(1) = A*B
PQ(2) = AC
and the following object for intermediate variables:
Z(1) = PQ(1)*X
Z(2) = PQ2)*Y
Z(3) =2Z(1) + Z(2)

The number of multiplications needed to compute the full expression has been increased
from 3 in the original, to 4 with the intermediate variables. However, two of the new
multiplications involve constants, leaving only two multiplications that must be performed
at each time step during a numerical smulation run.

For the above algorithm to be effective, it is essential that expressions are uniquely
identified in the table. For example, if the product A*(1 + COS(Q(1))) isin the table of
previously replaced expressions, a search for (-COS(Q(1)) —1)* A would fail, even though
the two expressions are algebraically equivalent. Thisiswhy the make- pr od and nake-
sumfunctions described earlier ensure that a given product or sum always has the same
structure.

The above algorithm always introduces a new intermediate variable whenever an
arithmetic operation or function evaluation occurs. For simple multibody systems, this can
sometimes degrade computational efficiency by eiminating possible simplifications that
occur by factoring. For example, consider an expression A*U(1) which islater added to
A*U(2). If both expressions are replaced by intermediate variables, say Z(5) and Z(15),
thesumis (Z(5) + Z(15). It requires 2 multiplications, which occur when Z(5) and Z(15)
are computed. If the intermediate variables were not introduced, the result of the addition
would be A*(U(1) + U(2))—an expression with only one multiplication.

65

There are some reasons not to introduce a new intermediate variable if that variable will
only be used once. First, some potential simplifications are not made, such as the one just
described. Second, the equations become almost unreadable by humans. The equations
are usually complicated to begin with, and introducing intermediate variables that only
appear once compounds the difficulty. Third, some Fortran compilers optimize machine
instructions for large expressions, putting temporary intermediate results directly into
working registers. For machines with vector processing or other paralel computing
capabilities, the compiler may further improve efficiency by breaking down complex
expressions to take full advantage of the hardware. If an intermediate variable is defined in
the source code, the compiler is obliged to save its value by moving it into a RAM location.
For these reasons, the method described below for removing unused code is extended to
also eliminate any intermediate variables that would only be used once.

Removal of Unused Code

Before the equations are written as output into a Fortran program, they are inspected for
intermediate variables that are never used, or used only once. Only equations that
contribute to the computation of the derivatives of the state variables or to the computation
of output variables are actualy written into the smulation code that is generated by
AUTOSIM.

An important part of the design of AUTOSIM is that the three symbolic e ements—the
sym thei ndexed- sym and the uv—are stored in memory such that there are no copies
(e.g., the object printed as “Q(2)” existsin only one place, even though it appearsin more
than one expression).! Recall that one of the slotsin the symobject iscalled hide The
hideslot is used to keep count of how many times the symactually appears. The eqs
object only prints equations involving syns whose hide sots are not set to 0. For
example, if an egs contains 100 equations, but only 10 involve syns with hide counts
greater than 0, then only 10 equations are printed. The other 90 equations are till in
memory, but are hidden.

To count occurrences, the hidedotsin al intermediate variablesin an eqs are set to 0,
and then equations used to compute derivatives and output variables are processed with a

1 Lisp uses pointersto reference such objects when they are “contained” in other objects. Thus, when
an elementary object is changed, all expressions “containing” that element are updated since their pointers
continue to point at the changed object.

66

function called val i dat e- exp. The val i dat e- exp function operates recursively to
“validate’ syns. If itsargument isasymor i ndexed- sym it increments the count in the
hide slot, and then appliesitself recursively to the expression on the right-hand side of the
equation (available from the exp dot). If the argument is a compound expression,
val i dat e- exp appliesitself to al of the parts of the expression (argumentsinaf unc,
factorsinapr od, etc.)

After the hide values have been established for all i ndexed- syns that appear on the
left-hand side of an equation, a second pass is made in which all intermediate variables that
are used only once (hide = 1) are expanded back into the original expressions.

6. MULTIBODY DYNAMICSTHEORY

As noted in Chapter 2, there is a large body of literature covering techniques for
analyzing multibody systems. Traditionaly, dynamics analysis methods in textbooks have
started with the equations of a particle, then a system of afew particles, then arigid body,
and then afew rigid bodies (e.g., [35]). Emphasisis placed on gathering physical insight
into the system, so as to introduce meaningful variables, coordinate systems, etc. By
understanding the system and all of the details of the formulation of the system equations,
the analyst may choose to alter the model or eliminate termsto achieve simpler equations.
However, littleis said about dealing with complex systems with numerous rigid bodies
subject to constraints. In contrast, “multibody formalisms’ have been developed and
published which offer a systematic analysis method based on matrix representations [25,
26, 85, 87, 97, 110, 134, 137]. In these methods, the analysis consists of setting up
matrices which are subsequently manipulated to yield the equations of motion. Because all
of the details of the analysis are handled as matrix manipulations, it is more difficult for the
analyst to apply smplifications.

An analysis method developed by Kane [58] is used in this work for several reasons:
(1) as is the case for the multibody formalisms, it is presented as a “cookbook”
methodology that can be used to systematically analyze the most complex of multibody
systems, (2) the method is presented for a human analyst to follow, and it permits all of the
traditional ssimplifications to be made by the analyst while deriving equations, (3) it requires
relatively little symbolic computation, compared to other popular approaches (e.g., the
Lagrangian or the direct Newton-Euler type of analysis), and (4) it has been reported to
lead to highly efficient equations of motion [15, 55, 56, 57, 59, 70, 98, 125].

The purpose of this chapter isto review the basic existing method and to extend it to the
form needed for computer solution. This lays the groundwork for the detailed multibody
formalism developed in Chapter 8. The chapter begins with a quick summary of the first
principles underlying the equations of motion for a mechanical multibody system. Next,
Kane's approach is described, and extended to aform suitable for numerical integration
algorithms. Terms useful for formulating the equations in a matrix structure (for computer

67

68

solution) are introduced. The equations and quantities developed in this chapter form the
foundation of a multibody formalism.

Steps involving judgements, traditionaly made by the analyst, are added to the
formalism in Chapter 8. Also, aformal strategy for including kinematical loops and other
constraintsis developed in Chapter 8. (The strategy involves the derivation of coefficients
introduced in this chapter.)

6.1. Fundamental Concepts

The state of the multibody system is described by state variables, which are divided into
two groups. generdized coordinates and generalized speeds (see Section 3.2 for
definitions). For constrained systems, some of the degrees of freedom might be eliminated
by (1) holonomic constraints, imposed by geometry, and/or (2) nonholonomic constraints,
imposed by motion limits. Starting with an unconstrained system of bodies, each
holonomic constraint removes an independent coordinate and an independent speed,
whereas each nonholonomic constraint removes only an independent speed. Further,
coordinates and speeds known by the analyst to be of no interest might be omitted.
Overall, the system has n generalized coordinates (designated i, 02, ... On) and p
independent speeds (designated ug, Uy, ... Up). The systemissaid to have p degrees of
freedom.

The objective in analyzing a multibody system in this dissertation is to be able to
compute time histories of variables of interest, in response to known inputs. To achieve
this objective, it is necessary to (1) define avalid set of state variables that describe the
system and can be used to compute the output variables of interest, and (2) derive equations
of motion for computing the state variables as functions of time. The equations of motion
are ordinary differential equations involving the state variables, their derivatives, and
known functions of time. These differential equations are commonly classified into two
groups. kinematical and dynamical. The kinematica equations are used to compute
derivatives of the generalized coordinates, and are developed from the definitions of the
state variables. The dynamical equations are used to compute derivatives of the
independent speeds (accelerations), and are derived from first principles of the dynamics of
rigid bodies.

69

Kinematical Equations

Kinematica equations define derivatives of the generalized coordinates as linear
combinations of the generalized speeds. They never include influences of masses, forces,
or moments. In many cases, generalized speeds are defined as the derivatives of the
generalized coordinates. If so, the kinematical equations are simply

/ql\ ful\

q2 = u2 (6.1.1)
On Un

Sometimes, however, there are reasons for defining speeds that are not derivatives of the

coordinates.

The fundamental tactic for obtaining a kinematical equation for a trandationa
generalized coordinate derivative isto obtain two vector expressions for a point on a body:
(1) asthe time derivative of the position of that point, and (2) using kinematical rules
involving moving reference frames and the definitions of the generalized speeds. Thefirst
vector expression involves derivatives of the generalized coordinates, whereas the second
does not. Scalar equations are obtained by equating the vector expressions and dot-
multiplying both by an appropriate unit vector.

For example, consider a simple vehicle model involving one rigid body constrained to
planar motions. It has two translational degrees of freedom, g1 and qp, that define the

coordinates of its center of massin the directionsn, and n,, and ayaw rotational degree of
freedom g about the axisnz. Three generalized speeds are defined:

—B* —B* 7 —B

up=v® e by U =V° *by U3=W *nN3 (6.1.2)
The velocity of the mass center B* is defined implicitly ineq. 6.1.2, as
VB* =Uu 61 + U 62 (6-1-3)

Alternatively, an expression for the velocity is obtained by taking the derivative of the
position vector that goes from the fixed origin to B*:

VB = % (o1 M1 + g2 i)

=N+ pn; (6.1.4)

70
By equating egs. 6.1.3 and 6.1.4 and dot multiplying with n; and 1, two kinematical
equations are obtained:
(o Ti1 * Fig+ Qo Tip © iy = Uy by * Fig+ Up by Ty
01 = Uy COSQg — Uz SIN 03 (6.1.5)
(o Tiy * Tig+ G Tip * Mip = Uy by * g+ Up by T
02 = U1 SiNQg + Uz COS Q3 (6.1.6)

Note that these equations are linear with respect to the generalized speeds, although the
coefficients are nonlinear functions of the generalized coordinates.

A similar tactic is used for rotational velocity of the body: two expressions are obtained
for rotational velocity, equated, and dot-multiplied with an appropriate unit-vector. For this
example, thethird kinematical equation is

Oz = U3 (6.1.7)

It is not aways possible to obtain equations with a single unknown variable on the | eft-
hand side. I1n the most general terms, the kinematical equations are written in matrix form:

Sq=v (6.1.8)

WhereSisann " n matrix, isacolumn array of length n containing the derivatives of
the generalized coordinates, and v is a column array of length n.

To develop this strategy in more detail requires knowledge of how the generdized
coordinates and speeds are defined. Later, when rules are established for introducing the
state variables, the formulation of the kinematical equations can be specified in complete
detail.

Newton-Euler Equations

Dynamical equations are derived from first principles of the dynamics of rigid bodies,
namely, the Newton and Euler equations. For arigid body, whose principle axes are
labelled 1, 2, and 3, Euler’ s equations are

lta1—(l2—13) waw3=T1

loaz—(I3=11) wawy =T

71

lzaz—(I1—-12)wiwo=T3 (6.1.9)

where T; isacomponent about axisi of a couple applied to the body, relative to its center of
mass or a point fixed in space, |j isamoment of inertiafor the rigid body about its mass
center or a point fixed in space, taken in the direction of axisi, aj isthe component of
angular acceleration of the body about axisi, and w; isthe component of angular velocity
about axisi. Newton’'s equation is simply

m g = Fj (6.1.10)

wherei can be an axis oriented in any direction, F; is the component along axisi of the
resultant force applied to the body, and g is the component along axisi of the acceleration
of the mass center.

The Newton-Euler equations are written more simply for arigid body, independent of
direction, using vector and dyadic quantities. Momentum terms for body B can be written
as vectors:

P® = mevE’ (6.1.11)
HB* eB* ~>B
H™ =17 -w (6.1.12)

where P? is the translational momentum of body B, mB is the mass, H® isthe angular
momentum of B about its mass center, and 1% istheinertia dyadic of the body about the
mass center. From these expressions, the Newton-Euler equationsfor B are

= =B
aF =d%: mB &8 (6.1.13)
. —B* . SR* - <R* —
a T=d S T A T (6.1.14)

In the above equations, é F isthe sum of all forces applied to the body and 501 T isthe
sum of all moments (torques of couples) applied to the body about its mass center.

Scalar expressions are obtained from egs. 6.1.13 and 6.1.14 by projecting the vectors
onto adirection of interest via the dot-product operation. For example, consider the
direction defined by a unit-vector U. The scalar equation obtained by taking the dot-
product of U with eg. 6.1.13 yields aforce balance similar to eq. 6.1.10 in theu direction.
The corresponding dot product obtained with eg. 6.1.14 results in a moment balance about
the center of mass of the body, for an axis parallel with 4. If U is oriented along a
principle axis of B, this moment balance is an Euler equation. (When u is not oriented
along a principle axis, a more complicated scalar equation is obtained that includes the

72

products of inertia of B.) For an unconstrained body, six independent scalar dynamical
equations are obtained by taking dot products of egs. 6.1.13 and 6.1.14 with any three
orthogonal unit vectors.

The Newton-Euler equations define alinear relationship between the derivatives of
velocity (trandational and rotational) and the sum of the forces (for trandation) or moments
(for rotation) applied to the body. For a system with p dynamical degrees of freedom, a set
of scalar equations can be obtained that has the form:

Mu=f (6.1.15)

where M isa p x p matrix called the mass matrix, U isacolumn array containing the p
derivatives of independent speeds, and f is a column array of length p, called the force
array!. Many detailed approaches have been developed for obtaining the equations, and
one such method is presented later. Here, we consider only the general concept of how the
Newton-Euler equations are extended for multiple bodies.

Constrained Systems

For constrained systems, the simple approach of dotting the vector force and moment
equilibrium equations with three orthogonal unit vectorsis by itself insufficient because it
produces too many equations for the system.

One method for dealing with a constrained system is to first obtain a set of equations
for each rigid body as if the body were unconstrained, and to then add additional equations
for each force and moment of constraint. The total set of equations then includes both
differential equations (from the Newton-Euler relationships) and algebraic equations (from
the constraints). Special numerical solution methods have been developed for solving sets
of ordinary differential and algebraic equations, which are numerically similar to ordinary
differential equations for “stiff” systems[29, 30]. Another approach isto search for the
“most independent” state variables and integrate only those [31, 32, 43, 51, 54, 61, 68,
71, 78, 85, 129, 132]. Because holonomic constraint equations involving position are
often highly nonlinear, in some formulations only the derivatives of the constraints are

1 Thematrix M consists of the coefficients of the derivatives of the independent speeds as they appear
in the equations of motion. These coefficients are sometimes masses, sometimes moments of inertia, and
sometimes expressions with units of mass or moments of inertia. The name “mass matrix” is not perfectly
descriptive, but it iswidely used in the literature. The array f simply includes all terms that appear on the
right-hand side of each equation of motion. The elements of f have units of forces and moments, which is
why the name “force array” is used.

73

included because they are linear. To prevent error from accumulating during the
integration, “constraint stabilization” methods are used [14, 19, 84, 89, 96, 126]. (A new
version of this approach is used in Chapter 8 for dealing with closed kinematical 1oops.)
Because there are many more equations than there are degrees of freedom, formulations of
this sort are sometimes called “redundant equations.”

Another method for dealing with a constrained system is to introduce only one
generalized speed for each nonholonomic degree of freedom, and one coordinate for each
joint degree of freedom. Then there is a one-to-one correspondence between degrees of
freedom and equations of motion. Formulations of this sort are sometimes called “ minimal
equations.” In the above example involving arigid body moving on a plane, the restriction
to planar motions is the result of holonomic constraints that prevent vertical deviations or
rotation about aroll axisor pitch axis. A minimal set of generalized coordinates and speeds
was introduced (n=p=3). Suppose a nonholonomic constraint is also applied, by defining
the forward speed as a constant. Then, the system would have three generalized
coordinates and two nonholonomic degrees of freedom. To obtain minimal equations, the
generalized speed u; would be removed and replaced with a constant.

If agiven multibody system is analyzed by different methods, to obtain both minimal
and redundant equations, it is usually the case that the many redundant equations are
individualy very simple, whereas the few minimal equations are individualy more
complicated [39]. Thereis no consensusin the literature that one approach isinherently
superior to the other for general numerical solution. However, for symbolic formulations,
less manipulation is needed to obtain equationsin explicit form if the implicit equations are
already minimal.

A minimal equation formulation strategy is developed in this dissertation that is based
on Kane's approach. Forces and moments of constraint are generally not included in the
equations of motion. However, methods for including the constraint forces and moments
exist for casesin which they are of interest [9, 10, 58].

6.2. Kane's Approach

Kane has devel oped a methodology in which sums of forces and moments are projected
against vector quantities called partial velocities, which will be defined shortly. The partial
velocities are defined such that they account for constraints, and a minima set of

74

differential equationsis obtained. The procedure, as developed in a textbook [58], is
summarized below for nonholonomic systems. (Note: because the following summarizes
about 100 pages of text, some liberties have been taken to very briefly review tasks
performed by the analyst. Also, some changes in notation have been made to accommodate
methods devel oped later.)

First, the analyst devel ops a conceptual model of the system. He or she decides how
many bodies are used to represent the system, and how they are kinematically related to
each other. For each body, atrio of unit-vectors is established to define directions and
positions relative to that body. All of the force and moment-producing components are
identified. The attachments of these components to the bodies are described. Also,
external forces (gravity, vehicletire forces, aerodynamic effects, etc.) are identified.

Next, aposition analysisis performed to introduce generalized coordinates and develop
expressions needed to write expressions relating points of interest in the system.
Generalized coordinates are introduced for each joint degree of freedom that is of interest,
or which contributes to aforce or moment, or which is needed to write expressions for the
velocities of mass centers of bodiesin the system.

A velocity analysisis performed to develop variables and expressions needed to write
the velocity of any particle in the system. Generalized speeds are introduced for each joint
degree of freedom such that it is possible to write an expression for the instantaneous
velocity of any point on any body in the system, using only dimensional parameters,
generalized coordinates, and generalized speeds. When these are introduced, the analyst
should devel op kinematical equations to define derivatives of the generalized coordinatesin
terms of generalized speeds.

The system may be subject to nonholonomic constraints, which prevent all of the
generalized speeds from being mathematically independent. If there are n generdized

speeds and m nonholonomic constraints, then are are p independent speed variables, where

p=n-m (6.2.1)

If the system includes nonholonomic constraints (i.e., m* 0) then the p independent
speeds should be numbered such that u1 ... up are independent and Up+1 ... Up are
nonholonomic. It isnecessary to develop explicit expressions for the m nonholonomic
speeds, using the following form:

75

p
Us=Q AgUr+bs (S=p+l, ...n) (6.2.2)
r=1
where the coefficients Ay and bs may be constants or functions of the generaized
coordinates and of time (they are defined by the analyst). The equations defined in eq.
6.2.2 are nonholonomic constraint equations.

The analyst develops an expression for the angular velocity vector of each body we.
From each angular velocity, n holonomic partial angular velocities are defined:
~B
- W
W - (i=1,..n) (6.2.3)
fu;
A partial angular velocity is simply a coefficient appearing in an expression for angular
velocity. Because angular velocities are aways vectors, and speeds are always scalars, it
follows that a partial angular velocity is alwaysavector. The total number of partia
angular velocities that exists for the multibody system isthe product n Npggies, Where
NBodies IS the number of rigid bodiesin the system.

Next, expressions are developed for the velocity vectors of the the mass centers of each
body, VB". From these expressions, n holonomic partial velocities are defined:

g WE

Vi
Tui

(i=1,..n) (6.2.4)

If the system is nonholonomic, nonholonomic partial angular velocities and partia
angular velocities are defined, using the coefficients from the constraint equations:

=B g ¢ -8B
W =W+ a AgWws (r=1,..p) (6.2.5)
s=p+l
Also,
~B* * CI;I *
vr =VvB'+ a AgVE (r=1,..p) (6.2.6)
s=p+1

The nonholonomic partial velocities are written with a tilde over the vector arrow to
distinguish them from the holonomic partia velocities.

For each body, al force vectors acting on the body are added to obtain aresultant force.
Forces acting between two bodies should appear in the resultant force vectors for both

76

affected bodies, with opposite directions. (For example, if aspring is attached to pointsin
bodies A and B, the direction of the force applied to B is the opposite of the direction used
for A.)

For each body, the torques of all couples acting on the body are also added. These
include pure torque couples (torsional springs, rotary motors, etc.) and moments of applied
forces. (The moment associated with an applied forceisr ” f, where T isthe force vector
and ¥ isaposition vector that goes from the center of mass to a point through which the
force acts.) Torques acting between two bodies should appear in the resultant vectors for
both affected bodies, with opposite directions.

The contributions of all active forces and torques in the system are summarized in p
nonholonomic generalized active forces, defined as

al bOd|ES/ Ng 1 ~B Y= \
= 2 g =2B| ~ o =B| =B*
F=a \a Tefew +| @ Fr|*Vy / (6.2.7)
B t=1 f=1

In the above equation, the number of torques and moments acting on body B is
designated N 1, and the individual torques and moments are designated 'T'tB . Similarly,
the number of forces acting on body B is designated Ng r, and the individual forces are
designated EfB. The outer summation, with index B, is meant to imply summing over all
bodiesin the system.

Note that eg. 6.2.7 resembles the |eft-hand side of the Newton-Euler equations (egs.
6.1.13 and 6.1.14), with the vector force and torque quantities for each body in the system
being projected against the partial velocity vectors and the partial angular velocity vectors
associated with the body.

Expressions are devel oped for the angular acceleration of each body (5 B) and for the
acceleration of the mass center of each body (&%°). With those expressions, p
nonholonomic generalized inertiaforces are defined as:

allbodieﬁ’ ~B \
—k o =B <B* —=B, <B* - - =B* =B*
F=— Q \(aB-IB +wh TP 'WB)‘Wr + mBE® ‘VrB; (6.2.8)

B
wherel® isthe inertia dyadic for body B about its mass center and mB is the mass of body
B. The above equation resembles the right-hand side of the Newton-Euler equations (egs.
6.1.13 and 6.1.14). Again, vector quantities for each body are projected against the partial

77

velocities and partial angular velocities associated with that body. (However, thesignis
reversed to accommodate the convention used by Kane.)

Thefina step in the analysisis the application of Kane's equation:
F+F=0 (r=1..p (6.2.9)

Thisresultsin p scalar equations involving (1) system parameters, (2) the n generalized
coordinates (qz ... dn), (3) the p independent speeds (us ... up), and (4) the p derivatives of
the independent speeds, s ... Up. Expanding the generalized active and inertial forces
yields the following form of Kane's equation:

Ng1 —
o =B B <B* —B. <B* —B =B
dibodies || @ Tt —a l° —w " |7 ew [ew

— Q t=1
0= a Nor o) (6.2.10)
B +a Fr —mBa |.v;
f=1

This use of partial velocities derives from Lagrange' s form of D’ Alembert’s principle
(i.e., the virtual work associated with constraint forces and torques must vanish), and
reflects the facts that (1) forces and moments can do work only if thereis movement (i.e., a
speed), and (2) the partial velocities are the directionsin which those movements take
place. A very similar method is used in the NEWEUL formulation, based on Jourdain’s
principle (i.e., the virtual power associated with constraint forces and torques must vanish)
[107, 112]. Also, asimilar formulation was developed by Passerello and Huston [47, 48,
49, 50, 91]. Further, Kane'sformulation is similar to, but simpler than, the Gibbs-Appell
equations [15, 22, 23, 59, 70, 9§].

The above analysis method immediately applies severa of the simplification methods
described in Section 5.1. First, it permits the introduction of “natural” state variables,
including generalized speeds that are not derivatives of the generalized coordinates
(technique no. 1). If thereisreason to think that a certain set of variablesisin fact optimal,
the analyst is free to use that set. (Ruleswill be developed to Chapter 8 to define state
variablesthat are, if not optimal, at least “very good.”)

A second potential simplification occurs because non-working forces and moments are
never introduced (technique no. 3).

78

6.3. Overview of Dynamics Analysis Method

Once the model is conceived by a human analyst as a system of idealized elements
(rigid bodies, force and moment elements, constraint relationships, etc.), the creative part
of the analysis effort has largely ended. The above method provides a clear path towards
the subsequent formulation of dynamica equations. However, it includes many
instructions to “introduce...” or “formulate..” or “obtain..” expressions. These
instructions are satisfactory for human analysts but lack the detail needed for computer
implementation. Also, the form of the final equations is not directly suited for
incorporation into asimulation code. That is, equation 6.2.10 does not explicitly define
derivatives of state variables, nor does it implicitly define the derivativesin terms of amass
matrix and force array. A human analyst typically obtains equationsin the desired form by
inspection and further manipulation as needed to obtain the form of egs. 6.1.8 and 6.1.15.
Therefore, the Kane method will now be extended so that the analytical efforts applied after
the model is conceived can be fully automated using the symbolic manipulation tools
developed in Chapter 5.

Additional Definitions

An analysis procedure can be easier to understand when it is defined in terms of
familiar quantities, such as velocities and accelerations. However, when understanding is
not at issue (because the procedure is being programmed), there islittle point in building
expressions that will later be decomposed, if the components are known from the start.
For example, the central® translational velocities of the bodies do not actually appear in the
equations of motion. (They are used only to define the concept of partia velocities.) Also,
it will be seen that the accelerations often do not appear in one place in the final form of the
equations of motion.

In the multibody formalisms described by Wampler and Nielan [83, 125], Kane's
eguations were converted to matrix form, to facilitate the automated construction of
eguations of motion asis done with other multibody formalisms. In thiswork, the original
vector/dyadic notation is retained. However, terms called “remainders’ that were defined

1«Central” velocities and accelerations refer to motions of a mass center.

79

by Wampler (and Rosenthal [99]) are used here as well, and are extended for
nonholonomic systems.

Partia velocities and partial angular velocities will be be introduced directly and used to
define other quantities, such as velocities and accelerations. The definition of partia
angular velocities from eq. 6.2.3 is converted to the following:

we = \7vtB + é?\ Uj \7viB (6.3.2)
i=1

where \TVtB isafunction of time. Kane keeps this term throughout the presentation, to
accommodate velocity inputs. However, inputs of this sort can just as well be
accommodated by introducing a nonholonomic constraint with a nonzero coefficient b (see
eg. 6.2.2). All systems will be considered to be potentiadly nonholonomic in this
dissertation. Thus, the term \TVtB is defined as zero so that eq. 6.3.1 can be replaced with the
simpler form:

n
B8 uw’ (6.3.2)

Angular velocity can also be written as a sum involving nonholonomic partial angular
velocities. Combining egs. 6.3.2 and 6.2.2 yields

w =a uw + a |a Asgu +bs|ws (6.3.3)
r=1 s=p+1 \r=1

This can be simplified by writing the right-hand side in terms of the nonholonomic partial
angular velocities, as defined in eg. 6.2.5:

p ~ n

—B o =B o -B

w =a uw + a bsws
r=1 s=p+1

(6.3.4)

An expression for angular accel eration can also be developed in terms of partial angular
velocities:

4B = dw’
dt (6.3.5)

Substituting eg. 6.3.4 into 6.3.5 yields

p — =B n =B
5 £ [du=e dwr) 2 d(pgwf)
a =a ae VUG *a dt

—
1

=
1@
©
F

=

p ~B =B n B
=a |uw + ur—d\é\'r) + a d(bSWS)
r=1 L s=p+l t

=B c'? =B
=aremt a UyWy (636)
r=1
- - . : B - . - .
where the nonholonomic angular acceleration remainder, a rem, IS defined to simplify later
notation:
p

=B - o =B
adrem=a —ad Uw

r=1
~B ~
_5 udWr + g] d(bSWE) 6.3.7
= o 2\ W)
o d S dt (6.3.7)

The nonholonomic angular acceleration remainder isthe part of the angular acceleration
that is put on the right-hand side of the equal sign in the equations of motion, in the force
array. It contains quadratic speed terms, and is sometimes identified as the “nonlinear” or
“quadratic” component of angular acceleration. By substituting eg. 6.2.2 into eg. 6.3.7, it
iswritten as follows:

B P (d\TVrB . & dlas \TVS)) 2 dbgwd)

arem=a U
=1 dt dt

s=p+1

b, 4 /{g urd(Agvvs)}d(bsva)\

—
r=1 dt s=p+1\ r=1 dt dt l
p —~B n —>B =B
-3 ud\cli\;r a {(é U{Asrd(;tvS)+AerB)+bsd(c\;¥S)+bsWsB}
r=1 s=p+l r=1
p —B n p —>B p
= é Urdditr'*' é {WsB(bs"'é UrAsr)"'d((\;:s) (bs"'é UrAsr)}
r=1 s=p+1 r=1 r=1
R A e | P
=a u at +a Ws|bst+a UAg (6.3.8)
i=1 Ss=p+1 r=1

81

Two new terms are now introduced, to allow a simpler expression of eqg. 6.3.8.

=B . cl)'] -B
8rgm = Aremt A Ws Gs (6.3.9)

s=p+l
. . . —B . .
where the holonomic angular acceleration remainder, a rem, is defined as:
n

B - 8 dw (6.3.10)
arem= A Ui dt 9
i=1

and m constraint accel eration coefficients are defined as:

p
Cs=bs+ 8 UAg (6.3.12)
r=1
To summarize, we have taken the angular acceleration of B and broken it up into
several terms: (1) the part containing coefficients for the derivatives of the independent
speeds, which contributes to the mass matrix, (2) a holonomic part containing products of
all generalized speeds and holonomic partial angular velocities, and (3) a honholonomic
part containing products of the derivatives of the constraint coefficients and the holonomic
partial angular velocities of the nonholonomic speeds. The second and third parts define
the nonholonomic remainder that appears in the force array, and contains the quadratic
termsin the angular acceleration.

A similar convention is used to develop an expression for the velocity of the mass
center using holonomic partial velocities,

n
VB = VtB*"' é U VIB* (6.3.12)
i=1
Aswith the angular velocity, the component, V£ is defined as zero. (A predetermined

function of time can be accommodated in the velocity as a nonholonomic constraint.) Thus,
€g. 6.3.12 smplifiesto the form

n
VB = uyvP (6.3.13)
i=1

The central velocity can just as well be written in terms of nonholonomic partial
velocities:

82

p n

g _ o B & g

vB'=aq u v, + a bsVE (6.3.14)
r=1 s=p+1

The acceleration of the mass center can be written using the nonholonomic partial
velocities:

~B* _ de*
a =
dt
=B~ b (__, —B*
Ve 3 (v 4 gV
d dt
= B + 8 UV (6.3.15)
r=1

where ﬁrBeTﬂ is caled the nonholonomic central accderation remainder. It contains the
quadratic speed terms in the acceleration, and appear on the right-hand side of the

equations, in the force array. It is defined smilarly to the nonholonomic angular

accel eration remainder:
=B* _ _.pB* g - =B*
Gem=a — UrVy
r=1

n n
o dVrB* (

p
=a UT"'a 7sB bs +a UrAsr)

r=1 s=p+l r=1
n
— =B* 2 B
=&emt d Vs G (6.3.16)
s=p+l

érBe:n is the holonomic central acceleration remainder, defined as

dren= A Ui g (6.3.17)

Implicit Dynamical Equations

At this point, all of the motion termsin the dynamical equations have been defined as
explicit functions of (1) the partid velocities and partid angular velocities, (2) the

independent speeds and their derivatives, and (3) the constraint coefficients and their
derivatives.

83

These equations are linear with respect to the accelerations, and therefore they can be
put into the form desired for the dynamical equations:

Mu=f (6.3.18)

By substituting egs. 6.3.6 and 6.3.15 into 6.2.10 and comparing with 6.3.18, the
coefficient in the mass matrix for a particular row i and column j is obtained
all bodies
[¢}
Mij= a

B

~B -px =B ~R* ~R*
(Wj B et mB e -ViB) (6.3.19)
Subtracting eg. 6.3.19 from eq. 6.2.10 yields the coefficient for element i in the force
array (corresponding to row i in the mass matrix):
Ng,T ~B
o =B =B _vB* B, vB* ~B| =
aJIbodiesI(a Tt — areme!l” —w " | ‘W)‘Wi 1
fi = a =1 N
5F .| =B 6.3.20
B \l +(é FfB _mBérBem).Vi j ()
f=1
Equations 6.3.18 through 6.3.20 implicitly define the p accelerations in terms of

known quantities. The accelerations can be computed using equation solving algorithms
for linear algebra, which are implemented symbolically as described in the next chapter.

7. UNCOUPLING ALGEBRAIC EQUATIONS

Both the kinematical equations and the dynamical equations occur naturaly inimplicit
form, defining sets of simultaneous algebraic equations that must be solved to obtain the
derivatives. Thisformulation is often described as a set of coupled equations. Finding the
solution for the independent variables is called uncoupling the equations. The matrix form
of the smultaneous linear equationsis

Ax=y (7.1)

where Aisann’ nsguare matrix, X isacolumn array of n unknown variables, and y is a
column array of n known values.

The solution of simultaneous linear equations is awell developed areain the field of
numerical analysis. A variety of specialized algorithms have been developed for different
classes of problems, as characterized by the structure of A. However, even the best
generalized solution method can result in extraneous computations involving elements of A
that are zero for a particular multibody system, but which are not, in general, zero for all
systems.

7.1 Lower-Upper Triangular Decomposition (LUD)

When the only known structure properties of the A matrix are that it is non-singular,
then lower-upper (LU) triangular decomposition is the appropriate solution method [93]2.
A set of equations involving a positive definite matrix can be solved by defining two
triangular matrices,

1 For numerical analysis, amore efficient method exists when the matrix is known to be symmetric (as
is the case for the mass matrix). The method is to decompose the matrix into a product of atriangular
matrix and its transpose, e.g., M = G GI. Cholesky’s method provides a solution with half of the
computation required for the LU method presented here. However, when the anayses are peformed
symbolically, the Cholesky method requires more manipulation to simplify the equations. Thisis because
many of the elements in the G triangular matrix are square roots of expressions, and a certain amount of
manipulation is required to eliminate the square roots. Given sufficient symbolic manipulation, both
methods yield the same set of explicit equations.

85

A=LU (7.1.1)

where the matrices L and U have the following structures:

1 0 o0 .. 0O
l,2 1 0 .. O
L=z 1 1
0
oo o b 1 (7.1.2)
up U Ugs Ui |
O uxp Ux ... Uy
U= 0 0 wug
Un-1n
.0 0 .. O um | (7.1.3)

If the L and U matrices can be found, then the original set of n equations are replaced by
two sets of n equations.

Lz=y Ux=2z (7.1.4)

Thefirst of these equation sets is solved to obtain the n elements of the z array, using
forward substitution:
j—1
4 =Yj— é likzx (=1,2,..n) (7.1.5)
k=1
Eqg. 7.1.5isrecursive, because for all j greater than 1, the evaluation of yj involves all of
the previoudly determined values. Thus, the index j must be incremented as shown.

The second set of equations, which provides the desired values of the x array, is
solved using backward substitution:

n
Xj :u]-(zJ — é ujk Xk) (J =N, n—1, 1) (716)
1] k=j+1

The backward substitution is also recursive, and requires that j be decremented from n to 1.

86

Because half of the coefficientsin L and U are known by their definitionsto be O or 1,
it is possible to store the other elements of both the L and U arraysin a single square array
that will be designated LU.

Uiz Uz2 Uiz ... Ujp

21 ux Uz ... Up

‘I_
C
I

a1 |32 U3z

L | nl Unn N (7_1_7)

Crout’ s algorithm provides arelatively simple procedure for obtaining these elements.
The procedure is recursive, and is performed for each column j in the matrix wherej is
incremented from 1 to n.

i—1

Ujj = « Ajj — é likug » (=1,..)) (7.1.8)
k=1
jc—)l

lij = «l__(Aij -a li Ukj) » (i=j+1,..n) (7.1.9)
ujj k=1

Egs. 7.1.5 through 7.1.9 provide a means to compute each unknown x; using eq.

7.1.6. Because the equations are recursive, the x variables must be computed in a
particular order, from xp, to X1.

To exploit the sparsity of aparticular A matrix, the solution is developed explicitly in
symbolic form. Because the above equations are highly recursive, the computer code
developed symbolically by applying these equationsis also highly recursive (see examples
in Appendices B through E).

When the solution developed here is written into a Fortran program, it is intended that
each arithmetic operation is performed only once. An expression that appears more than
once isreplaced with an intermediate variable, so that the intermediate variable is used
subsequently. The replacement of an expression with an intermediate variable is made by
using the AUTOSIM function i ntr o- var - i f - new (described in section 5.3). In the
above two equations, the invocation of this function isindicated by enclosing an expression
with the symbols“«” and “».” Theresult isthat each element in LU is represented by a
symbol. That is, the expression on the right-hand side of either of the above equationsis
replaced with a symbol that is used in subsequent occurrences of the expression in the
recursion. This guarantees that in the worst case (see Section 7.2), the symbolic LUD

87

solution requires exactly the same number of arithmetic operation as when the procedureis
performed numerically. In all other cases, the explicit symbolic solution is more efficient
because terms that are symbolically zero do not appear in the solution.

The only division operations required in the above solution method occur in egs. 7.1.6
and 7.1.9. In both cases, the divisor is ujj, aterm that includes Aj;. Thus, this method
should only be used if the expressions in the diagonal of the A matrix are nonzero at all
times. Thiscondition isin fact satisfied for the dynamical and kinematical equations. The
definition provided in the previous chapter for elements of the mass matrix guarantees that
all diagonal elements of the mass matrix are nonzero for well-posed models of mechanical
systems. Also, the method developed in the next chapter to form the kinematical equations
ensures that the diagonal elementsin thearray S are al unity.

7.2 Ordering of State Variables

Upon inspecting Crout’s algorithm, as defined in egs. 7.1.8 and 7.1.9, it can be seen
that the number of multiplications needed to obtain the matrix LU is of the order n3 if all of
the indicated multiplications are performed. Thisis because there are three nested loops:

1. Thealgorithm proceeds through columnsj=1, n.

2. For each column j, the upper elements ujj are computed for rowsi=1, j. Also, the
lower elements| j; are computed for rowsi=j+1, n.

3. Foreacheementin LU, a summation is needed that involves the index k, where k
goesfrom 1 to eitherj ori (seeegs. 7.1.8 and 7.1.9).

However, when the algorithm is performed symbolically, the full number of operations
is needed only when all multiplicationsin egs. 7.1.8 and 7.1.9 yield non-zero results. For
example, in eq. 7.1.8, if either | jk or uy; is zero, the symbolic multiplication yields zero,
and a product is not written into the numerical analysis code.

88

Consider the number of operations
_ needed to compute one eement in a 5x5

Uip Uiz | Uizl U1g4 Uis array, e.g., |43 In Figure 7.2.1, the
| 21 U2 | U3 Uzq Ugs elements that are used in eg. 7.1.9 are
l'31 I'3p U33 Uszs Uss shown in boxes. There are two

Ugq Ugs multiplications of eements that have

aready been obtained (I 41 u1z and | 42

. Is1 I'sz I's3 ls4 Uss |
Figure 7.2.1. View of the

computation of an element in the LU

matrix.

up3), indicated in the figure by arcs. In
order for the element | 43 to be zero, it is
necessary that (1) the corresponding
element A4z in the original matrix is zero,
(2) either | 41 or uzziszero, and (3) either | 42 or uz3iszero.! When Aj; is zero, but the
corresponding element of the LU matrix is not zero because one of the conditions is not
satisfied, the LU decomposition is said to have caused matrix fill.

If all elementsin A are non-zero, there is no possibility of matrix fill, becauseit is
aready full. (Computationally, thisistheworst case.) Also, if A isdiagonal, thereisno
possibility of fill. (Computationally, thisisthe best case). However, if A is sparse, but not
diagonal, the possibility exists. It turns out the matrix S (from the kinematical equations) is
very nearly diagonal, and fill is not a problem. However, the mass matrix M is usually
somewhere between the two extreme cases. Hence, the structure of M can influence the
computational effort needed to uncouple the equations of motion.

Recall that the mass matrix is symmetrical. Several possible structures for a symmetric
matrix A are shown in Table 7.2.1, along with the structures of the corresponding LU
matrices. (Zero elements are shown in the table with zeros, non-zero elements are shown
with dots.)

Thereisclearly less fill when the matrix is structured such the most zeros are found
towards the upper-left region of the matrix. The specific locations of the zeros is
determined by the ordering of the variables. For example, cases 3 and 4 could represent
the same set of equations, differing only in the ordering of the variablesin the x array.

1 These conditions do not consider the possibility that non-zero terms will cancel. Such occurrences
are not considered because the are extremely rare in the mass matrices obtained for multibody systems.

89

Table 7.2.1. Matrix-fill for several structures of the A matrix.

Case Structure of A Structure of LU
1. (Full) e e
e« 000O0O e 0O0O0O0O

O« 00O0O O« 00O0O

2. 00+ 000 00+ 000
(Diagond) 000« 00O 000 00O
0000+ O 0000« O

1L 0000O0 - | 1L 0000O0 - |

..OOOO e O o o o o

3. e O 00O e o o o o o
(maximum e 00 00
f|”) e 00O O e o o o o o
70000007 [@ o o o o o |

« 000O0- « 000O0-

O« 00O~ O« 00O~

4. (no 00« 00 00« 00
fill) 000« O 000« O
0000« » 0000«

- 0000~ "« 0000~

Oe Qe o o Oe Qe o o

5. (no DO0e o o o OO0 o o o
fl”) O e o o o o O e o o o o
O e o o o o O e o o o o

Recognizing the significance of the ordering, the solution method used for the
dynamical equations includes an additional step of permuting the mass matrix. Initialy, the

90

mass matrix is formulated using an order that is convenient, based on the way in which the
generalized speeds are stored in memory. Then, each row in the matrix is inspected to
count the number of zero elements. The generalized speeds are then ordered such that the
variable with the highest number of zerosisfirst and the variable with the least number is
last. The mass matrix and force arrays are permuted accordingly, such the the equations
defined by the matrices remain valid. Then, Crout’s algorithm is used to symbolically
uncouple the equations.

To some extent we are applying one of the simplification techniques used by some
progranmers to improve efficiency. When intermediate variables are introduced
appropriately, the symbolic solution of the acceleration equations results in an efficiency at
least as good as can be obtained from a carefully partitioned formulation. However, it
should be noted that a potential drawback of this approach isthat the structure of the system
is“lost” in the building of a mass matrix which islater decomposed. Recently, a number
of recursive “Order-n” formulations have been published that offer greater efficiency for
systems with a*“chain” topology when the length of the chain exceeds a certain number,
generally around n=10 [13, 25, 128, 129, 130]. For models of ground vehicles, the
formulation presented here is usually better. (Also, for the six-link Stanford Arm” robot
analysed in Section 9.6, the formulation developed using the methods of Chapters 5
through 8 was about 60% more efficient than a recursive O(n?) formulation [99]). On the
other hand, arecursive O(n) or O(n2) formulation should be considered for systems with
“long” chain topologies.

8. AMULTIBODY FORMALISM

In this chapter, aformal procedure is developed that can be applied automatically after
an analyst has concelved a model to represent the multibody system. This kind of
procedureis called a multibody formalism. The objective is to create a complete, valid,
specialized simulation code of the sort described in Chapter 4, from a description of (1)
how rigid bodies in a specific system are related kinematically, and (2) how force- and
moment-producing components act on those bodies. The formalism combines concepts
and general methods introduced in Chapters 5, 6, and 7.

The full process has been organized into the five steps summarized below:

1

Describe System. The analyst describes the objects comprising the multibody
system using a small set of AUTOSIM macros. As each body is added, a body
object is created and several analyses are immediately performed to assign valuesto
dotsin order to support the computer algebra functions.

Points of interest on rigid bodies are identified by the analyst, and corresponding
poi nt objects are created by the computer.

Active forces and moments are described, and corresponding f or ce and nonent
objects are created.

Additional equations are generated for nonholonomic constraints and closed
kinematical loops.

Kinematical Analysis. Kinematical equations are formed that define derivatives of
generalized coordinates as functions of the independent speeds.

Constraint Analysis. The constraint equations obtained in step 1 are processed to
obtain coefficients required in the dynamics analysis.

Dynamics Analysis. Terms needed for Kane's equations are obtained using a
variety of formulations. The generic dynamical equations presented in Chapter 6
are then applied to obtain a mass matrix and force array. The implicit equations are

91

92

solved symbolically, as described in Chapter 7, to obtain explicit expressions for
the derivatives of the independent speeds.

5. Write Fortran Program. A complete simulation code is written in Fortran that (1)
reads input parameters, (2) simulates the multibody system, and (3) generates an
output file with predicted time histories of output variables.

These five steps are described in more detail in the following sections.

8.1. Describing the System

All of the parts of the multibody system can be represented using the computer data
objects presented in Chapter 5. Lisp macros and functionsin AUTOSIM used by the
analyst to build the description of the multibody system on the computer are summarized in
Table 8.1.1. (Reference material for these macrosis provided in Appendix A, and many
examples of their use appear in the next chapter.) Basically, each macro creates an
appropriate object and assigns data to slotsin the object.

Table 8.1.1. AUTOSIM macros for describing a multibody system.

Lisp form

Purpose

add- body

describe one body completely, including its position in the
system topology, the kinematics of its joint, and the mass and
inertial properties of itsrigid body.

add- constrai nt

introduce a constraint equation that will be used to eliminate one
state variable.

add-gravity

apply agravitational force to each body with mass.

add-1ine-force

describe force-producing component (direction of force is
known).

add- nonent describe moment-producing component.

add- poi nt identify point of interest on a body.

add- st rut describe force-producing component (end points are known).
| ar ge declare parametersto be “large” with small-order of —1.

no- novenent

apply holonomic constraint for closed kinematical |oop.

snmal |

declare synsto be “small” with asmall-order of 1.

Theadd- body macro createsabody object to represent one of therigid bodiesin the
system. It also performs several analyses to put information into slots of the new object,

93

that are required in order for the vector algebra operations to work. The methods used to
determine values that are put into the slots of the body object are detailed later in this
section.

Themacrosadd- | i ne-f or ce, add- st rut, and add- nonent create data objects
corresponding the force- and moment-producing components in the multibody system, and
then assign the slots using data provided by the analyst. The objects are not manipul ated
until the entire system has been entered. Of course, the expressions provided for force and
moment magnitudes may involve considerable algebra, but thisis handled by the basic
algebra routines and does not involve the multibody objects, except for functions that
obtain information from the body objects.

Inasimilar vein, the macro add- poi nt simply creates a data object to represent a
point fixed on abody. The point may or may not be used in subsequent analyses.

Theadd- gr avi t y macro adds the effect of a uniform gravitational field. The effect
isasif aforceis applied to every mass center with the direction of the gravitational field
and an amplitude g mB, where g is the gravitational constant. However, upon inspecting
eg. 6.3.20, it can be seen that the same effect is obtained if the gravitational constant is
added to the acceleration remainder for B. Dueto the recursive formulation devel oped later
for the acceleration remainder, it is much better to take the latter approach. Thus, the add-
gr avi t y macro does not actually apply forces to the bodies. Instead, it sets a global
constant cdled *accel erati on-due-to-gravity* to a vector obtaned by
multiplying the gravitational constant (nominally the symbol gees) by the direction of the
field (nominaly [n3]) . When AUTOSIM isinitialized, thevalue of *accel erati on-
due-to-gravity* issettozero. Thus, gravity isnot included in the analysis unless
theadd- gr avi t y macroisinvoked.

Thesmal | macro isused to declare that symbols are small (the small-order dot in each
argument is set to avalue of 1) and the | ar ge macro declares that symbols are large (the
small-order slot in each argument is set to avalue of —1). Ordinarily, these slots have a
default value of O.

The add- constrai nt macro is used to introduce a constraint equation. The
constraints can apply to either coordinates or speeds. The no- nmovenent macro applies
add- constrai nt twice once to define a speed constraint, and once to define a
coordinate constraint. (A detailed discussion of the add- const r ai nt macro is deferred
until section 8.3.)

94

Joint Description for New Bodies

The analyses performed when a body is added deal mainly with the coordinate system
of the new body, as determined by the kinematics of the joint connecting it to its parent. In
order to automate this process, it is necessary to define the kinematics relating a body to its
parent in away that is meaningful to the analyst.

A building-block joint model is used to define the kinematical relation between a new
body and its parent. The joint includes between zero and six kinematica degrees of
freedom. Three of these are consecutive translations, and the other three are consecutive
smplerotations. (A simple rotation is one in which two reference frames have one line
which isfixed in both frames throughout the rotation. That lineisthe rotation axis.) This
model is not completely generalized, because it requires that the translations occur before
the rotations. However, by defining massless intermediate bodies (each with its own
building-block joint), amost any joint geometry can be built with this model. The
parameters that describe the building-block joint are summarized in Table 8.1.2.

Table 8.1.2. Parameters and degrees of freedom of a body/joint.

Parameter Description
AoB: position of joint point of B relative to origin of parent.
(FB, B, rB) |listof 0, 1, 2, or 3 directions for translational degrees of freedom

of B, fixed in the coordinate system of the parent. (In Figure
8.1.1, the single direction is designated r%.)

(i1,i2,13) list of 0, 1, or 3 axisindicesin B for sequential rotations.
oy orientation of first rotation axis of B (fixed in the coordinate
system of the parent).
FEy reference direction for first rotation of B (fixed in the coordinate
system of the parent).
(8, 5, %) | listof 0, 1, or 3 directions of rotations for B. Thislist is derived
from the above parameters.

The geometry isillustrated in Figure 8.1.1 for an example involving one degree of
freedom for rotation and one for tranglation.

The three directions of the coordinate system of B are the unit-vectors Bl, 62, and 53.
For the parent A, the three directions are a;, ap, and as. The origin for B is the point

95

designated Bp. Inthisfigure, the magnitude of the trandation is the generalized coordinate
gi and the magnitude of the rotation is the generalized coordinate gjj+1.

A, origin for body A
(jOI nt connecti ngtoits Position of b

parent) for zero rotat1 fon
. (ref. axis, 7B) Body B

(/ Gisa 2 BO, origin for body B

B Jomt Point rot axis
flxedmA B = b3)

rot

Parent body A

Figure 8.1.1. Geometry of body relative to its parent.

The relationship between the coordinate systems of B and A depends on the type and
number of degrees of freedom:

* If thejoint has one or more translational degrees of freedom, Bg can move within
the coordinate system of A. Otherwise, itisapoint fixed in A.

» If thejoint has one or more rotational degrees of freedom, at least two of the unit-
vectors of B differ from those of A. Otherwise, both bodies have coordinate
systems based on the same directions.

One generalized coordinate is introduced for each degree of freedom of the joint. The
description of the joint kinematics can be separated into trandational and rotationa
displacements.

Trandational Displacement

The translational coordinates define how the origin for the new body is positioned
relativeto the origin of the parent. Slots in a body that pertain to the trandational
displacement of the joint are shownin Table 8.1.3.

Two of the dots are assigned to poi nt objects. Oneisthe point Bj fixed in the parent
body (in slot joint-point), and the other is the origin of the new coordinate system, Bg (in

96

Table 8.1.3. Body slotsrelated to joint translational displacement.

Slot Name Type Definition

O-point poi nt origin of coordinate system (also, joint attachment point

in this body).

joint-point poi nt joint attachment in parent body.
trandation- list trandational generalized coordinates introduced for this
coordinates body.
trandation- li st directions corresponding to variables in trandation-
directions coordinates.

small- | i st Booleans corresponding to variables in trandation-
trandations coordinates. T if variableissmall, NI L otherwise.

slot 0-point). The point Bj is specified by the analyst using coordinates in an existing
coordinate system. (Regardless of the coordinate system used to specify the coordinates,
the poi nt isfixed in the parent.) The poi nt object is put in the joint-point slot of the
body to define the position of the origin in the nomina state when all generadized
coordinates are zero. A poi nt isalso created for the new body to define the origin of its
coordinate system. Because the coordinates of an origin are defined as (0 0 0), no input
from the analyst is needed to create the origin poi nt .

If the joint has tranglational degrees of freedom, alist of the trandlational directionsis
needed. These direction vectors, (f8, F5, F&), are each specified by the analyst in the
same coordinate system as was used to define the joint-point. The directions are converted
to the coordinate system of the parent, and multiplied by the uvs (unit-vectors) from the
parent to create direction vectors. The list of vectors is then put into the trandation-
directionsslot of thebody.

The number of trandational degrees of freedom is determined by the length of the list of
directions. Transational coordinates are introduced by creating alist of i ndexed- sym
objects, which is then put into the trandation-coordinates slot. For each degree of
freedom, two i ndexed- syns are created at thistime: one for a generalized coordinate
(e.0., g3) and one for its derivative (e.g., Q3). The printed representation of each
i ndexed- symobject is determined by the symbol put into its symbol slot and the number
putintoitsi dot. (E.g., avariablewith“Q” initssymbol slot and “3” inits i slot prints as
“Q(3).” With the symbol “QP” in the symbol slot it prints as “QP(3)”.) Slots in the

97

individual i ndexed- synsthat identify the objects as variables are also set. For example,
(1) the dxdt slot of the coordinate is set to the i ndexed- sym made to represent its
derivative, (2) the const-or-var slots of of both the coordinate and its derivative are set to
the symbol var , (3) if the analyst specified that the trandation is “small,” the small-order
dots of the coordinate and its derivative are set to 1 (otherwise the order of smallnessis 0),
(4) the units of the coordinate are set to the expression L (units of length) and the units of
its derivative are set to L/T (length per unit time), and (5) aname is created, based on the
names of the new body and the parent body and the direction of the trandation. (Examples
of how state variables are named by AUTOSIM appear in the next chapter.)

The list of orders of smallness specified by the analyst is put into the slot small-
trandations.

The position of point Bg relative to point Ag is the vector
NG
FAOBO — 7AoBy + a Gi+o ?E (811)
i=1
where Nt% is the number of translational degrees of freedom for body B and o is an offset
constant that maps the index i from the summation onto the indices of the generdized
coordinates. In Figure 8.1.1, NE is1 and the position vector FA%¢ js AR + g; ¥,

Rotational Displacement
Slotsin abody that pertain to the joint rotation are shown in Table 8.1.4.

Recall that the building-bock joint model assumes consecutive simple rotations, in
which each rotation occurs about an axis fixed in B. The sequence of axesis provided by
the analyst as alist of integer numbers and put by the add- body macro into the rotation-
axes dlot of the body. Two pieces of information are required in addition to the list, to
specify the orientation of B relative to A when al generalized coordinates are zero. First,
the orientation of the first rotation axis, T2y, isin adirection fixed in the coordinate system
of the parent. B isnot always parallel with any of the axes of the coordinate system in the
parent, and can be entered as a set of constant coordinates in a selected coordinate system.
Those coordinates are converted to the coordinate system of the parent, and are stored in
the parent-rotation-axis slot of thebody. In Figure 8.1.1, the rotation axis coincides with
bs. Thus, B can rotate relative to A about an axis that coincides with a direction vector
aligned with axis 3in B. That same vector is described with a set of three constant
coordinates in the coordinate system of A.

98

Table 8.1.4. Body slotsrelated to joint rotation.

Slot Name | Type |[Definition

parent- array | coordinates of rotation axisin coordinate system of parent.
rotation-axis
rotation-axes| |i st list of axesin new body about which consecutive rotationg

take place.
reference- array [coordinates of reference axis in coordinate system of
axis parent.

rotation- list rotational generalized coordinates introduced for this body.
coordinates
small-angles | | i st Booleans corresponding to variables in rotation-

coordinates; T if variableis small, NIL otherwise.

Thethird and last piece of information related to the orientation of B defines the
orientation of B when all generalized coordinates are zero. This nominal orientation is
defined with a vector, r&;, called the reference axis. The rotation and reference axes are
orthogonal. (If the two sets of coordinates provided by the analyst are not orthogonal, the
component of the direction provided by the analyst that is orthogonal to the rotation axisis
derived and used as the reference axis.) The reference axisis shown by adashed linein the
figure. Inthe nominal orientation, the three axes of the coordinate system of B are aligned
with (1) therotation axis, (2) the reference axis, and (3) their cross-product. The reference
axisis specified by the analyst using coordinates in a selected coordinates system. Those
coordinates are converted to obtain coordinates in the coordinate system of the parent. The
converted coordinates are kept in the reference-axis slot of B.

The appropriate axis of B is aligned with the reference axis of the parent, where the
“right-handed” axisto use as areferenceis provided in Table 8.1.5.

Table 8.1.5. Right-handed axis convention

Rotation Axis Reference Axis
1 2
2 3

3 1

99

A generalized coordinate isintroduced for each rotation associated with the joint. Inthe
figure, thisvariableis designated gj+1. Aswas the case for translational variables, a new
i ndexed- symobject is created for each rotational variable and another for its derivative.
Slotsinthe i ndexed- symare set to identify them as variables. Thelist of i ndexed-
synsis put into the rotation-coordinates list.

When the joint has three rotational degrees of freedom, alist of indicesis provided to
specify the sequence of rotations. For example, thelist (3 2 1) has the following meaning:
“Body B isinitially aligned such that bs is aligned with r2,; and b is aligned with r2. B
then rotates about b by an angle go+1, where o is an index offset. From that new
position, it is rotated about b, by an angle go+2. Finaly, it isrotated about b1 by an angle
Jo+3. After thefirst rotation, the orientation is an intermediate frame, designated B" After
the second rotation, the orientation is another intermediate frame, designated B'. These
intermediate frames are not created asbody objects, and cannot be referenced by any of the
AUTOSIM algebrafunctions. If anintermediate frame is needed to devel op moments or to
define angles, then instead of specifying one body with 3 rotations, 3 bodies should be
entered, each with one rotation. (The first two should be given zero mass and inertia
values.)

In order to simplify some of the rules that follow, the building-block joint model
allows zero, one, or three consecutive rotations between a body and its parent, but not two
rotations. Joints which involve two consecutive rotations are represented by two building-
block joints, where the first is associated with a massless body.

This representation is valid for mechanica joints that are commonly available in
multibody analysis programs. Several ssimplejoints are represented in Table 8.1.6. Other
types of joints (cables, gears, cams, etc.) are described with combinations of building-
block joints and constraint equations.

100

Table 8.1.6. Representation of simple joints with “building-block” model.

Joint Type Translational Rotational d.o.f. [No. of “building-
d.o.f. blocks”
Prismatic 1 0 1
Revolute 0 1 1
Hooke, Gimbal 0 2 2
Planar dider 2 0 1
Ball Joint 0 3 1
Cylindrical 1 1 1
Free 3 3 1

Direction Transformations
Slotsin the body that define direction transformations are summarized in Table 8.1.7.

Each body in the system has its own coordinate system, with an origin and three axes.
The directions of the three axes are defined by unit-vectors. A direction cosine matrix is
used to relate the three unit-vectors of a body with the unit-vectors of the parent. The
directions of the axes of B are related to those of A by the direction cosine matrix BCA,
defined such that

Table 8.1.7. Body slotsrelated to direction transformations.

Slot Name Type Definition

uvs array |trioof uvsthat definesthe axis directions of the coordinate
system of this body, e.g., (51 b, 53).

cos-matrix array |direction cosine matrix relating the unit-vectors of this
body to those of its parent.

basis dyadi ¢ | adyadic that transforms an arbitrary vector expression into
the basis of this body, e.g., 51 51 + Ez 52 + 53 53.
rotation- | ist list of rotation directions associated with the generdized

directions coordinates in the rotation-coordinates slot.

101

ol

|

11 Cu Co Ci3 | |a

b Cy C C a
1EZI 21 C2 Co3 1621 (8.1.2)
b3 Ca1 Gz Cz3 Jl\ag
Or,
Cij =bi* 3§ (8.1.3)

For the building-block joint model just presented, there can be 0, 1, or 3 rotational
degrees of freedom. The direction cosine matrix for each of these cases is described
below.

Recall that the dot-product operation is performed by using the direction cosine matrix.
Thus, the definition of eq. 8.1.3. cannot be used to define the direction cosine matrix,
because at the time the matrix is being created, the dot-product operation will not work.
Instead, the matrix is constructed by using the rotational information introduced above and
stored in the dots parent-rotation-axis, reference-axis, and rotation-axes.

Bodieswith Zero Rotational degrees of Freedom

The axes for the coordinate system of a body with zero rotational degrees of freedom
are defined to be parallel to those of the parent body. That is, the three unit-vectors
associated with the body are the same as those of the parent: a;, ay, and az. Thedirection
cosine matrix implied by eq. 8.1.3 is a 3-by-3 identity matrix:
100]

BCA= 010

001

(8.1.4)

In the computer representation, the contents of the basis and uvs slots of the parent
body are copied into the corresponding slot of the new body, and the cos-matrix slot is set
to the above identity matrix. Therotation-directions slot remains NIL.

Bodies with One Rotational degree of Freedom

If body B has one rotational degree of freedom with respect to A, it rotates about an
axis whose direction is fixed in both B and A. Recall that the rotation axis &, and the
reference axis & are both vectors which are not parallel, but are not necessarily orthogonal
as defined by the analyst. Two cross-product operations are used to define two unit-

102

vectors that are combined with 72, to define three orthogonal unit-vectorsfor the coordinate
system of B:

by = TR Ty (8.1.5)
e = . =B
b = 18, (8.1.7)

The set of unit-vectorsintroduced for B are nominally designated b1, by, and b, and
areidentical to the unit-vectorsBi , Bj , and Bk, where the definitions of the indicesi, j, and

k are obtained from Table 8.1.8.

Table 8.1.8. Indices for three possible rotation axes.

Case i] k
=Dy 2 3 1
B =D, 3 1 2
Thot = b3 1 2 3

First, the orientation of B relative to A must be determined for the nominal condition
when all generalized coordinates are zero. These are defined by dot products between bi,
bj, and by, and a;, @, and @s. Because the rotation axis and reference axis are stored in
thebody as coordinates in the coordinate system of A, the dot products are simply those
coordinates. Calling the rotation angle g, two terms, s and c, are introduced as the sine and
cosine of g to account for the rotation. The creator functions make- si n and nmake- cos
are used, so that small angle approximations are made appropriately. Each t ri g objectis
created just once, so all referencesto that t ri g object later involve asingle object in the
computer.

The elements of the direction cosine matrix are defined for each row using the samei, j,
and k indices assigned in Table 8.1.8:

Cir=c(a +bi) +s(& * b)) (r=1,2,3) (8.1.8)
Cjr=-s(& *bj) +c (& * bj) (r=1,2,3) (8.1.9)
Cir = & * by (r=1,2,3) (8.1.10)

Theresulting array is placed in the cos-matrix slot of thebody.

103

If the rotation axisis parallél to one of the unit-vectors of A, then the corresponding uv
unit-vector is also used for B. For example, suppose the rotation axisis described in A as
—ay, and the coordinate system for B is defined such that rotation of B relative to A occurs
about axis number 2. Then, the unit-vectors of B are El, —ap, and 53. On this occasion,
one of the rows of the matrix BCA contains two zeros and a minus-one.

The rotation axisis not always parallel with a unit-vector of the parent. For example, if
the rotation axisis specified as %;‘3, then three new unit-vectors are introduced for B.

In this case, dl three uvsin theuvs dot of B are new.

The rotation-directions slot is set to alist with one element: the uv aligned with the
rotation axis.

Bodies with Three Rotational Degrees of Freedom

A body B with three rotational degrees of freedom is subject to three consecutive
rotations. Starting with the nomina orientation, after each of the three rotations the
orientation coincides with: (1) areference frame B", (2) areference frame B' and (3) body
B. The method described above to obtain a direction cosine matrix for a body with one
rotational degree of freedom is applied three times, to obtain cosine matrices relating B to
B', B'to B", and B" to the parent. That is,

BCA = BCB' BCB" B'CA (8.1.11)

In addition to the direction cosine matrix, the three rotation axes (f2, %, and rg) are
required for some of the following analyses. Unit-vectors are not introduced for
intermediate frames B' and B", and therefore these three axes must be represented using
unit-vectors for the coordinate systems of B and its parent, A. Thefirst, &, isfixedin A
and was stored asrE; us ng the coordinate system of the parent. Thethird, B, is common
to B' and B, and is the unit-vector associated with the third index in the body axis rotation
list. The second, B, is common to the intermediate frames B" and B'. It can be written in
terms of the unit-vectors of B using a column of the cosine matrix BCB".

& = Cyjby + Cyby + Cgbg (8.1.12)

where | isthe index of the second rotation axis, and Cyj, Cpj, and Cgj are coefficients of
BCB..

Thelist (fB, 8, and rB) is put into the rotation-directions slot of thebody.

104

Recursive/Nonrecursive Descriptions

Nonrecursive formulations are used when there are enough degrees of freedom in the
joint of abody such that its motions can be described without reference to other bodiesin
the system. When thisis not possible, recursive formulations are used. Two slotsin the
body object store the types of analyses that are used for rotation and trandation, as
indicated in Table 8.1.9.

Table 8.1.9. Body slotsrelated to recursion.

Slot Name Type Definition
recursive-r synbol formulation to use for rotation analysis.
recursive-t synbol formulation to use for trandation analysis.

The recursive-r slot is assigned to the symbol NI L if anonrecursive analysisisto be
used to obtain expressions for rotational velocity and acceleration. A very smpleruleis
used: if the body has three rotational degrees of freedom, the nonrecursive analysisis used.
Otherwise, the body is recursive. There are two variations of the recursive formulation
used, indicated by setting the ot to either the symbol t or r ot or. The criterion is based
on theinertial properties of the body, as described in the next subsection.

The recursive-t slot is assigned to the symbol NI L if anonrecursive analysisisto be
used to obtain expressions for trandationa velocity and acceleration. There are two
conditions in which the nonrecursive formulations are used: (1) bodies with three
trandational degrees of freedom, and (2) bodies with two translational degrees of freedom
that are constrained to planar motions. Thefirst case applies when the list of coordinatesin
the trandation-coordinates slot has three elements. The second applies when three
conditions are satisfied. First, thelist of coordinates in the trandation-coordinates slot has
two elements. Second and third, the following two tests must be true:

W (FB - tB) <o
and 5
B (?tBl . ?tBZ) £0 (8.1.13)

where 8 and r3 are the two directions of the trandational degrees of freedom. Otherwise,
the body isrecursive. There are two variations of the recursive formulation used, indicated

105

by setting the slot to either the symbol t or fi xed. The criterion for setting the slot is
based on the inertial properties of the body, as described in the next subsection.

Inertia Properties

Slots in the body object pertaining to inertia properties are summarized in Table
8.1.10. Thetableincludes data provided by the analyst (as optional arguments for the
add- body macro) for the isolated rigid body element. For the purpose of performing the
dynamics analysis described in Section 8.4, the inerttia properties of each body are
summarized in three dots: (1) the scalar mass (a scalar expression associated with the mass
dot), (2) the mass center, (apoi nt associated with the cm-point slot), and (3) the inertia
dyadic (an expression associated with the inertia slot). In certain conditions, these three
inertia properties represent composite bodies, obtained by combining attributes of adjacent
bodies.

Table 8.1.10. Body slotsrelated to inertia.

Slot Name Type Definition
cm-coor dinates 3x1 array [coordinatesof rigid-body mass center.
cm-point poi nt mass center of composite body.
inertia expr essi on | inertiadyadic of composite body.
inertia-matrix 3x3 array |[inertiamatrix for rigid body.
mass expr essi on | mass of composite body.
massb expr essi on | mass of rigid body.

Data specific to the rigid body B are kept in the slots cm-coordinates, inertia-matrix,
and massb. The coordinates of the mass center, provided by the analyst, are converted into
the coordinate system of B and stored in the cm-coordinates slot. The inertia matrix for B
iskept in the inertia-matrix slot, and the mass of B iskept in the massb dlot.

As each body is entered, an analysisis performed to set the inertia properties of the new
body and all bodies“up” the tree. The procedure, initiated when body B is added, goes as
follows:

1. Alistismade of all children of B whose recursive-t slot is set to the symbol
fixed. Thislistiscaled thefixed children. (When applied to a body just added,

106

there are no children and thisisanull list. However, the procedure is also used for
other bodies which do have children.)

The masses from the massb slot of B and the mass slots of the fixed children are
summed to form the composite mass of B, which is assigned to the mass slot of B.
That is,

fixed
chiLdren

mBc=mB+ g mbe (8.1.14)
b
where mBC s the composite mass for B, and the sum covers the fixed children, with
the index b indicating each body that is a member of the list of fixed children of B.
In this summation (and all of the summations that follow in this procedure), the
mass used for bodiesin the list of fixed children is the composite mass, from the
mass slot, as indicates with the superscript “bc.” However, for body B, the rigid-
body mass from themassb dlot is used.

The coordinates of the composite mass are computed:

fixed
. chiLdren .
xB*mB+ g xPC" mbe

xBe" = bB (i=1,2,3) (8.1.15)
m C

where xB” is one of the three coordinates of the mass center of B and x¢* is the
corresponding coordinate of the composite mass of afixed child of B, which has
been properly converted to the coordinate system of B via the convert -
coor di nat es function. The three coordinates of the composite mass center are
used to create anew poi nt object, which is placed in the cm-point slot of B.

An inertiamatrix for the composite body is constructed using the paralel axes
theorem, considering the masses of the fixed children (but not the inertia dyadics):

B, _fixed
TR W g g
B, fti)XGd
=18 A el e s P
b

107

B,_fixed
5 =15+ "R el e el g
’ B, fixed
8 =18 =15 - G mollx —xB) (g
b

B, fixed
children
B =185 =18 T A Pl —xEBe) (g —xE°)
b

B, fixed
k x * Chipren * ok vk k
155 =15 =15 - @ mp[(xg" —xB%) (x§" —x5*") (8.1.16)
b

In the above equation set, the summations cover the fixed children of B and aso the
rigid body B. For body B, the mass used for mP is the rigid-body mass (from the
massb slot). For the children of B, the mass mP is the composite mass (from the
mass slot)

The inertiamatrix constructed in step 4 is made into a dyadic using the unit-vectors
of B:

% :g 3 (18 bib) (8.1.17)

Thedyadicisput in theinertiasot of thebody.

Therotational category of B is determined. Theinertiamatrix from step 4 is used to
determineif B isarotor. Itisarotor if al three of the following conditions are
satisfied: (a) the body uses the recursive formulation (that is, the recursive-r slot is
not NI L), (b) the composite inertia matrix is diagonal, and (c) the two moments of
inertia perpendicular to the axis of rotation are equal. If B isarotor, the recursive-r
dot isset to the symbol r ot or. Otherwise, thedotissetto T. If thedlot isset to
r ot or , theinertiadyadic is converted to the basis of the parent using the identity

1B =215 o3 (8.1.18)

Otherwise, the formulation obtained from eq 8.1.17 is kept.

108

The translational category of B is determined. The coordinates of the composite
mass from step 3 are used to determine if the mass of B is fixed in the coordinate
system of its parent. It isfixed if therecursive-t dotisnot NI L and any one of the
following conditions is satisfied: (a) the composite mass is zero, (b) al three
coordinates are zero, or (c) the body has no translational degrees of freedom, one
rotational degree of freedom, and the only nonzero coordinate of the composite
mass center is along the rotation axis. If B isfixed, the recursive-t slot is set to the
symbol f i xed. Otherwise, theslotisset T or left at NI L, depending its original
value.

Unless the parent of B isthe inertial reference (N), the above procedure is repeated
for the parent.

The last step in the above procedure means that as each body is added to the tree, the

mass and inertia properties of al bodies“up” the tree are subject to adjustment.

Vel ocities

Velocity information in the body objectsis used to support algebra functions such as

rot and vel . Slotsrelated to velocity arelisted in Table 8.1.11. Lists of generalized
speeds corresponding to those created for trandational and rotational generdized
coordinates are created and put into the trand ation-speeds slot and the rotation-speeds sl ot.
Slotsin the i ndexed- symobjects are set as was done for the generalized coordinates,
except that the symbol slots are set to “U” and “UP” instead of “Q” and “QP.” (And of
course, different names and units are put into the nameand units slots of the i ndexed-

symobjects.)
Table 8.1.11. Body slotsrelated to velocity.
Slot Name Type Definition
abs-v0 expr essi on | velocity of origin (point Bp).
abs-w expr essi on | rotational velocity of body.
rotation-speeds | ist rotational generalized speeds for this body.
trand ation-speeds | ist trandational generalized speeds for this body.
trand ational-speed- list directions corresponding to variables in
directions trandlation-speeds.

109

The directions associated with the speeds are not necessarily the same as those
associated with the coordinates. Based on the symbolsin the recursive-r and recursive-t
dots, speeds for rotation and trandation are defined using either arecursive formulation (in
which case the speeds are the simple derivatives of the generaized coordinates) or a
nonrecursive formulation (in which the speeds are defined in body-fixed directions).

Directions are determined for the trandlational speeds and put into lists kept in the slots
trandational-speed-directions. The directions are defined as follows:

1. If therecursve-t dlotisnot NI L, then the list of speed directionsisidentical to the
list of vectorsin the trandation-directions slot.

2. If therecursive-t slot isNI L and the body has two trandational degrees of freedom,
then the body has one rotational degree of freedom. The list of speed directionsis
obtained by starting with the list of the three unit-vectorsin the uvs slot of the
body, and then removing the unit-vector that is parallel with the body rotation axis
(that is, the first element of the list in the body-rotation-axes slot).

3. Otherwise, therecursive-t slot is NI L and the body has three translational degrees
of freedom. Thislist of directionsisthe list of unit-vectors fixed in the body,
obtained from the uvs dlot.

The rules for rotational speeds are so simple that a corresponding list for rotational
speed directionsis unnecessary.

The angular velocity of the body is determined as follows, based on the number of
rotational degrees of freedom (d.o.f.) of the body:

I v (0d.o.f.)
-B _ SA B
l Uo+1 B1 * Uo+2 B2 + Uo+3 B2 (3d.o.f.)

(For the case of 1 d.o.f., uy isthe generalized speed introduced for the rotational degree of
freedom. For the case of 3 d.o.f., oisan offset such that the three speeds introduced for
the rotational degrees of freedom are Ug+1, Ug+2, and Ug+3.) The angular velocity is put
into the slot abs-w. This expression is not converted to any one basis, and can include
unit-vectors from many different bodies.

110

The translational velocity of the origin is determined as follows, based on whether or
not the body isrecursivein tranglation. (It isrecursiveif the recursive-t slotissettot or
fi xed, and nonrecursiveif thedotissettoni | .)

" %
v +w T FABOL q U TB (recursive)
7|30 _ i=1

NE
\l éd Uiso FBi —w> ~ FBoB” (nonrecursive) (8.1.20)
i=1
(Theindex o is an offset such that the speeds introduced to account for the translational
degrees of freedom are o+1, ... 0+NE. For the nonrecursive case, the symbol r5;
designates the directions of the trandationa speeds. The rationale for setting those
directionsis presented in Section 8.4.) This expression is not converted to any one basis,
and can include unit-vectors from many different bodies.

With the velocity information kept in the body objects, functions such asr ot and vel
aretrivia to implement. Thefunction (rot b) simply returns the expression from the
abs-w dot of thebody b. Thefunction (vel p) returnsthe expression

P —vBo L B +BoP
VEEVEERwW T (8.1.21)
=BoF

where B is the body containing the point Pand r
originof B to P.

is the position vector going from the

The nonrecursive part of eg. 8.1.20 involves the position of the mass center of B.
However, the mass center is subject to change, depending on whether bodies are added
which have mass centers fixed in the coordinate system of B. Accordingly, eg. 8.1.21 is
reapplied to all bodiesin the system whenever a new body is added.

8.2. Kinematical Analysis

The kinematical equations are n ordinary differential equations that relate the derivatives
of the generalized coordinates to known speeds. This set of equationsis written below in
matrix form:

Sqg=v (8.2.1)

WhereSisann” nmatrix, ¢ isacolumn array of length n containing the derivatives of

the generalized coordinates, and v is a column array of length n containing the known
speeds. Eachrow i inthe arrays of eg. 8.2.1 is an equation developed by considering the

111

generalized coordinate gi. Depending on whether qj is a rotational or trandationa
coordinate, different methods are employed.

Rotational Speeds

Each body has one generalized coordinate introduced for each rotational degree of
freedom associated with the body. The angular velocity of the body, relative to its parent,
can be written in terms of the derivatives of the generdized (rotationa) coordinates
introduced for the body:

(8.2.2)

where NE is the number of rotational degrees of freedom introduced for B, o+ isthe

derivative of the generalized coordinate introduced for the jth rotation of the body (o is an
index offset), and ?ﬁ isthe axis of rotation associated with go+;.

Recdll that for angular velocity,
A=B _ =B A
W =w -Ww (8.2.3)
wherew® and w” are obtained us ng ther ot function.

A kinematical equation is obtained by equating egs. 8.2.2 and 8.2.3, and dot-
multiplying both sides by a suitable vector. A particularly well-suited vector for
performing the dot product is?ﬁ because it forces the diagonal elements of S to be unity for
the rows corresponding to rotational variables. For the ith generalized coordinate, g,
introduced for arotational degree of freedom, the kinematical equationis

B
Nrd B -

B = Al
é. Uo+i I’% y rrB(i-o) :(W - W) * I'rB(i-o) (8.2.4)
=1
In terms of the matrix equation, the elements of S for row i are
=B +B . B
Fri-0) ® Mr(i-o) forj =o+l, ... 0+Ngy
Sij =/ o) T _ r (8.2.5)
\O for al other j

Andtheith dementinv is

112

B A
Vi =(W —W)-rrB(i_o) (8.2.6)

Trandational Speeds

Each body has one generalized coordinate associated with each tranglational degree of
freedom of the body. The velocity of the body origin, Bg, relative to the coordinate system
of A, can be written in terms of the derivatives of the generalized (trandational) coordinates
introduced for the body:

Ntd
A%BO = a qO+J r’[J (8.2.7)
j=1
where VB¢ is the velocity of Bg with respect to a coordinate system fixed in A, N is the

number of translational degrees of freedom introduced for B, qo+j isthe derivative of the

generalized coordinate introduced for the jth translation of the body (o is an index offset),
and r{, is the direction of the translation associated with Goxj.

The absolute velocity of By, obtained with the function vel , can be written as:

—Bo —

vBo = v+ Ay

vBo + w7 pABo (8.2.8)

Rearranging, a second expression for V& is obtained:

AyBo = yjBo _ Ao _ Pt - pABo (8.2.9)
A kinematical equation is obtained for ¢ by equating egs. 8.2.7 and 8.2.9, and dot-
multiplying both sides by 7§;-o):

B
t

P
o

—

— — A, =
Oo+ rtj rthi-o) = (VB0 —vho—w rA°B°) . rthi_o) (8.2.10)

Qo

1

—
1

In terms of the matrix equation, the elements of S for row i are
_ /FtB(j-O) 'FtB(i_o) forj =o+1, ... O+N5’j

S = (8.2.11)
"o for all other j

Andtheith dementinv is

v, = (VB _yA_ A FABY) . 78i.0) (8.2.12)

113

This formulation guarantees that the diagona elements of S corresponding to
trandational coordinates are unity. Because the same was true for the rotationa
coordinates, it followsthat al diagona elementsof S are 1. Recall that a condition for the
uncoupling method presented in Chapter 7 was that the diagonal elements be non-zero.
The formulation here meets that condition, and also guarantees that, at most, only two off-
diagonal termsin each row are non-zero. (It has been found that the permutation technique
developed in section 7.2 offers no improvement, because Sisis not subject to matrix fill
during the LUD analysis.)

The kinematical equations are derived after any constraint equations are added by the
analyst, and before any other analyses are performed on the system. The equations are
inspected and any references to nonhol onomic speeds that were removed by a constraint (as
described in the next section) are “expanded” recursively, replacing the i ndexed- symof
the nonholonomic speed with the expression from its exp slot. Thus, the kinematical
equations in the Fortran code include only parameters, generalized coordinates, and
independent speeds.

In the Fortran simulation code, the kinematical equations cause values to be computed
for the derivatives of the generdlized coordinates. Because they are now “defined,”
expressions in following Fortran code can refer to these derivatives.

8.3. Constraint Analysis

Most of the constraints in the multibody system are accounted for in the joint
characterizations. Rather than starting with a fully unconstrained system and adding
constraints, we start with a fully constrained system and add degrees of freedom. For
holonomic systems that have a tree topology, no further constraint analysis is required.
However, if the system is subject to nonholonomic constraints (e.g., the examples in
sections 9.1 and 9.2), or if it contains one or more kinematical loops (e.g., the example in
section 9.3), then additional constraint equations are needed.

Nonholonomic Constraints

Dynamical degrees of freedom can be diminated by the analyst by imposing
nonholonomic constraints.

114

Derivation of Congtraint Coefficients
A constraint equation is a scalar expression constrained to be zero, having the form:
f«(q1q2, ... Qn,U1,U2, ... Up,t) =0 (s=pt1,...n) (8.3.1)

Each expression fg is associated with one speed, us, and is generally the result of a dot-
product between a velocity (angular or translational) and a unit-vector (e.g., see examples
in Sections 9.1 and 9.2). Such expressions are always linear with respect to generalized
speeds, although the coefficients can be nonlinear functions of generalized coordinates
and/or time. Thus, f5can be written in the form

fs—&u +Lfsu ﬂfs

_'ﬂul 1 s 2+...+ﬂ—UnUn+fso
=fgqu+fo U + ... fon Uy + fso (8.3.2)
where
tg = Ms fo=fo-A fs U (8.3.3)
flug i—1

Recall that in Kane' s formulation, constraints are defined by scalar coefficients such
that nonholonomic speeds are written as linear combinations of independent speeds,

p
Us=Q AgUr+bs (S=p+l, ...n) (8.3.4)
r=1
At thetime aconstraint is applied, it is possible to solve for us, if us appearsinfs. That
is, if
fss® O (8.3.5)
then areplacement expression of usis

n
~fs0 — é. fs U
Ug = =L %S (8.3.6)

fss

At the time a constraint is added with the add- const r ai nt macro, the speeds are
renumbered such that the speed being eliminated is us, where s>p. A replacement
expression for ug is obtained viathe function sol ve- f or and put into the exp slot of the
i ndexed- symobject that represents the variable us. The category dot is set to the symbol
nonhol onom c.

115

Note that al generalized speeds, both independent and nonholonomic, appear in 8.3.2,
but only one nonholonomic speed (us) appears in eq. 8.3.4. Conversion from the form of
eg. 8.3.2 to that of eg. 8.3.4 cannot be done at the time a constraint is specified, because at
that timeit is not known how many other constraints will be introduced later by the analyst.
That is, the expressions obtained by eg. 8.3.6 might include speeds that will later be
removed by additional constraints. However, from a different perspective, expressions
obtained previously might include the speed that was just eliminated, us. Accordingly,
when a constraint is added, all of the existing nonholonomic speeds are processed so that
any occurrences of us are replaced with the expression in eg. 8.3.6. By performing this
expansion when each constraint is added, it is certain that at all times the replacement
expression for each nonholonomic speed is a function only of time, generalized
coordinates, and independent speeds.

The preceding analysisis performed as each constraint is added, along with other
activities that were described in Section 8.1. The above analysis was described in this
section, rather than Section 8.1, to establish continuity with the analysis methods described
below. The constraint analysis continues after the kinematical equations have been written.
At that time, the coefficients referenced in eq. 8.3.4 are obtained:

p
Ag = Tus bs=Us—a Agls (8.3.7)
ﬂul' r=1

A third set of coefficientsis also established:

p
Cs=bs+ A UAg (8.3.8)
r=1

Selection of Nonholonomic Speeds

The preceding analysis is presented under the presumption that as each constraint is
applied, one formerly independent speed (us) has been chosen for “remova” (i.e.,
replacement with an expression involving the remaining independent speeds). The add-
const r ai nt macro doesin fact allow the analyst to choose the speed variable to remove.
However, the speed can also be chosen automatically by the macro. The criteria for
selecting a speed to eliminate are based on an inspection of the above equations.

Thefirst criterion is that the expression fss must not be zero, because it appearsin the
denominator of eg. 8.3.6. The AUTOSIM function const ant - part isapplied to each
partial derivativein eg. 8.3.2, and only speeds associated with partial derivatives that

116

include a constant component are considered. (Because most constant parameters are
represented by symbols, there is some faith here that nonzero parameter values are
provided by the end user of the simulation code. An option is provided for the analyst to
specify the speed to remove if he or she knows that some parameters are more likely than
othersto never have zero values.)

Note that the coefficients Ag involve the partial derivative of the expression that
replaces us, and that the coefficients cg involve the derivatives of Ag. From eg. 8.3.6, we
see that the expression fss appearsin every te'min us. Thus, if fsshasaderivativethat isa
complicated expression, then the expressions obtained for the non-zero coefficients defined
in egs. 8.3.7 and 8.3.8 will also be complicated. For this reason, the second criterion is
that the partia derivative of the constraint with respect to us should be a constant.

The replacement expression is more complicated than a symbol, and therefore speeds
that appear rarely in the system equations are prefered when choosing us. The nature of a
tree topology is such that variables introduced for bodies that have children are likely to
appear in expressions for the children when recursive formulations are employed.
Therefore, the third criterion is that the speed eliminated should correspond to a body with
no children. The speeds are numbered such that the highest indices correspond to bodies
with no children, whereas speeds with low indices correspond to bodies “up” the tree, with
children. Therefore, this criterion is applied by choosing the speed with the highest index
from the list of candidates.

The actual procedure for choosing a speed to eliminate is as follows:

1. Theset of al independent speeds with non-zero const ant - par t sin the partial
derivatives of the constraint equation (fg, i=1, ... n) isformed. If thissetisNIL, a

message is printed to the analyst and an automatic selection is not made.
Otherwise, the procedure continues.

2. Fromthe set obtained in step 1, a subset is formed that includes only speeds
corresponding to constant partial derivatives of the constraint equation. However,
if thissetisNIL, the set from step 1 is used.

3. The speed with the highest index that appearsin the set formed in step 2 is chosen.

Kinematical Loops

117

Kinematical loops occur when a holonomic constraint links two bodies that do not have

a parent-child relationship.

Example: Four-Bar Linkage

To help describe the handling of loops, the four-bar linkage shown in Figure 8.3.1is
used as an example. (Thisexample will appear again in Section 9.3.) Suppose bodies A
and C are introduced with parent N, and B is introduced with A asits parent. Thus, the

tree appears as shown in Figure 8.3.2.

In this example, the pin joint
between B and C still needsto be
accounted for. To do this, one or
more constraint equations must be
written, based on the definition of
thejoint. Call thelocation of point
P on body C point Cp, and on
body B, point Bp. The constraint
should state mathematicaly that
Cp and Bp coincide. Becausethe
state variables include both
coordinates and speeds, it is

N BF; CP
(L5, |_4)~{Q Cy ? (L1, L
c
2
b s
<O Ao B@ (L1, 0)
(0, 0) A

Figure 8.3.1. Four-bar linkage.

necessary to state two facts about the joint: (1) the position between Cp and Bp is zero, and
(2) the velocity between Cp and Bp is zero.

The condition that no movement exists is N
defined for forming expressions for the velocity AAC
and position vectors between the two points, and B—
then dotting those vectors in appropriate directions. Figure 8.3.2. Tree for
linkage.

The position vector between the two points can

be written as

0= ?BPCP = (L]_ - L5) Ci1—-Li1a1 - L4T)2 +Lsny+Lany (839)

118

(The above expression is formulated in AUTOSIM using the pos function.) Dotting rB#
in the direction b yields the following scalar equation:

0 :FBPCP'Bl

=3¢ + Ls(Cc1Cp — S1S2) + La(Cos1 + C1Sp)
+ (L1 —Ls)[—S2(C3S1 — €183) + C2(C1C3 + $1S3)] (8.3.10)

where sines and cosines are abbreviated as. ¢; © cos(q;), S © sin(g;), and q1, g2, and g3 are
generdlized coordinates introduced for the angular rotations of bodies A, B, and C,
respectively.

The vel function isused to formulate an expression for the difference in velocity
between the two points,

0= VBPCP =(L1— L5)U3E2 —Liu;ay + La(ug + up) 61 (8.3.11)

where speeds uy, up, and ug are defined as the derivatives of g1, g2, and g3, respectively.
Asbefore, a scalar constraint equation is obtained by dotting the above formulation with
by

0= VBPCP' 61

= (L1 —Ls) ug[Cz (C381 — €1S3) + S (€1C3 + $1S3))]

—Liussp + Lg (ug + Up) (8.3.12)

On inspecting the above two constraint equations, it is clear that eq. 8.3.12 is well
suited to solving for a speed variable (e.g., up) using the solution method of eq. 8.3.6.
However, it isjust as clear that an algebraic solution for a coordinate with eg. 8.3.10 is
much more complicated.

Computational Methods

The constraints for displacement are ailmost unnecessary. Suppose that only two
constraint equations are used, and the constraints are treated as nonholonomic. Then, we
still have n generalized coordinates, computed by integrating the kinematical equations. We
also havep independent speeds, computed by integrating the dynamical equations. There
are just two minor problems with this formulation:

119

1. Theinitial valuesfor all of the generalized coordinates are not known. Because
some of the coordinates are not independent, they must be assigned initial values
that satisfy the constraint equations.

2. Thenumerical integration involves some error that is very small, but which can
accumulate over along simulation run to violate the displacement constraint by a
gradually increasing amount.

The approach taken is to treat the system as being nonholonomic, but to account for the
above two potential problems computationally.

L et the displacement constraint equations have the form
9s(d1,d2, .- dn,) =0 (s=p+1,... n) (8.3.13)

Each expression gs is associated with one coordinate, gs, and is generally the result of a
dot-product involving a displacement (angular or translational) and a unit-vector (e.g., €q.
8.3.10). Given aconstraint of this generic form, the solution method used in eg. 8.3.6 for
the speed constraint is first attempted. If it fails (asis usually the case for constraints
defined from displacement equations), then numerica computational procedures are
formulated. Instead of replacing the coordinate gs with an exact analytical solution, gs is
categorized as acomputed coordinate. The constraint equation gs is placed in the category
dot of thei ndexed- sym whereit isavailable for later writing computational procedures.

When asimulation run is started, initial values must be obtained for the computed
coordinates such that the constraint equations are satisfied. The computation method used
is a Newton-Raphson iteration, using an established agorithm for a set of nonlinear
simultaneous algebraic equations [93]. After all of the constraints have been entered by the
analyst, they are written as

Go+= 0 (i=1,..m (8.3.14)

The original constraint equations are available from the category slots of the computed
coordinates, and are used to write a subroutine called INITNR to compute (1) the mvalues
of gs, and (2) them” mJacobian matrix, whose elements are defined as:

_ ﬂgp+i

3=
! 9+

(i=1.mj=1,..m (8.3.15)

120

The coefficients defined in egs. 8.3.14 and 8.3.15 provide all of the information needed to
compute the correct initial values at the start of the simulation. Thus, the first potential
problem is solved. (See Section 9.3 and Appendix C for the subroutines generated by
AUTOSIM to perform the Newton-Raphson iteration.)

The second potential problem isthat for long simulation runs, accumulated error in the
numerical integration can result in violation of the displacement constraints. The solutionis
to include a correction of the form

P 8.3.16
Os— Qs ﬂgs/‘ﬂqs ()

where the |eft arrow means “the value of on the left-hand side of the arrow (qs) is replaced
with the expression on the right-hand side of the arrow.” Note that if the constraint is
satisfied, then gs is zero and ¢k is not modified by the computation. Eq. 8.3.16 is applied
at each time step, so the correction istypically very small, accounting for integration error
over one time step. Interactions with other variables are numerically negligible and are not
included in the computation here. Note that the denominator of the correction termin eqg.
8.3.16 isadiagonal element of the Jacobian matrix defined in eq. 8.3.15.

A restriction on eg. 8.3.16 is that the denominator of the correction term (i.e., the
Jacobian coefficient) must be nonzero. The current version of AUTOSIM does not
automatically generate IF-THEN blocks to check for such singularities. Hence, the
formulations can sometimes become singular. Generally, this is not a problem for
kinematical loops occuring in vehicle systems, where motions of links in suspensions are
limited to 20 or 30 degrees. (The singularity does not arise in steering systems, where
angles cover the full range.) However, for applications involving genera mechanism
design, the possibility of a singularity should be considered. (A simple “fix” in the
simulation code is to skip the correction when the absol ute value of the Jacobian coefficient
is smaller than some threshold, say, 10-10))

The computation indicated in eq. 8.3.16 is obtained by the sol ve- f or function when
an explicit expression cannot be obtained and the optional : nuneri cal keyword
argument is given thevalue T. The expression is put into the exp slot of the i ndexed-
var and thecategory dot is set to the constraint expression gs.

Section 9.3 and Appendix C show examples of how these computations appear in the
simulation code.

121

Automatic Selection of Computed Coor dinates

As was the case for the speeds, the above materid was presented assuming an
independent coordinate had been chosen by the analyst to convert to a computed
coordinate. When used for constraints of displacement, the add- const r ai nt macro
allows the analyst to choose the coordinates to remove, just as it does when used for a
constraint of speed. Also, the coordinate can also be chosen automatically. The criteriafor
selecting an independent coordinate to eliminate are similar, but less stringent, than those
used for selecting speeds to eliminate.

First, the independent coordinates are checked, going from the coordinate with the
highest index to q, to see if a coordinate exists whose partial derivative of gs includes a

constant part. Thefirst one found is selected.

If the above search fails, then the independent coordinates are checked, again going
from the coordinate with the highest index to 1, to see if a coordinate exists whose partial
derivative of gs has anominal valuethat isnot zero. (The nomina valueisthe expression
obtained when all generalized coordinates are zero, and is obtained with the function
nom nal .) If first one found is selected.

If the first criterion is satisfied, the Jacobian coefficients involving this computed
coordinate have a denominator that is highly unlikely to be zero. If the second is satisfied,
the coefficients are unlikely to be zero for configurations close to the nominal case. If both
of the above methods fail to select a coordinate, a message is printed to the analyst and the
constraint is not added. (To add the constraint, the analyst must choose the coordinate to
eliminate.)

The No-Movement Macro

Kinematical loops require that constraint equations be added in pairs. one for speed and
one for displacement. Given that there is some redundancy, it is essential that the two are
consistent. To ensure this, a macro no- novenent is used to generate holonomic
constraints that eliminate motion of one point relative to another in some direction. The
macro has three arguments: pointl, point2, and direction. It forms an expression for the
position vector between pointl and point2 (viathe pos function) and dots the result with
direction to obtain a scalar displacement constraint. That constraint is applied with the
add- const rai nt function. Then, the macro forms a velocity vector between pointl

122

and point2 (viathe vel function) and dots the result with direction to obtain a speed
congtraint that is also applied with theadd- const r ai nt function.

Theno- not i on macro is suitable for closing kinematical 1oops with the mathematical
equivalents of planar slider joints (no movement in one direction), linear slider joints (no
movement in two directions), pin joints (no movement in two directions), and ball joints
(no movement in three directions).

Redundant Constraints

The add- constrai nt function and the no- novenent macro do nothing if the
constraint equation is aready satisfied. Thereisusually not aproblem if the analyst triesto
apply too many constraints. For an example, see Section 9.2.

8.4. Dynamics Analysis

For a given multibody system, the minima number of independent speeds is
determined solely by the number of degrees of freedom. Introducing new symbols to
match the number of degrees of freedom is atrivial exercise: they are variables called us,
uz, ... Up. However, deciding what those symbols represent physically is where modeling
judgement comes into play. Because the partial velocities are used so frequently in deriving
the equations of motion, their formulation is a primary factor in determining the complexity
of equations of motion for the system. Specifically, for each body,

* thenonholonomic partial central velocities are dotted with the forces acting on that
body,

» thenonholonomic partial angular velocities are dotted with the moments acting on
that body,

* anexpression for the angular acceleration remainder is developed, dotted with the
inertiadyadic for the body, and the result is dotted with each nonholonomic partial
angular velocity, and

» anexpression for the central acceleration remainder is developed and dotted with
each nonholonomic partial velocity for that body.

The nonholonomic partial angular and central velocities were defined in Chapter 6 as
linear combinations of the holonomic counterparts. Similarly, the nonholonomic angular
and central acceleration remainders were defined from holonomic expressions. The

123

previous section described how the coefficients needed to define nonholonomic
expressions are obtained from the constraints. Therefore, if the holonomic terms are
formulated, it will be simple to obtain the nonholonomic counterparts. Accordingly, this
section focuses on the holonomic terms.

Two approaches will be used for defining holonomic partial velocities:

1. Non-recursive— Generalized speeds are defined such that most of the partia
velocities and partial angular velocities for abody are either (1) zero, such that
associated dot products are aso zero, or (2) identical to other partial velocities, such
that dot-products obtained for one partial velocity can be used again without further
computation. Zero partid velocities are obtained when speeds are defined
independently of other bodies, i.e. relative to the inertial reference. Identical partia
velocities are obtained when speeds are defined for directions that are parallel to
previously introduced speeds.

2. Recursive— Recursion is employed, such that expressions introduced for body B
include results already obtained for the parent body A. Thisis accomplished by
defining speeds associated with B relative to A.

Clearly, the two approaches conflict. In general, the first approach is preferred.
However, it can be used only under certain conditions.

Before developing expressions for the partial velocities and accel eration remainder, two
important algebraic considerations are discussed. These are (1) selection of a vector basis
and (2) the introduction of intermediate variables. Neither is of any consequence with
respect to the correctness of the equations of motion, but both are of great consequence
with respect to the efficiency of the simulation code that applies the equations of motion.

Vector Bases

A vector is an expression involving products of scalars and unit-vectors. A given
vector can be written in different ways, using alternative unit-vectors. A vector written
using only the three unit-vectors aligned along the axes of the coordinate system of body B
issaid to be expressed in the basisof B. A vector written with no explicit trigonometric
functionsis said (in this dissertation) to be expressed in native form For example, consider
asystem of two bodies A and B, where A rotates relative to N about an axis oriented in the

124

directionny and B rotatesrelative to A about an axis oriented in the direction a,. (In this

example, the axes of the coordinate systems of N, A, and B are aligned in the nominal

configuration. Thus, i, coincides with 3; and 8, coincides with b,.) The angular velocity
. —B

of Bisw:

‘)B — —
W =upng+ua (8.4.2)

This velocity vector can be dotted with a basis dyadic without changing its magnitude or
direction. That is,

- <> -~ B +
=W *N=W ea= eh (842)
where
Nn=n;n;+nN2nN2+nN3N3

§:ﬁ1ﬁ1+§2§2 +§3§3

ol

=by by +d, 8+ b3 by (8.4.3)

The expressions obtained by dotting the angular velocity with the three basis dyadics
are;

“B_~—"B - — — —
W =W *N=Uj; N1+ UxCNo + UsS1N3
-B — —
=W ea=U; N1+ Way

~>B <~ — . —
=W~ «b=uiCby + U & + USbs3 (8.4.49)

where ¢; and s; are the cosine and sine functions of the rotation angle between N and A,
and ¢ and s are trigonometric functions for the angle between A and B.

In this example, the expression is simplest in the basis of A, being identical to the

native form of eq. 8.4.1. For more complicated systems, the native form cannot be
expressed in asingle basis.

In the following material, the basis of each vector expression is a matter of concern.
The basisis indicated with a dot product with abasis dyadic, as shown in eq. 8.4.2. When
abasisis not specified, then the native form is retained.

125

Intermediate Variables

When the equations of motion are written into a Fortran program, it is intended that
each arithmetic operation be performed only once. An expression that appears more than
once is replaced with an intermediate variable, and the intermediate variable is used
subsequently. The replacement of an expression with an intermediate variable is made by
using thefunctioni nt r o- var - i f - new. Inthefollowing material, the invocation of this
function isindicated by enclosing an expression with the symbols“«” and “».” For
example, the expression « w> « b » isinterpreted as: “take the dot product as indicated, then
invokethei ntro- var - i f - newfunction.” For the above example, the result would be
an expression similar to the following:

((\TVB . <6)) - Zg 61 + Uy 52 + Zg 63 (845)

where zg and zg are intermediate variables introduced for the expressions uicp and us Sy,
respectively. All expressions developed later involving « w® « b » would include zg and
Zo, rather than uycp and uso.

Thetiming in the analysis at which intermediate variables are introduced is a so a matter
of concern. Generally, intermediate variables are introduced whenever an expression is
formulated that isused in at |east two products subsequently. (A “product” here means (1)
avector dot product, (2) avector cross product, or (3) the result of a scalar multiplication.)

After al of the equations of motion have been developed, they are processed
recursively with the i ntro-var-if-new function, to pick up any miscellaneous
opportunities to introduce intermediate variables. However, the best efficiency is obtained
by strategically introducing most of the intermediate variables as the analysis proceeds.

Initialization of Dynamics Analysis

The holonomic partial velocities and partial angular velocities are represented as arrays
of dimension n. Because nis not known until all bodies and constraint equations have
been entered by the analyst, the arrays are not formed until the system has been described
initsentirety. The analysisisthen performed by traversing the tree from the top down,
such that the parent of each body B is analyzed before dealing with B. Given the design of

126

thebody object, thisform of tree traversal is very easy to implement. (Example Lisp code
for performing the traversal was presented in Section 5.2.)

The analysis of the topology tree begins with the inertial reference, N. The two arrays
of partial velocities and partial angular velocities associated with N are each filled with n

zeros and put into the holo-wis and holo-v*is slots of the worksheet. That is,
vV =wl'=0, (=1, ..n (8.4.6)

Also, the angular velocity and angular acceleration remainder for N are set to zero:
>N _ >N
arem=wW =0 (8.4.7)
The central acceleration remainder is set to the negative acceleration due to gravity:
8em =g (8.4.8)
(If the analyst has not included gravity with the add- gr avi t y macro, then the vector g
has a value of zero.)

The analysisis broken into two steps: rotational and trandlational. It will be seen that
expressions developed for the partial central velocities of body B can include the partial
angular velocities of B, and that the expression for the central acceleration remainder can
include the angular acceleration remainder. Therefore, the rotation analysisis performed
first.

Rotation Analysis

Four cases are considered for the rotation anaysis. (1) a “generd” recursive
formulation, (2) the special case of a rotor, in which the rotational inertial properties about
the mass center can be lumped with those of the parent body, (3) planar motions, and (4)
unconstrained rotation.

Except for case 2, it is desirable to have the angular velocity and angular acceleration
remainders of B expressed in the basis of B, because products taken with the inertia dyadic
are projected into the basis of B. (See egs. 6.3.19 and 6.3.20.)

127

General Recursive Formulation

In the general recursive formulation, expressions are developed for incremental terms
that are added to expressions already developed for the parent of body B to obtain a new
expression for B.

The recursive formulations for angular velocity and acceleration will be used only when
the joint has zero or one rotational degree of freedom. Thus, the relative angular velocity of
B with respect to itsparent A is

WP = u, ¥, (8.4.9)

where uy isthe derivative of the generalized coordinate associated with the joint rotation and
i, isthe axis of rotation. The angular velocity of body B isthen

=B _ A —B

W =web + W (8.4.10)

The dot-product with b puts W’ into the basis of B. (The axis of rotation is aready in the
basisof B.) Expanding the aboveintermsof partial angular velocities gives the following:

=8 uw eb+urhy (8.4.11)
i=1
By inspection,
we=wleb+™ P (i=1,..n) (8.4.12)
where

a-p | oy fori=r|
Wi =

= i=1, .. 8.4.13
! \ 0 forilrf (=1 ..n ()

Recall the definition of the holonomic angular accel eration remainder (eg. 6.3.10):

n

al = & urddltr (8.4.14)

r=1

substituting eq. 8.4.12 into 8.4.14 yields the following:

128

arem (é Uldwl) UrcrrOt

dt at

_=A wrot
=a
ren dt

_ *A =B
arem +UW " Trot

_ A —AB
=aremt Arem

= arem *b +aem

where

Formulation for a Rotor

(8.4.15)

(8.4.16)

Body B isclassified asarotor if it has one rotational degree of freedom, and the same
moment of inertiais obtained about any direction normal to the rotation axis. In this case
the inertia dyadic was formulated using unit-vectors from the parent. Expressions dotted
with the inertia dyadic are projected into the basis of the parent. Thus, expressions for

rotation are all obtained in the basis of the parent. That is,

~B_(=A , A=B) -
w (W+W)a

—B A A—B
W (WI + Wl)'a (i=

—B —A —~AB N
Arem = (arem + arem) °a

~AB _(»A, A»B) -
rem = w)ea

(8.4.17)
(8.4.18)
(8.4.19)

(8.4.20)

where the incremental angular velocity and partial velocities are defined as before in egs.

8.4.9 and 8.4.13.

129

The above formulation is more efficient than the general recursive formulation, because
transformations to the coordinate system of B are avoided when dealing with the rotational
dynamics of B. If B has no children, the sine and cosine of the rotation angle of B relative
to A do not in appear in the equations of motion unless they are required for a
force/moment-producing element or an output variable defined by the analyst.

Planar Motions

If arigid body is constrained to planar motions, then al rotations occur about the
direction perpendicular to the plane of the motion, and the velocity vector of any point on
the body is aways parallel to the plane.

In this case, the recursive formulation for angular velocity resultsin all nonzero partial
angular velocities being identical, namely the unit-vector normal to the plane. The cross-
product in eg. 8.4.20 is aways zero, and therefore the accel eration remainder is zero. Both
of these forms are desirable, and therefore the general recursive formulation iswell suited
for introducing partial angular velocities for bodies constrained to planar motions.

Three Rotational Degrees of Freedom

A general three-dimensional angular velocity can be completely described with three
independent speeds variables. When a body has three rotational degrees of freedom
relative to its parent, then the three generalized rotational speeds can be defined to
characterize the angular velocity without reference to any other bodies.

For ground and air vehicles, rotational speeds named roll rate (p), pitch rate (q), and
yaw rate (r) are defined about three axes fixed in the body. That is, for body axes 51, 52,
and 53, and rotational velocity \TVB, the three generalized speeds are defined as

~-B — ~-B =B
Pp=w b q=w e<b, r=w- e«bs (8.4.21)
or,
- B — — —
w =pby+qgby+rbs (8.4.22)

This choice of variables leads to the simplest possible expression for angular velocity that
can be expressed in the basis of B. Also, asimple expression for angular acceleration is
obtained:

—B
~B
a b =dw

=pby+qby+rby+pw®’

dt

130

—

b1+qu

— —

=pby+qby+rbs+plpby+qby+rbs) b
+q(pby+qby+rbs) by
+r(pb1+qb2+rb3)' b3

:p61+q52+r63+pr52—pq53
—qrgl”fqus
+rgq by —rpby

= p51+q52+r53

—

. B
b, +rw

1

—

" ba

(8.4.23)

By inspecting eq. 8.4.22, we find three nonzero partial angular velocities: b1, by, and

bs. Eq. 8.4.23 indicates that the angular acceleration remainder isidenticaly zero.

ummary

Expressions developed in this analysis are stored in worksheet objects. Each body in
the system has an associated object, kept in its worksheet slot. Slots pertaining to the
rotation analysisare listed in Table 8.4.1. Slots such as w-a that include data copied from
the parent are set to the vector expressed in a basis appropriate for analyzing the current

body.

Table 8.4.1. Slots in body wor ksheet object pertaining to rotational
velocity and acceleration.

Slot Name Type Definition
w-a expr essi on | absolute angular velocity of A.
w-ab expr essi on | angular velocity of B relativeto A.
w expr essi on | absolute angular velocity of B.
holo-wis-ab array incremental holonomic partial angular velocities of B.
holo-wis array holonomic partial angular velocities of B.
alpha-ab expr essi on | incremental holonomic angular accel eration remainder
for B.
alpha-rem | expressi on | holonomic angular acceleration remainder for B.

131

The expressions used to fill the slots are shown in Table 8.4.2. The recursive
formulation is given in three forms in the table, for zero and one rotational degree of
freedom, and for the case of arotor. The nonrecursive formulation is used for bodies with
three rotational degrees of freedom. Note that replacement of expressions by intermediate
variablesis also indicated in the table.

Table 8.4.2. Formulas pertaining to rotational velocity and acceleration.

Slot Symbol 0 rotor 1 d.o.f. 3 d.o.f.
d.o.f.
—A' A - ~A . —
w-a w «W *ea» &KW *ea»ebh»
A-B ~B ~B
w-ab W Ur Irot Ur Irot
w w® w a + Py APy Uo+1 D1 + Uo+2 b2
+ Ug+3 b3
: A-B) T) T
holo-wis | “wf [¥y fori=r | [By fori=r
ab \ 0 foritlr \ 0 foritlr
holo-wis \TViB \7\/;A « \TVIAO a»+ A\Tle &« \TVf\o A»ebh » /bi-o i-0=1,2,3
A-B .
+ W, \O otherwise
—~AB ~A, A-B ~A, A-B
alpha-ab A'rem W W W W
—-B s A I A <
dpharem| ajem | arem «arem*d «apn* b 0
~AB ~AB
+ Arem » + arem »

Trandation Analysis

Four cases are considered for the trandation analysis. (1) a “genera” recursive
formulation, (2) the special case of a fixed mass, in which the mass center isin alocation
fixed in the parent body, (3) unconstrained planar trandlation, and (4) unconstrained three-
dimensional trandation.

In the remainder of this section, all mass centers refer to the composite body mass
center, stored asapoi nt inthecm-point slot of thebody.

General Recursive Formulation

In this formulation, the partial velocities and the acceleration of body B are defined
relative to corresponding termsin the parent A.

132

The absolute position of B* (the mass center of B) can be defined relative to the
position of A* (the mass center of parent A):

FB" = FA" 4 7A"Bo 4 FBoB” (8.4.24)
The derivative of this position gives the central velocity of B:

—B* _ de*
VAl
dt

_ dsz* + dsz* Bo + dszoB*
Tt dt dt

S YAt A AT g AyBe B BB BB (8.4.25)

Thefirst local velocity, AV, accounts for translational degrees of freedom of B between
the point B and Bo:

N
AyBo = é Uot ftEj; (8.4.26)
i=1
where NE is the number of translational degrees of freedom for B, 0 is a constant offset
needed to map the index of the generalized speeds to the summation index j, and ?ﬁ’ isthe
direction of thejth transdation of thejoint. The second local velocity, BvE”, is zero because
B* isfixed in the coordinate system of B. Thus, eq. 8.4.24 can be written as
* * —A * 'gth —B *
vB =vA" + W FABoy g Uo+j ?t? +w~ " BB (8.4.27)
i=1
By inspection, the partial velocities are written
VB = yA* 4 yATB (8.4.28)
where the incremental partial velocity, V"B, is defined for two cases, corresponding to
(1) speeds introduced for translational degrees of freedom of the joint of B, and (2) all
other speeds.

| e for i = o+, =1, ..NB|

. A*B*
VI TY oA, sy L OB - LB : (
\wi’? O+ W, " To al other i f

i=1,..n (8.4.29)

The holonomic central acceleration remainder was defined in eg.6.3.17 as:

133

n *
& =3 u dVd.-B (8.4.30)
o t

Combining egs. 8.4.28 and 8.4.30 yields the following:

n A* n A*B*
%B* [o] d—> o d—>

i=1 i=1
n A* B*
= Srem + é Uj dvldt
i=1
= &em + e (8.4.31)

where theincremental central acceleration remainder, 8, is defined as:

n A*B*
S A*B* _ o dV
Gem —aA U——
- dt
i=1
n B
_ 8 A, _A*B —=B ., QBB) d?t'
=3 u d(wf B P B +a Uo+j71
e dt dt
i=1 i=1
A L ~AL ~B . . ~B, _
=arem Y EO+W T VAP gy TBET 4w BB
NE,
o .(%A, %B)
+aA Uoj \W ry
i=1
A x SA, | >A e
= arem’ AR w A BO"'a Uo+j rtJ
i=1
~B « =B, (~B e ~A
+ Qrem [l i (W ’ ?BOB)"'a u0+J(’ ?5’)
i=1
SA L SAL (SAL L ~B .,
= afm” B WA (WA FAB) 4 B, pB
B B e A
e , e s * e -, —|
P (wh BB)+ 2a Uos (w rt']?’)
i=1
Knowing that
arern, ?+W, (W, ?):{arem, b+W, (W, b)}‘? (8433)

134

adyadic isdefined to clarify the recursion inherent in eq. 8.4.32,

“ B .y ,>B. (B, ¥
a8 =apm’ b+w’ (WP b) (8.4.34)
Then, eg. 8.4.32 can be expressed more simply, as
N
R - W T (8435

i=1
Recall that the effect of a uniform gravitational field is accounted for by subtracting the
acceleration due to gravity from the acceleration remainder. Due to the recursive nature of
8.4.31, the acceleration remainder for B will properly include the effect of gravity if it was
included in the acceleration remainder of A. Thus, it isonly necessary to explicitly subtract
the gravity acceleration term (1) in the acc-rem slot of the body of the inertia reference,
and (2) in the acc-rem dot for bodies that are nonrecursive in transation.

Upon inspecting egs. 6.3.19 and 6.3.20, showing the uses made of the partial central
velocities and central acceleration remainder, we see that expressions appearing in the
dynamical equationsthat are contributed from the analysis of body B are (1) the dot
products of the partid velocities with each other, (2) the dot products of the partial
velocities with the acceleration remainder, and (3) the dot products of the partial velocities
with forces acting on B. The termsin the partial velocities and accel eration remainders
occur naturally in the bases of A and B. Dot products of vectors are simplest if the vectors
are both expressed in the same basis, and therefore the partial velocities and acceleration
remainders are converted to the basis of B after they are formulated.

Thereis a special casein which simpler expressions are obtained when the partial
velocities are not expressed in the basis of B. This occurs when both V8" and v*'B” are
zero. Inthis case, the two partial velocitiesVE™ and VP are identical to the corresponding
partial velocities of the parent. Also, their dot product is the same as the one obtained for
the parent. Obviously, it is more efficient in the simulation code to use an existing dot
product as opposed to computing a new one. (Generaly, incremental partid central
velocities are zero when the corresponding generalized speed was introduced to account for

atrandational degree of freedomin ajoint.)

135

To locate partial velocities that are unchanged from the unfixed parent, aslot in the
body isset to an array of length n that contains bodies in which the partial velocities were

last changed.

Formulation for a Fixed Mass

When the center of mass of body B isfixed in the coordinate system of the parent (i.e.,
therecursive-t dot is set to the symbol f i xed), then the mass was lumped with that of the
parent. When the dynamica equations are formulated, the mass used for B is zero.
Therefore, partial central velocities and the acceleration remainder are not needed to form
the dynamical equations. However, the recursive formulation presented above requires that
these terms be defined for the parent body, even if the parent is classified asbeing f i xed.
Therefore, the general recursive analysisis applied to afixed body if it has children. If the
body does not have children, the partial velocities and acceleration remainder are set to
zero.

One change in the above formulation is made when the either the body or the parent is
fixed. That is, the point used for the mass center isthe origin. Thisis done so that the
position vector r5E” jsidentically zero.

Planar Motions

In general, expressions for the position, velocity, and acceleration of the center of mass
of a body undergoing planar motions involve both directions in the coordinate system of
the plane. If the body has two trandational degrees of freedom, a nonrecursive formulation
is used so that the central velocity and central acceleration are formulated only in terms of
the two new speeds. If the body has zero or one tranglational degree of freedom, it is not
possible to develop expressions for central acceleration that do not involve the velocity and
angular velocity of the parent body. Thus, the above recursive formulation is used when
the body has zero or one trandational degree of freedom.

There are two obvious choices for defining speeds when the body has two trand ational
degrees of freedom: (1) use body-based directions, or (2) use inertial directions. First,
consider the body-based option. The speeds are defined as:

u=v® b v=vB b, (8.4.36)

or,

Vo =ubi+vhb; (8.4.37)

There are but two nonzero partial velocities here: El and 62. The central acceleration
remainder is

. & B*
Bem = q Uidvdlt -9
=1
_ doy , dby
Wat TVoar 9

=w VT -g (8.4.38)

(Note that acceleration due to gravity is added to the acceleration remainder when a
nonrecursive formulation is used.)

Next, consider speeds defined for the inertial reference:
U = VB e riy U = VB e i, (8.4.39)
or,

VB = Uy My + up i (8.4.40)

Here, the two nonzero partiad velocities are n; and n,. The centra acceleration
remainder isg:

n B*
—=B* — [¢] dV| =
i=1
= na @_%
Uty ot Ut2 ot g
=g (8.4.41)

On the basis of simplifying the central acceleration remainder, the choice of inertial
directions is better than body-fixed directions. However, for vehicle systems, there are
often advantages in defining speeds using body-based directions. For one thing, forces
and moments acting on a vehicle are usually directed relative to the body-based coordinate
system. Thus, the dot-products between active forces and partial velocities are simpler
when the partial velocities are fixed relative to the body. Another consideration is that

137

constraints are commonly applied that are most naturally described using body-fixed
directions. For example, forward speed is often set to a constant. Therefore, body-fixed
directions are used in this work.

When a body has two translational degrees of freedom and is constrained to planar
motions, therecursive-t dotisset to NI L. The directions of the trandational speeds are the
two unit-vectors of the body that are not the rotation axis for its one rotational degree of
freedom. Those two unit-vectors were put in alist assigned to the slot trandational-speed-
directions at the time the body was added.

Three Degrees of Freedomin Trandation

If body B has three translational degrees of freedom, then generalized speeds can be
introduced so that the velocity and accel eration of the center of mass depend only on those
speeds. As before (for the planar system, with a body with two translational degrees of
freedom), the generalized speeds can be defined relative to body-based directions or inertial
directions. Again, because ground vehicles are the type of multibody system being
considered, body-based directions are preferred. The speeds are defined as:

u= VB* * Bl V= VB*° 62 W= VB*° 63 (8.4.42)
or, conversely

V¥ =uby +vby+whbs (8.4.43)

The central acceleration remainder is
g & B
dem=a Uidvdlt -9

i=1

do; , by, dbs o

=Yt at a 9

—

B, i~ =B, o> =B,
=uw “by+tvw " by+ww " bz-—g

=w Ve -g (8.4.44)

138

Summary

Aswith the rotation analysis, results of the trandation analysis are kept in aworksheet
object. Slots pertaining to the trandation analysis are listed in Table 8.4.3. The
expressions used to fill the slots are shown in Table 8.4.4. Note that the conversion to the
basis of the current body B is performed by dotting expressions with the basis dyadic, b,
as was done for the rotational expressions. For the partial central velocities, the same
approach is taken, namely, that partial velocities of A are dotted with b and added to the
incremental expressions to get the partial velocities of B. However, for the acceleration
remainder, the incremental expression ane is most conveniently left in a mixed basis,
involving unit vectors from both A and B. Only after the full acceleration remainder for B

isobtained (8&,,,) isis the conversion made to the basis of B.

Table 8.4.3. Slotsin body worksheet object pertaining to translational
velocity and acceleration.

Slot Name Type Definition
acc-ab expr essi on | incremental holonomic central acceleration remainder
for B.

acc-dyadic | expression |dyadic with rotational component of incremental
acceleration remainder.

acc-rem expr essi on | holonomic central acceleration remainder for B.

holo-v*is array holonomic partial central velocities of B.
holo-v*is-ab array incremental holonomic partial central velocities of B.
holo-v-bodies array bodies in which corresponding holonomic partial

velocities were last modified.

ra*b0 expr essi on | position vector going from A* to By.

Form Dynamical Equations

Once the terms in Tables 8.4.2 and 8.4.4 are obtained for al bodies, it is
straightforward to finish the analysis to obtain the dynamical equations. Specifically, the
following steps are taken for each body B:

1. The constraint coefficients, derived in Section 8.3, are combined with the
holonomic partia velocities (angular and central) and acceleration remainders
(angular and central) to define the nonholonomic partial velocities and

139

Table 8.4.4. Formulas pertaining to translational velocity and acceleration.

Slot Symbol nonrecursive recursive
ra*b0 FA"Be « A By,
\TVB « \TVB‘B » « \X/B‘ (6 »
VA'B" r§ fori=o+,j=1,..Ng
holo-v*is-ab « VviAoﬁ»' FA*Bo .
-B - . Otherwise
\ +«WiB-b»' BB
. o B* iis GA* L GA*B*) R
holo-v*is Vi I 5 trandation «(VI + Vi) eh»
\ I-0 d.o.f. of B
0 otherwise
. =B =B =), < >B <), <>
acc-dyadic Srot «(arem-b) b «(arem-b) b
+w (Q@B ’ Eﬂ » +wS (Q@B Eﬂ »
_A*R* <A =A*B <=B ~=BB*
acc-ab ahne ot Tt aorer’
o
+2Q Uosj («W ead»’ ?E’)
i=1
2B -, & g ZA* L =A*BY) 1
acc-rem - < «Q VB » «(arem + Bram) *b»

i=1
_g) .E)}

Note: If B isfixed, theorigin (Bg) isused for B*. If A isfixed, the origin (Ag) is used
for A*

nonholonomic acceleration remainders (angular and central). The equations from
Sections 6.2 and 6.3 are repeated here for reference:

n
o

=B - N
W=we+ a Agwe (r=1,..p) (8.4.45)
sp+l
~B* * Cr)] *
Vi =V + a AgVE (r=1,..p) (8.4.46)
sp+l
=B _-p & -B
Arem = 8remt+ A Ws Gs (8.4.47)

s=p+1

140

n
=B* —~B* —B*
dem = rem T é. Vs Cs (8.4.48)

s=p+1

2. The mass matrix is formed:

. =B* =B*
all %odlas ~B .g+ ~B Ivj e «Vi mMmB»
Mi= @ [w e« ewi»ei o or (8.4.49)
B =B* =B*
«Vj eV »mB

Two drategies are shown above for introducing intermediate variables for the
second term, depending on the bodies referenced in the nonhol o-v-bodies slot of B.
If either of the bodiesis B, indicating that the partial velocitieﬁﬁB* or ﬁB* forBis
different than the corresponding partial velocity for A, than the upper strategy is
taken. However, if both bodies from the nonholo-v-bodies slot are not B, then the
dot product of the two partial velocities was used when processing the parent. The
lower strategy causes the dot product obtained before to be used again. Note that
the caret symbol “~" appears over the partia velocities, indicating that they are taken
from the body in which they were introduced.

3. Theforcearray isformed:

N1 _ B
o =B| =B (- _ogr —p, -pr -—B| =B
dlbodies [<| @ Tt |»*W — «l@emel™ +W " |7 ew [»ew
f = é t=1
o N -

B + OBF =B =B* _p* ~B* B (8450)

«la Ff [»*Vi —dem*«V]; mB»
f=1

The summation of moments is performed by going through the list of all mronent
objects in the system, inspecting the bodyl and body2 slots to see if either contains
B. If B isinthe bodyl slot, the moment is applied with a positive magnitude. If B
isin the body2 slot, the moment is applied with a negative magnitude. The same
thing is done with alist of all forcesin the system. However, if B matches one of
thedotsin thef or ce object, the force is accounted for (1) in translation by direct
inclusion in the force summation, and (2) in rotation, by taking the moment of the
force about the mass center of B, defined as

L e -
T=r F (8.4.51)

141

where T is the torque of the moment couple, r2F is a position vector going from
the mass center of B to the poi nt from the pointl slot of thef or ce object, and F
isthe product of the magnitude (from the exp slot) and the direction (from the dir
slot) of the force, with the appropriate sign (positive if B wasin the bodyl slot,
negative if B wasin the body2 slot.) Note that the partial velocity dotted with the
applied forcesis expressed in its original basis (as indicated with the caret), which
is either B or abody up the tree from B.

After traversing the tree and performing the above three tasks, a complete set of implicit
dynamical equations exists of the form

Mu=f (8.4.52)

The symbolic method presented in Chapter 7 is used to uncouple these equations.

8.5 Write Fortran Program

Upon completion of the analysis of the multibody system, the equations of motion are
stored in severa eqs objects. The variables that will appear in smulation code are
contained in decl ar at i on objects. (Eachdecl ar at i on contains (1) alist of variable
names, (2) adatatype such as REAL or INTEGER, and (3) a subroutine in the simulation
code that will be written such as DIFEQN or OUTPUT in which the variables are used.)
Asbodies, forces, constraint equations, auxiliary subroutines, and output variables were
entered by the analyst, the arguments were scanned and al symbols contained in
expressions were added to alist assigned to a Lisp globa variable. Thus, al of the
information needed to write a complete simulation codeis available.

Before the program is written, the equations are inspected to determine which variables
and parameters are actually needed to compute (1) derivativesin the equations of motion,
and (2) output variables. First, all symbols (synsand i ndexed- syns) pertaining to the
multibody system are “hidden” by setting the hide slot to the value 0. Then, the
val i dat e- exp function defined in Section 5.4 is applied to (1) the output variables, (2)
the arguments of external subroutines introduced by the analyst, (3) derivatives of the
generalized coordinates, and (4) derivatives of the independent speeds. Through recursion,
val | dat e- exp encounters every expression that contributes to the above four groups of
values that must be computed in the ssimulation code. Whenval i dat e- exp encountersa
symor i ndexed- sym it incrementsthe valuein the hideslot. All symbols with avalue
of zero in the hide dot were not needed, and will not be included in the Fortran program.

142

Next, the equations are inspected recursively a second time, to search for intermediate
variables that are used but once. These are i ndexed- symobjects with the symbol slot
set to “Z” and the hide slot set to 1. When such an object is encountered, the expression
containing the i ndexed- sym is modified. The i ndexed-sym is expanded by
replacing it with the expression it originally replaced. (That expression is obtained fromits
exp slot.) Also, the hidedlot of thei ndexed- symis set to zero, so that it will not appear
in the Fortran program. This expansion process is also recursive, to ensure that all “Z”
inermediate variables that appear only once are removed.

After the above analysis of the program code, the equations of motion for the multibody
system are stored such that only expressions that are proven to be necessary are printed.

Thelist of symbolsisinspected. A sym isidentified asarequired parameter if its hide
dotsis not zero and the const-or-var dot is set to the symbol const .

The above vdidation and expansion activities are performed automaticaly upon
completion of the dynamics analysis. The analyst can then view the equations of motion,
the required parameters, and the constants that are precomputed. To generate a simulation
code, the function wr i t e- si misinvoked. This function generates a completely self-
contained Fortran program whose general design was presented in Chapter 4. It generates
source code by four techniques:

1. conventional “write” statements are used to print strings containing lines of source
code (inLisp, thef or mat function is used),

2. special write functions are used to print commonly occuring statements, such as
comments, subroutine declarations, and END statements,

3. dataobjectsthat represent smulation code (e.g., eqs and decl ar at i on objects)
are smply printed, and

4. exigting text files are merged into the source code. About 600 lines of code, spread
over nineteen files, are copied into the appropriate parts of the simulation code
generated by AUTOSIM. Thesefiles are commonly called “include files.”

Appendices B and C contain simulation codes generated by AUTOSIM, which can be
studied by the interested reader.

143

Although the simulation code is presently generated in the Fortran language, the same
basic method would be used to generate code in other languages, such as C, ADA,
ADSIM, etc. To generate code in adifferent target language, it is necessary to change the
above four techniques as follows:

1.

the strings printed by Lisp f or mat statements must be changed to equivalent
statements in the new target language,

the special write functions must be extended to print analogous statements in the
target language (for example, the functionwr i t e- comment would be modified to
precede each line with the comment character of the target language, rather than the
letter “C” asisdonein Fortran),

the print functions for the AUTOSIM data objects must be modified so that the
objects are printed in the syntax of the target language, and

text files corresponding to the existing Fortran “include files” must be written in the
target language.

The bulk of the simulation code is generated by the second and third techniques. Thus,
most of the ssimulation code can be generated in a different language just by changing afew
selected print functions.

8.6 Summary

The entire analysis of the multibody system is performed in the five steps that have just
been detailed. The process is now summarized to put into perspective the procedures and
rules that have been presented.

1

Describe System. The analyst describes the objects comprising the multibody
system using asmall set of AUTOSIM macros. As each rigid body isintroduced
by the analyst, a body object is automatically created and the following steps are
performed:

a. symbolsare created for generalized coordinates and speeds.
b. acoordinate system with three unit-vectors is defined for the body.

c. adirection cosine matrix is generated (egs. 8.1.4 — 8.1.11).

144

d. thebody isclassified for rotational analyses as (i) nonrecursive if it has
three rotational degrees of freedom, (ii) arotor if it satisfies critera described
in Section 8.1, or (iii) general recursivein al other cases.

e. thebody isclassified for translational analyses as (i) nonrecursive if it has
three trandational degrees of freedom, or two trandational degrees of
freedom and eg. 8.1.13 is satisfied, (ii) “fixed” if the (composite) massis
fixed in the coordinate system of the parent, or (iii) genera recursivein all
other cases.

f. an analysis is conducted to create “composite bodies’ that include the
masses of bodies classified as “fixed masses.” In thisanalysis, theinertia
dyadic, the (composite) mass, and the (composite) mass center of each body
“up” the tree from the new body is established (egs. 8.1.14 — 8.1.18).

g. anexpressionisderived for the rotational velocity of the body (eg. 8.1.19).

h. an expression is derived for the absolute velocity of the origin (eg. 8.1.20).
Because the speeds are sometimes defined relative to the mass centers,
which were possibly modified in step (f), thisanalysisis re-applied to every
body in the system.

Points of interest on rigid bodies are identified by the analyst, and corresponding
poi nt objectsare created by theadd- poi nt macro.

Active forces and moments are described, and corresponding f or ce and nonent
objects are created. A gravitational field can be defined. (Gravity is added at this
stage smply by setting aglobal called * accel er at i on- due-to-gravity*.)

Additional equations are generated for nonholonomic constraints and closed
kinematical loops using the add- const r ai nt and no- novenment macros. As
each constraint is added, the state variables are searched for the “best” independent
variable to eliminate and one is selected automatically. An expression isderived to
replace the selected variable. Speeds are usually converted from “independent” to
“nonholonomic” categories. Coordinates are usually converted from “independent”
to “computed” categories. Details are provided at the beginning of Section 8.3
(egs. 8.3.1 through 8.3.6, and egs. 8.3.13 through 8.3.16).

145

Output variables, auxiliary variables, and external subroutines are also described by
the analyst. A system of units can be selected, and default numerical values can be
provided for any parameters that appear in expressions.

Kinematical Analysis. After the system has been specified, implicit kinematical
equations are formed (egs. 8.2.1 through 8.2.12). They are solved symbolically to
obtain explicit expressions for the derivatives of the generalized coordinates (egs.
7.1.5through 7.1.9). The explicit equations are put into aneqs structure.

Constraint Analysis. Three sets of scalar coefficients are derived from expressions
formulated for the nonholonomic speedsin step 1 (egs. 8.3.7 and 8.3.8).

Dynamics Analysis. Terms needed for Kane' s equations are formulated and kept in
worksheet objects associated with each body. The following steps are performed:

a. anarray of n holonomic partial angular velocitiesis formed for each body.
The elements are defined according to the formulationsin Table 8.4.2.

b. the holonomic angular acceleration remainder isformed, again according to
the formulationsin Table 8.4.2.

c. anarray of n holonomic partial central velocitiesisformed for each body.
The elements are defined according to the formulations in Table 8.4.4.
Also, an array of “native” bodiesis defined that is used to determine the
body in which the partial velocity was last changed.

d. theholonomic central acceleration remainder is formed according to the
formulationsin Table 8.4.4.

e. the nonholonomic partid angular and centrd velocities, and the
nonholonomic angular and central acceleration remainders are formulated
(egs. 8.4.45 through 8.4.48).

f. themassmatrix isformed (eg. 8.4.49)

g. theforcesand moments acting on each body are added, and terms involving
the acceeration remainders are subtracted. The results are dotted with
partial velocitiesto form the force array (eg. 8.4.50)

h. the mass matrix is inspected for zeros, and the independent speeds are
ordered. The mass matrix, the force array, and the independent speeds are
permuted as described in Section 7.2. Then, the simultaneous equations are

146

solved symbolically to obtain explicit expressions for the derivatives of the
independent speeds (egs. 7.1.5 through 7.1.9). The explicit equations are
put into an eqs structure.

Write Fortran Program. The equations are inspected to determine the parameters
needed to describe the system. Also, eqs objects with the equations of motion are
manipulated as described in Section 5.3 and 8.5 to remove unnecessary code.
Finally, a complete simulation code is written in Fortran that (1) reads input
parameters, (2) simulates the multibody system, and (3) generates an output file
with predicted time histories of output variables. The equations of motions are
written into the simulation code by printing the eqs structures with the kinematical
and dynamical equations.

9. EXAMPLES

This Chapter presents analyses of six multibody systemsto illustrate how the methods
developed in Chapters 5 through 8 are applied using the AUTOSIM software. Also,
several of the examples were used to help validate the correctness of the equations and to
compare the numerical efficiency of the equations generated by AUTOSIM with equations
obtained by other methods.

The first three examples cover three types of forces and constraints. Section 9.1
discusses athree-dimensional vehicle handling model, consisting of two rigid bodies and
forces and moments due to gravity, tires, and the vehicle suspension. Thissystemisa
simple example of the sort of ground vehicle model that motivated thiswork, and it is
described in great detail. Section 9.2 presents the analysis of a system subject to extensive
nonholonomic constraints. It is acart whose wheels are subject to the constraints of no-
rolling and no-slip. Section 9.3 illustrates how a closed kinematical loop istreated for a
system similar to an automotive suspension. It isafour-bar linkage and a strut spring-
damper element. These three examples are systems that have been analyzed before, either
by hand or through the use of generalized numerical simulation codes. Prior to thiswork,
however, such analyses have not been possible with automated symbolic multibody
programs.

Three other examples are included for systems that can also be analyzed by existing
symbolic multibody programs, and have been. They are provided to compare the
efficiency of the simulation code generated by AUTOSIM with codes generated by alternate
methods. Two of these are spacecraft vehicles and the third is arobot manipulator.

Each section is organized as follows: first, the model is described. Second, the
AUTOSIM inputs necessary to obtain a simulation code are presented. Third, results are
shown, in the form of time history plots and summaries of the computation needed to solve
the equations of mation. Finally, selected portions of the analysis are presented to illustrate
the methods devel oped in previous chapters.

A short summary of the AUTOSIM commandsis provided in Appendix A. It may be
helpful in understanding the AUTOSIM inputs that are listed in the examples. Also,

147

148

complete Fortran listings for the systems discussed in sections 9.1 and 9.3 are provided in
Appendices B and C.

9.1. Passenger Car Handling M odel

The model developed here has been used for over 30 yearsto simulate automobile
handling response to driver steer inputs. Although the model isrelatively simple, it has
been shown to predict steering responses that closely match measurements from the test
track [114]. For this example, the objective of the simulation isto obtain time histories of
the yaw rate and the lateral acceleration of the body mass center in response to a step
change in the steer angle of the front wheels.

The Vehicle Modd

When driving an automobile on a smooth surface at a constant speed, motions of the
sprung mass (the vehicle body) can be described fairly completely with a “roll axis’
concept. Both the front and rear suspensions possess a suspension roll axis, defined as the
axis about which the unsprung mass rotates when it is subjected to a torque about a
longitudinal axis. Further, aroll center for the suspension is defined as the intersection of
the suspension roll axis with the vertical plane through the centers of the two wheels on
either side of the car. Finally, avehicleroll axisis defined by connecting the roll centers of
the front and rear suspension. A side force applied to the body of the car along the roll axis
causes no body roll. When the sprung mass is subjected to a side force that does not pass
through theroll axis, it rolls about that axis. This concept isillustrated in Figure 9.1.1.

— T
- -._.@}er N

Figure 9.1.1. Roll axisin a passenger car.

Vehicles with rear axles and independent front suspensions generally have roll axes that
run approximately through the center of the rear axle (afoot or so above the ground), and
through a point near the ground at the mid-point of the front wheels. That is, the roll axis
istilted dightly down going from the rear to the front.

149

With aroll-axis model, all of the suspension properties are lumped into just a few
parameters, namely,

1. inclination angle of theroll axis (determined by link lengths and locations),

2. torsiona stiffness that resists roll of the sprung mass relative to the wheels
(determined by suspension spring elements and their |ocations), and

3. torsional damping of roll motions (determined by shock absorber elements, friction
elements, and the locations of such elements).

The above parameters can be computed from a detailed description of the suspension
kinematics and the locations of the springs and dampers. Alternatively, they are often
measured directly with special |aboratory facilities that permit the “ground” to be rolled with
respect to the vehicle body [133].

This vehicle model includes two rigid bodies: a sprung mass and an unsprung mass.
The sprung mass includes the vehicle body and drive train, portions of the suspensions,
and a portion of the front wheels. The unsprung mass includes the rear wheels, portions of
the rear suspension, and portions of the front suspension and front wheels.

The vehicle responds to forces and moments generated by deforming thetires. Thetire
deformation is characterized by two variables: dip angle (a) and inclination angle (g), also
called camber. Both are shown in Figure 9.1.2 based on definitions established by the
Society of Automotive Engineers (SAE) [1]

A simpletire model, valid for small deflections that occur under normal highway
driving, defines side force (Fy) and aligning moment (M) as follows:
Fyt = Caras+ Cgt % Fyr=Carar (9.1.1)
Mzt = Cmt af Mz =Cmrar (9.1.2)

In the above equations, the subscripts f and r indicate front and rear tires, and the
coefficients (Caf, Cgt, €tc.) are summed for two tires on the left- and right-hand sides of
the vehicle. No camber effect is shown for the rear, because the camber is negligible for a
vehicle with asolid rear axle. The slip angle at the front includes a steer angle that is the
“input” control to the system. The dlip angle at the rear includes a steer proportional to the
vehicle roll, as defined by a linear “roll-steer” coefficient determined by suspension
kinematics. Similarly, the camber angle at the front is proportional to the vehicleroll, with
a*“camber roll coefficient” also determined by suspension kinematics.

150

W— Spin Velocity, g — Inclination Angle
T — Whed Torque

4.)

NS
D5, -
s

—

Z',Normal Force—F,

Figure 9.1.2. Tire geometry.

Gravity acts on the sprung mass, causing an overturning moment due to the lateral
movement of the mass center when the sprung mass rolls. A restoring moment is
generated by the suspension springs about the roll axis. Roll motions are damped by the
shock absorbers, which aso apply a moment about the roll axis.

The vehicle model concept has now been developed. To generate a simulation code,
this concept is described to the AUTOSIM program so the appropriate data objects are
created to represent the system in the computer.

AUTOSIM Inputs

The description of the system in this case includes both (1) the multibody system, and
(2) the specific output variables of interest.

151

The Multibody System

This multibody system is comprised of three bodies: the inertial reference N, a non-
rolling body NRB, and arolling body RB. Points and coordinate systems for the system
areindicated in Figure 9.1.3. The coordinate system of the inertial reference hasits origin
in the plane of the road, with axes defined according to the SAE convention [1]. The X, Y,
and Z axis directions are defined by the unit-vectors [nl1], [n2], and [n3], where the unit-
vector [n3] points downt.

Center of mass of NRB
and origin of RB >

A

origin of N

1 .
. Point "FRONT"
3\ Origin of NRB Fy/ fixed in NRB
Mz2 Y vz

}ﬂ L |

Figure 9.1.3. Points and dimensions for example vehicle model.

A direct description of the model is provided asan AUTOSIM input in Figure 9.1.4.
Thelisting in this figure will be discussed at length over the next several pages.

Each input in the figureisaLisp “form,” following the rules and syntax of Lisp, as
summarized in Appendix A.

At the start of an AUTOSIM analysis session, the multibody system is composed of a
single body object N, theinertial reference, and asingle poi nt o, the origin of the
coordinate system of N. Theinputsin the figure “build” the computer representation of the
multibody system, adding one component at a time with macros such as add- body,
add- poi nt, add- I i ne-f or ce, and add- nonent .

11n AUTOSIM unit-vectors are written enclosed with square brackets.

152

(add-body nrb :nanme "non-rolling body"
;translate (1 2)
‘parent-rotation-axis 3
:cmcoordinates #0 0 !"-hra"))

(add-body rb :parent nrb :name "rolling body"
:body-rotation-axes 1
cparent-rotation-axis #(!"cos(thetar)" 0 !"sin(thetar)")
;joint-coordinates #(0 0 !"-hra")
:cmcoordinates #(ce 0 !"-h")
sinertia-matrix #2a((I1xx 0 1xz)
(0 lyy 0
(Ixz 0 lzzr)))

(add-constraint !"dot(vel (nrb0),[nrbl]) - speed")

(add-point front :name "front axle point’
:body nrb
:coordinates #(L 0 0))

(setf roll !"angle([nrb2],[rb2],[rbl])")
(setf alphaf !"angle([nrbl], vel(front), [nrb3]) - steer")
(setf alphar !'"angl e([nrbl], vel(nrb0), [nrb3]) - krs2 * #roll")

(add- gravity)

(add-l1ine-force fyl :name "Side force, front axle"
:magni tude ! "CAL * #al phaf + OGL * CCCEF1 * #rol | "
:pointl front
:direction [nrb2])

(add-line-force fy2 :nanme "Side force, rear axle"
:magni tude !"CA2 * #al phar"
cpointl nrbO :direction [nrb2])

(add-morrent nzl :name "Aigning norment, front axle"
:direction [n3]
:magni tude !'"CAML * #al phaf" : bodyl nrb)

(add-rmorrent nz2 :nane "Aligning nonent, rear axle"
:direction [n3]
:magni tude !'"CAMR * #al phar” :bodyl nrb)

(add-rmonent rol I m:name "roll nonent from suspension”
cdirection [rb1]
: magni t ude
I"-Kroll * #roll - Coll* dot([nrbl], (rot(rb) - rot(nrb)))"
:bodyl rb :body2 nrb)

Figure 9.1.4. Description of car model in AUTOSIM.

Thefirstadd- body macro in Figure 9.1.4 describes several attributes of the first body
added to the system. The arguments to the macro have the following meanings: (1) the
symbol for the new body is NRB, (2) a more descriptive name to use in documentation is
“non-rolling body,” (3) NRB has two trandational degrees of freedom relative to the

153

inertial reference, in the directions of axes 1 and 2 ([n1] and [n2]), (4) NRB hasasingle
rotational degree of freedom about axis 3 ([n3]), and (5) the center of mass of NRB isa
distance HRA above the ground. Default values are set for arguments not specified. For
example, the parent body is set to N, as an alternative was not indicated. (Default values
for al optional arguments are listed in Appendix A.)

Because the SAE axis convention specifies the Z axis ([n3]) pointing down,
coordinates for heights above the ground are entered as negative expressions. Thisis not
mandatory, but is done here so that the user of the simulation code will specify positive
numbers for al dimensions. Expressions that are more complex than numbers or symbols
are entered using a convention called the F-string. An F-string is an exclamation mark
followed by a string containing a Fortran-style expression. (More information about the
syntax is provided in Appendix A.) The negative symbol is an expression (a product of -1
and the symbol hr a), and therefore an F-string was used in the add- body macro.

The second add- body macro in the input names the new body RB. Further, it
indicates that (1) NRB is the parent body, (2) the descriptive name of RB is“rolling body,”
(3) thereisasingle rotational degree of freedom, aligned with axis 1 of the coordinate
system of RB, [rbl], (4) the rotation axisis oriented in the direction whose coordinates (in
the frame of the parent NRB) are (COS(THETAR), O, SIN(THETAR)) (that is, the vehicle
roll axisisinclined down from axis 1 by an angle “THETAR” towards axis 3), (5) the
origin of the coordinate system of RB is located at coordinates (0, 0, —HRA) in the
coordinate system of NRB, (6) the center of massislocated at coordinates (CE, 0, —H) in
the coordinate system of RB, and (7) the inertiamatrix for RB is

IXX 0 IXZ
O Iyy O
IXZ 0 IZZR..

(The symbol for yaw inertia, IZZR, includes the letter ‘R’ to indicate that it appliesto the
rolling body.)

The macro add- const r ai nt isused to specify that the forward speed is constant.
Although we will see later that it is easy to find the name of the variable introduced by
AUTOSIM for the forward speed, it is not necessary to have this information to specify the
constraint. In theinput, the velocity of the origin of body NRB is obtained with the
functionvel (nrb0). Theforward component is obtained by dotting the velocity with
the forward direction of the vehicle, [nrbl], with the expression

154

dot (vel (nrb0), [nrbl]). The macro add- constrai nt requiresan expression
that is constrained to be zero. Thus, the relationship

dot (vel (nrb0),[nrbl]) = speed (9.1.3)

isexpressed in the form
O = dot(vel (nrb0),[nrbl]) - speed (9.1.9)

for use with theadd- const r ai nt macro.

The macro add- poi nt isused to defineapoint called f r ont at which the front tire
forceisapplied. (SeeFigure9.1.3)

Lisp symbols are used to store expressions devel oped for the roll angle (r ol 1) and the
slip angles for the front and rear axle centers (al phaf and al phar). The Lisp macro
set f isused to assign expressions to the symbols, and the expressions are used in
subsequent macros by preceding the symbol name with the character ‘# (see Appendix A
for details of the syntax). That is, when “#r ol | ” appearsin an expression, it indicates
that we want to include the expression assigned to the Lisp symbol r ol | rather than a
parameter calledr ol | .

The front slip angle is defined as the angle between the velocity of a point where the
wheel plane intersects the ground, and the angle of the wheel (see Figure 9.1.2). For this
example, the angle between the velocity of a point and the forward direction of the vehicle
is obtained with the angl e function, and the steer angle of the wheel relative to the body is
subtracted from that.

Themacro add- gr avi t y applies agravitational force to al bodies that can move in
the direction of the constant gravitational field, [n3] . (Thisdirection is the default, but
can be replaced for systems that do not follow the SAE convention.)

Themacrosadd- | i ne-f or ce and add- nonment are used to definetire forces and
moments. Thefirst add- | i ne- f or ce macro defines how a side force from the two
front tiresis generated and applied to the vehicle. The macro indicatesthat: (1) theforceis
caled FY 1, (2) the name is“Side force, front axle,” (3) the magnitude of the force is
specified with an F-string that closely matches the definition from eq. 9.1.1, (4) the line of
action passes through the point f r ont and acts on the body associated with that point, and
(5) the direction of the forceis[nrb2]. Because a second point was not provided as an
optional argument, the force is assumed to act from N. Note that the F-string for the
magnitude refersto the Lisp variablesal phaf andr ol |, defined above.

155

Thesecondadd- | i ne-f or ce addsthe side force at the rear axle and is very similar
informto thefirst add- | i ne- f or ce macro.

Thefirst add- nonment macro indicates that (1) the moment is called MZ1, (2) the
nameis“Aligning moment, front axle,” (3) the moment is applied about the direction [n3]?,
(4) the amplitude of the moment is the expression from eg. 9.1.2, and (5) the moment is
applied to body NRB. Because the optiona second body is not mentioned, the default N is
assumed. The second add- nonent macro isvery similar to thefirst.

Thethird add- nonment macro applies a sum of the moments generated by all of the
suspension springs and dampers about the roll axis. Because this moment acts between
two bodies, an optional argument is used to specify that the second body is NRB. Note
that the expression for the amplitude includes a dot product written as: “dot ([nr b1],
(rot(rb) - rot(nrb)).” Thissubexpression, which gives the rotation rate, might
be written in conventional vector notation as.

—RB %NRB)

by « (W —w (9.1.5)

The description of the multibody system is now compl ete.

Small Terms

The formulation developed above for this vehicle model makes no use of engineering
judgements regarding the significance of various termsin the equations. It will be shown
later that the equations are much more complicated than they need to be, because some of
the terms are always negligible. That is, terms caused by the nonlinearities contribute no
insight to the system, nor do they improve the fidelity of the model. Given that asimple
linear tire model is used, the vehicle model is valid only for moderate steering inputs,
resulting in lateral acceleration levels of 0.3 g'sor less. Also, we are interested mainly in
highway speeds. This means that the contribution of the forward speed to the velocities of
points in the system is much greater than contributions from any other speed variables,
such as lateral speed, yaw rate, or roll rate. In other words, the yaw rate and latera
velocity are “small” with respect to the forward speed, even thought the yaw angle and X

1 One could also identify the vertical direction as [nrb3]. When a direction is used to define axes of
more than one coordinate system (e.g., N and NRB), AUTOSIM recognizes aternate names for the
associated uv.

156

and Y position variables are not small. Theroll angleislimited to afew degrees, whichis
also “small.”

Figure 9.1.5 shows how the input is modified to declare that the above variables are
“small.” When the rolling body is added, an additional keyword is used to specify that the
rotational degree of freedom involves asmall angle. Thisinstructs AUTOSIM to declare
the associated generalized coordinate and generalized speed variables as small. Also, an
additional input is used to declare that the yaw rate and the side velocity are small. The
declaration is made this way, rather than with optional keywordsin add- body (aswas
done for the roll angle), because the yaw angle is not small, nor is the generalized
coordinate associated with the Y -position of the vehicle.

(add-body rb :parent nrb :name "rolling body"
:body-rotation-axes 1
sparent-rotation-axis #(!"cos(thetar)" O !"sin(thetar)")
:joint-coordinates #(0 0 !"-hra")

:cmcoordinates #(ce 0 !"-h")

sinertia-matrix #2a((I1xx 0 1xz)
(0 lyy 0
(Ixz 0 lzzr))

:smal | -angles (t))

(small (dot (rot nrb) '[n3]) (dot (vel nrb0) '[nrb2]))
Figure 9.1.5. Inputsfor “small” variables.

Soecification of Output Variables

Before devel oping equations of motion, the analyst should define output variables of
interest. (After all, the purpose of the simulation code is to compute output variables.)
Using the F-string and the various AUTOSIM algebra functions, it is possible to define
almost any position or motion variable of interest with amacro called add- out. The
analyst has at his or her disposal all of the points introduced automatically, any points
added by the analyst, and directions defined in all of the coordinate systems of the system.
In this example, output variables are defined for lateral acceleration, yaw rate, front and
rear slip angles, and al forces and moments.

157

Roll Angle—
_ [rb2] | .
RO\\ AXIS = | - =7

— -
_%

T

- A

dplane([rb2], [n3]

Figure 9.1.6. Definition of direction for lateral acceleration.

The lateral acceleration computed by the simulation code should match the measurement
made with an accelerometer on a “stabilized platform.” The instrument is mounted on a
platform that is kept level using servomotors controlled with gyroscopic sensors, so that
lateral acceleration measurements are made without the influence of gravity. This means
that the lateral acceleration isnot in the direction of the body-fixed coordinate system [rb2]
(the body rolls such that the dot product between [rb2] and [n3] is not zero). The latera
direction is shown in Figure 9.1.6, and is defined mathematically in the first input Lisp
form in Figure 9.1.7. The written description isinterpreted as follows: (1) the laterally-
oriented unit-vector fixed in the body ([rb2]) is projected onto the ground plane
(perpendicular to [n3]), using the dpl ane function, and (2) the direction of that projection
is obtained with the di r function. That direction, lying parallel to the ground plane, is
dotted with the acceleration vector for the sprung mass to obtain the scalar acceleration
variable that is given the short name “Ay” and the long name “Lateral Acceleration.” Also,
the body associated with the variable is RB and the units of the variable are “length/time2”
(entered as“L/ T** 27).

158

(add-out !"dot (dir(dplane([rb2],[n3])), dxdt(vel(rbcn)))"
"y
:long-nane "Lateral Acceleration”
tbody rb :units "I /t**2")

(add-out !"dot(rot(nrb), [n3])" "r"
;1 ong- nane "Yaw Rate" :body nrb :units !"a/t")

(add- out al phaf "al pha f"
:long-nane "Front slip angle"
:body nrb
runits a
:gen-nane "Sip Angle")

(add-out al phar "al pha r"
:long-nane "Rear slip angle"
:body nrb
‘units a
:gen-nane "Sip Angle")

(add-f or ces-to-out put)
(add- nonent s-t o- out put)

Figure 9.1.7. Specification of output variables.

The yaw rate is defined as the dot product of the rotation of NRB and the unit-vector
[n3]. The slip angles had previously been assigned to the Lisp symbols al phaf and
al phar, so they are easily added. The forces and moments are added with the macros
add- f or ces-t 0- out put andadd- nonent s-t o- out put .

Now that the output variables have been defined, the analysis is performed with the
form (dynam cs) and asimulation code is generated with the form (write-sinj.
(These last two macros are not shown in the figures.)

Parameter |dentification

At the end of the analysis, each symbol that has been introduced, either explicitly by the
analyst, or automatically by one of the macros, is checked to seeif it actually appearsin the
eguations of motion in the simulation code. Those symbols that do appear are considered
parametersif they are known to be constants. (Symbols are known to be constants if they
were not introduced by AUTOSIM as state variables and were not declared by the analyst
with theadd- var i abl es macro.) Vaues are needed for all parametersin order for the
simulation code to run. Accordingly, an INPUT subroutine is generated in Fortran to read
values for these parameters when the smulation code is executed. Also, an ECHO
subroutine is created in Fortran so that values that applied for the run can be written as an
output file when the smulation isrun. Thelist of input parameters obtained by this process

159

can be viewed by the analyst to help confirm that the system is properly described. Thelist
for the exampleis shownin Table 9.1.1.

Note that some of the symbols that were shown in earlier printouts do not appear. For
example, only one of the inertia symbols introduced for NRB (NRBI33) has any influence
on the dynamic behavior of the system. Also, the height of the roll axis, HRA, has no
effect and isleft out.

Most of the units were correctly determined. The exceptions were two coefficients that
were multiplied together: CG1 and CCOEF1. Although the units of their product can be
deduced (Ib/deg), there is not enough information provided to determine the units of the
individual coefficients. (GC1 normally has units of I1b/deg and CCOEF is dimensionless.)

Because the parameters are the main interface to the end user, it isimportant that they be
familiar if the ssimulation codeisto be “easy” to use. Additiona inputsto AUTOSIM used
to fine-tune the parameters in the system are shown in Figure 9.1.8.

Macrosset - uni t s and set - nane were devel oped to override the default units and
names. Also, alternate units systems can be set with functionsi n- | b and nks.

The simulation code is written such that all parameters have default values. Those
parameters not mentioned by name in the input file are left at their default values.
Appropriate default values can be specified by the analyst for each parameter with the
macroset - def aul t s. A user not familiar with the model can use the simulation code
without specifying parameter valuesif all of the parameters have been assigned reasonable
default values by the analyst with the set - def aul t s macro. The echo file produced by
the simulation code shows all of the parameters, their numerical values, their names, and
their units. The echo file created with the default values used for the simulation results
shown aboveislisted in Appendix B aong with the complete source code.

160

Table 9.1.1. Parameters identified for the car model, with names and units

deduced from context.

Parameter

CAL
CA2:
CAM1:
CAM2:
CCOEFL1:
CE:
CGL:
CROLL:
H:
IPRINT:
IXX:
IXZ:
IYY:
IZZR:
KROLL.:
KRS2:
L:
NRBI33:
NRBM:
RBM:
SPEED:

STEER:
STEP:
STOPT:
THETAR:

Definition

coefficient in term in negative Side force, front axle (Ib/deg)
coefficient in Side force, rear axle (Ib/deg)

coefficient in Aligning moment, front axle (in-1b/deg)

coefficient in Aligning moment, rear axle (in-lb/deg)

coefficient in term in negative Side force, front axle (?)

coordinate of center of mass of the rolling body in dir 1 (in)
coefficient in term in negative Side force, front axle (?)

coefficient in term in negative roll moment from suspension (in-1b-g/d)
negative coordinate of center of mass of therolling body indir 3 (in)
number of time steps between output printing (counts)

moment of inertiaof RB (in-1b-s2)

product of inertiaof RB (in-1b-s2)

moment of inertiaof RB (in-1b-s2)

moment of inertiaof RB (in-1b-s2)

coefficient in term in negative roll moment from suspension (in-1b/deg)
coefficient in term in coefficient in Aligning moment, rear axle (-)
coordinate of front axle point in dir 1 (in)

moment of inertiaof NRB (in-1b-s2)

mass of NRB (Ibm)

mass of RB (Ibm)

argument to ATAN interm in coefficient in Aligning moment, rear axle
(in/s)

term in coefficient in Aligning moment, front axle (deg)

simulation time step (sec)

simulation stop time (sec)

angle in parent-rot axis for RB, coord #3 (deg)

161

(setf *mul ti body-system nane* "Exanple no. 1")
(in-1b)

(set-units cal !"f/a" ca2 !'"f/a" caml !"I*f/a" canR !"I*f/a" krs2 1
thetar a steer a Kroll !"I*f/a" croll !"t*L*f/a" cgl !"f/a"
ccoefl 1 speed !"I/t")

(set-defaults cal -444 ca2 -428 caml 1080 canR 1000 cgl 78 ce 63.4
krs2 -.016 ixx 5580 iyy 12000 izzr 37080 izznr 1285
ixz 0 KROLL 6211 croll 212 ccoefl .82 h 15.48 | 125.5
nrbm 704 rbm 3831 speed 968 steer 1 thetar 5.1
step .025 iprint 2 stopt 2)

(set-name cal "front cornering stiffness"
ca2 "rear cornering stiffness"
ce "distance fromrear axle to sprung mass c.g."
ccoefl1 "prop. of body roll resulting in front wheel canber"”
canl "front aligning noment coefficient”
can "rear aligning nmonent coefficient"
cgl "front canber stiffness"”
croll "torsional danmping rate for the vehicle body inroll"
h "hei ght of sprung mass c.g. above roll axis"
kroll "torsional spring rate for the vehicle body in roll"
krs2 "rol | -steer coefficient for rear axle"
L "wheel base"
steer "Steer angle at road"
thetar "inclination angle of roll axis"
speed "forward speed")

Figure 9.1.8. Inputs to specify characteristics of system parameters.

Results

Two versions of the model were developed earlier: afull nonlinear model, and one in
which most of the variables were identified by the analyst as “small.” The equations
obtained with “small” variables were compared to equations obtained manually and were
found to agree. Numerical results from both versions are shown to agree.

Numerical Results

Time histories from the simulation codes are compared in Figures 9.1.9 and 9.1.10.
They show that the small angle assumptions have a negligible effect on the predicted
responses to a step steer input of 1.0 degree. The complete simulation code for the system
analyzed with small variablesisincluded in Appendix B.

162

Lateral Acceleration - g's

3
—% ~
.25
2
.15
—3—- Modd with “small” variables
A
——— full nonlinear model
5x10° - ; ' '
0 5 1 15 2
Time- sec

Figure 9.1.9. Step responses of two modelsin lateral acceleration.

Y aw Rate - deg/s

8 ——— Modd with “small” variables

——— full nonlinear mode

0 5 1 15 2
Time- sec
Figure 9.1.10. Step responses of two models in yaw rate.

The output files created by the simulation codes arein aformat called “ERD files’ that
are used at UMTRI [102]. Automated post-processing software is available, including a
plotter that performs scaling and labeling automatically and which has a graphical interface

163

that permits the engineer to select variables for plotting simply by clicking a mouse [105].
For example, Figure 9.1.11 shows the screen display when the channels are selected.

=[] select Channel Pairs ———————
Data from file "out lin" Data to Plot {y, x, file}
File %F ¥ axis H axis [Clearall| [#isipie |
Time < I :| Ay, Time: out lin i
CRan) ny
- r
Plot ¥P | |alpha f alpha f
alphar alphar
FYl FYl
Help %H F¥2 F¥2
MMZ1 MMZ1
M22 M22
ROLLM || ROLLM]
m Lists ¥L L L
) Type ¥T ; | -
[JRemember Channels 3R i
i Show long names —* Y: r : Yaw Rate - deg/s
1 Use double-click H: :Time - sec

Figure 9.1.11. Use of automated plotter to view simulation results.

Computational Efficiency

Two simulations were devel oped above: (1) with the full, nonlinear representation of
the rigid-body kinematics, and (2) with several speeds and one angle declared “small.” The
number of arithmetic operationsin the Fortran code generated by AUTOSIM to compute
the derivatives of the state variables for each caseis shown in Table 9.1.2. Also, athird
case is shown in which additional settings were made that disabled the automatic
introduction of new symbols for each force and moment, and for the intermediate Z
variables. For thissimple system, the best efficiency was obtained without the use of these
intermediate variables. Code generated in this case has been reported elsewhere [103].
(The improvement arises because it is possible to combine many of the terms contained in
the FORCEM and Z expressions. For more complicated systems, thisis generally not
true.)

164

Table 9.1.2. Performance comparisons between three simulation codes.

Version of simulation code addsand | multiplies, divides,
subtracts | and function calls

Full, nonlinear simulation. 67 108
Simulation with “small” variables. 24 36
Most efficient, with no FORCEM or Z arrays. 15 19

The effects of some of the basic algebraic simplification methods built into AUTOSIM
have also been explored with thismodel. It was found that when no intermediate variables
were introduced at all, that about three times as many arithmetic operations were required.
Further, when the naturally factored form of the AUTOSIM expressions was changed to
the expanded form that has been used in the NEWEUL formulation, a total of 878
multiplications, divides, and function callswererequired. The difference between the
“best” and “worst” casesis nearly afactor of 50 [103].

Analysis Details

Now that the routine use of AUTOSIM to generate simulation code has been seen,
details of the analysis are presented that may or may not be of interest to the analyst.

At any stage of the analysis, the computer representation of the multibody system can
be inspected by the analyst. Printouts obtained in this way are shown below to illustrate
the types of expressions that are introduced and manipulated as the automated analysis
progresses.

The body object created to represent the non-rolling body is printed in Table 9.1.3,
showing the values associated with some of the dlots. Most of the values were obtained by
thefirstadd- body macro.

Generalized coordinates and generalized speeds were introduced, a direction cosine
matrix was developed, and expressions were obtained for the rotational velocity and the
velocity of the origin of the coordinate system. Because this body has one rotational degree
of freedom, one of the unit-vectors ([n3]) is from the parent body. Note that several
symbols were generated automatically. Lacking any information about mass and inertia,
the add- body macro introduced the symbol NRBM for the mass of the body, and six
symbols (NRBI11, NRBI12, NRBI13, NRBI22, NRBI23, and NRBI33) for the moments
and products of inertia. Those are used, in turn, to build an expression for the inertia

165

dyadic. The printout used to prepare the table was generated after the next body was
introduced, as evidenced by thelist (RB) in the children slot.

Table 9.1.3. Data associated with slots of body NRB.

Summary of body: | NRB

parent: | N
leve: | 1
children: | (RB)
name | Non-Rolling Body
mass. | NRBM

inertiac. | (NRBI33*([N3].[N3]) + NRBI13*([NRB1].[N3]) +
NRBI13*([N3].[NRB1]) + NRBI23*([N3].[NRB2]) +
NRBI23*([NRB2].[N3]) + NRBI11*([NRB1].[NRB1])
+ NRBI12*([NRB2].[NRB1]) +
NRBI12*([NRB1].[NRB2]) +
NRBI22* ([NRB2].[NRB2]))
unit-vectors. | #([NRB1] [NRB2] [N3])
trandation-coordinates. | (Q(1) Q(2))
trandation-speeds. | (U(1) U(2))
rotation-coordinates. | (Q(3))
rotation-speeds. | (U(3))
rotation-directions. | ([N3])
trandation-directions. | ([N1] [N2])
joint-pos. | (Point O: Body N: #(0 0 0): fixed origin)
cmpos. | (Point NRBCM: Body NRB: #(0 0 -HRA): center of mass
of the non-rolling body)
absw: | U(3)*[N3]
absvi: | (U(L)*[NRB1] + U(2*[NRB2])
cosmatrix: | #(COS(Q(3)) SIN(Q(3)) 0)
#(-SIN(Q(3)) COS(Q(3)) 0)
#(00 1.0)

The definitions of the state variables can be printed for inspection by the analyst. The
summaries printed by AUTOSIM are shown in Table 9.1.4. Note that both names and
units were generated for all of the variables. The equations of motion are derived for any

166

set of units in which conversions are not needed to apply kinematic analysis or Newton’s
laws. Thus, anglesin the equations necessarily have units of radians. However, if the
units system chosen by the analyst involves units that require conversions, such as for
angles (deg), mass (Ibm), acceleration (g's), and so forth, the ssmulation code generated by
AUTOSIM performs the necessary conversions when input data are read and when output
data are written. Thus, from the perspective of the end user, the units of the variables and
parameters are those shown in listing such as Table 9.1.4. (The units conversions can be
found in the subroutines INPUT, ECHO, and OUTPUT, listed in Appendix B.)

Table 9.1.4. Printed summary of state variables.

Generalized Coordinates

Q(1): Trandation of NRB relative to the fixed origin dong [n1]. (in)

Q(2): Trandation of NRB relative to the fixed origin dong [n2]. (in)

Q(3): Rotation of the non-rolling body relative to the inertial reference about axis #3. (deg)
Q(4): Rotation of the rolling body relative to the non-rolling body about axis#1. (deg)

Generalized Speeds (beforeadd- const r ai nt macro is used)
U(1): Abs. trans. speed of NRB along axis 1. (in/s)

U(2): Abs. trans. speed of NRB along axis 2. (in/s)

U(3): Abs. rotation of NRB, axis 3. (deg/s)

U(4): Rotation of RB relative to NRB, axis 1. (deg/s)

The generdized speeds U(1) and U(2) are not derivatives of the generaized
coordinates, but are instead defined as “quasi-coordinates’ parallel to body axes. Thisis
according to the rules established in Section 8.1 and 8.4 for bodies with two trandlational
degrees of freedom that are constrained to planar motions.

Table 9.1.4 was obtained after the second body was added, but before the constraint
was defined. After the constraint is added, the system has only three degrees of freedom.

The macro add- const r ai nt removes adynamical degree of freedom by changing
slot valuesin the i ndexed- symobject that represents a generaized speed, and then
renumbering the remaining speeds. In the example, the forward vehicle speed, initially
printed as“U(1)” is selected as the best generalized speed to remove. The macro solves for
U(1) and determines that the constraint is satisfied when the U(1) is replaced with the
parameter speed. Accordingly, it changes the const-or-var slot toconst , the dxdt slot to

167

0, the exp dot tospeed, and the i slot to 0. The renumbering is performed by changing
the i dot in al i ndexed- sym objects that represent generalized speeds. After
renumbering, the speeds appear as shown in Table 9.1.5. The table also includes a
summary of the nonholonomic constraint equations (there is but one in this example).

Table 9.1.5. Summary of generalized speeds after constraint is added.

Generalized Speeds (After add- const r ai nt macro is used)
U(1): Abs. trans. speed of NRB along axis 2. (in/s)

U(2): Abs. rotation of NRB, axis 3. (deg/s)

U(3): Rotation of RB relative to NRB, axis 1. (deg/s)

Constraints
Abs. trans. speed of NRB aong axis 1.. SPEED

Printing of expressions is performed recursively, with every type of object having an
associated print function. If an object is changed such that it prints differently, all
expressions containing that object will also print with the “updated” form. Thus, all
expressions that contain the generalized speed originally named “U(2)” will now print that
object as“U(1).”

Because AUTOSIM freely renames objects, the analyst must be careful when referring
to state variables by name. The possibility of naming the wrong variable can be eliminated
by referring to the variable as an expression involving positions, angle, velocities, and
rotational velocities of bodies and pointsin the system, as was done in this example.

After the forces and moments are entered, they can be viewed also. Table 9.1.6 shows
the summary of the forces printed by AUTOSIM. (The equations are shown later.)

Once the system is described to AUTOSIM, the equations of motion are derived by a
function named dynam cs. The analysis proceeds automatically asfollows.

First, the size of the system is determined so that matrices can be introduced to store
indexed variables such as partial velocities and constraint coefficients. The kinematical
equations are derived by the method presented in Section 8.2. Next, constraint coefficients
are computed. For this example, these analyses are very simple and not discussed further.

168
(The most complicated kinematical equations are generated in the two spacecraft models.
The constraint analysisis examined in detail for the four-bar linkage example.)

The dynamical analysisis performed in several stages. Thetreeistraversed from top to
bottom so that expressions can be derived and put into worksheets associated with each

body.

Table 9.1.6. Listing of forces and moments.

Forces

(RBW: Pra/ity force on theralling body: Expresson=RBM*GEES Direction = [n3]. Actsonthe
rolling body from theinertid reference through center of mass of theralling body)

(FY L. Sdeforce, front axle: Expresson = FORCEM(1): Direction = [nrb2]. Actson the non-rolling
body from theinertid reference through front axle point)

(FY2: Sdeforce, rear axle: Expresson = FORCEM(2): Direction = [nrb2]. Actson thenon-ralling
body from theinertid reference through coord. origin of the non-rolling body)

M oments

(MZ1: Aligning moment, front axle: Expresson = -FORCEM(3): Direction = [n3]. Actson the nory
ralling body from theinertid reference)

(MZ2: Aligning moment, rear axle: Expresson = FORCEM(4): Direction = [n3]. Actson the non-
rolling body from theinertid reference)

(ROLLM: rall moment from suspension: Expresson =-FORCEM(5): Direction=[rbl]. Actson
the ralling body from the non-ralling body)

Tables 9.1.7 and 9.1.8 show the contents of the worksheets created for two of the
body objectsin this example. (Body N also has aworksheet in which all expressions are
zero.)

The slotsin the tables are defined in Section 8.4 for the worksheet object. All of the
expressions in the worksheet are either vectors or dyadics, as indicated by the presence of
unit-vectors.

Note that there are four holonomic partial velocities and three nonholonomic partia
velocities. Recal that in Kane's convention for manualy analyzing nonholonomic
systems, independent speeds are numbered from 1 to p and dependent speeds are
numbered from p+1to n. However, the holonomic arrays retain the ordering they had
before any nonholonomic constraints were applied, which is generally not in accordance
with Kane's convention. Numbering of dependent speeds is of no importance because the

169

dependent speeds, having been replaced by expressions involving independent speeds, do
not appear anywhere in the equations.

Table 9.1.7. Dynamics worksheet for the non-rolling body.

Worksheet for body: | NRB
recursve-r: | T
recursive-t: | NIL
w: | U(2*[N3]
wisaarray. | (0,0, 0, 0)
wisabarray. | (0, [N3], 0, 0)
wisarray. | (0, [N3], 0, 0)
nhwisarray. | (O, [N3], 0)
alpha-rem: | O
alpha-ab: | O
nh-alpha-rem: | O
ra*b0: | O
v¥isarray: | ([NRBZ2], 0, O, [NRB1])
v¥isbodies: | (NRB, NRB, NRB, NRB)
nhv*isarray: | ([NRBZ2], 0, 0)
nhv*isbodies. | (NRB, NRB, NRB)
acc-rem: | (-Z(18)*[NRB1] + Z(19)*[NRB2])
nh-acc-rem: | (-Z(18)*[NRB1] + Z(19)*[NRB2])
acc-dyadic: | -(U(2**2*([NRB2].[NRB2]) +
U(2)**2*(INRB1].[NRB1]))

In this example, the dependent speed was originally named U(1). Hence, the first
element in each of the holonomic arrays corresponds to this speed. In this example, the
nonholonomic partial velocities are identical to the holonomic equivalents, except that
elements corresponding to the dependent speed are eliminated.

Note that intermediate variables appear in many of the expressions. During the
dynamics anaysis, intermediate variables are introduced liberally to prevent the expressions
from growing too large. (The intermediate variables and constants are defined later.)

170

Table 9.1.8. Dynamics worksheet for therolling body.
Worksheet for body: | RB
recursve-r: | T
recursvet: | T
w: | (Z(7)*[RB2] + Z(8)*[RB3] + Z(12)*[RB1])
wisaarray. | (0, (PC(4)*[RB1] + Z(10)*[RB2] + Z(11)*[RB3]), 0, 0)
wisabarray: | (0, 0, [RB1], 0)
wisarray: | (0, (PC(4)*[RB1] + Z(10)*[RB2] + Z(11)*[RB3]),
[RB1], 0)
nhwisarray. | (O, (PC(4)*[RB1] + Z(10)*[RB2] + Z(11)*[RB3]),
[RB1])
alpha-rem: | (Z(16)*[RB2] -Z(17)*[RB3])
alpha-ab: | (-U(3)*Z(7)*[RB3] + U(3)*Z(8)*[RB2])
nh-alpha-rem: | (Z(16)*[RB2] -Z(17)*[RB3])
ra*b0: | O
VvFisaarray: | ([NRBZ2], 0, O, [NRB1])
visabarray. | (O, ((H*Z(10)*[RB1] -CE*Z(10)*[RB3] + (PC(5) +
: CE*Z(11))*[RB2]), H*[RB2], 0)
v¥isarray: | ((C(4)*[RB2] -S(4)*[RB3]), (Z(13)*[RB2] -Z(14)*[RB3]
-Z(15)*[RB1]), H*[RB2], (PC(2)*[RB1] -
PC(4)* S(4)*[RB2] -PC(4)* C(4)*[RB3]))
v¥isbodies: | (NRB, RB, RB, NRB)
nhv*isarray: | ((C(4)*[RB2] -S(4)*[RB3]), (Z(13)*[RB2] -Z(14)*[RB3]
-Z(15)*[RB1]), H*[RB2])
nhv*isbodies. | (NRB, RB, RB)
acc-rem: | (Z(23)*[RB2] + Z(24)*[RB3] -(PC(2)*Z(18) + H*(Z(16)
+ Z(20)) + CE*(Z(22) + Z(8)**2))*[RB1])
acc-ab: | -(H*(Z(16) + Z(20))*[RB1] -CE*-(Z(16) -Z(20))*[RB3] -
CE*(Z2(7)*Z(12) -Z(17))*[RB2] + H*Z(7)*Z(8)*[RB2] +
CE*(Z(22) + Z(8)**2)*[RB1] -H*(Z(21) +
Z(22))*[RB3])
nh-acc-rem: | (Z(23)*[RB2] + Z(24)*[RB3] -(PC(2)*Z(18) + H*(Z(16)

+ Z(20)) + CE*(Z(22) + Z(8)**2))*[RB1])

171

After all of the slots in the worksheet objects are set, the mass matrix and the force
array are created and filled with zeros. Then, the tree is traversed one more time and the
contribution from each body is added to the arrays. After this traversal, the symbolic
equation solver is employed to derive a series of equations that defines the derivatives of
the generalized speeds.

The equations of motion for the nonlinear system are printed in Figures 9.1.12 through
9.1.14, exactly as generated by AUTOSIM. The Fortran code in Figure 9.1.12 isfor
precomputing constants. The code for computing derivatives of state variables is in
Figures 9.1.13 and 9.1.14. (The corresponding code for the case in which some variables
are“small” isin Appendix B.)

PQ(1) = OGL* COCEFL PQ(13) = (RBM + NRBY)
PQ(2) = OCS(THETAR) PQ(14) = H<RBM GEES* CO8(THETAR)
PQ(3) = CROLL*O0S(THETAR) PO(15) = (RBMH*2 + | XX)
PQ(4) = SIN(THETAR) PQ(16) = 1.0/ PQ(13)

PQ(5) = HSI N(THETAR) PQ(17) = PQ(2)**2

PQ(6) = RBMFGEES PQ(18) = H-PQ(17)

PQ7) = (1 XX -1YY) PQ(19) = CE*P(2)

PQ(8) = (1YY -1ZZR PQ(20) = HPQ(2)

PQ9) = (I XX -1ZZR) PQ(21) = PO 11)*Pq 4)
PQ(10) = | XZ*SI N(THETAR) PQ(22) = (NRBI 33 + P((21))
PQ(11) = | XX*SI N(THETAR) PQ(23) = PQ(6)*PO(4)
PQ(12) = HRBM PQ(24) = PQ(6)*PQ(2)

Figure 9.1.12. Fortran code for precomputing constants.

In these figures, most of the expressions involve either elements of the array Z or the
array PC. The*Z’ variables are intermediate variables introduced for redundant variable
expressions. The ‘PC’ variables are expressions involving constants that can be
precomputed before the numerical integration loop is started.

Note that the solution for the accelerations (the variables in the Fortran array UP) are
recursive. The equation for UP(1) includes Z(35) and Z(36), which are the values for
UP(3) and UP(2).

Recall from Chapter 5 that al unused code is removed, and that every ‘Z’ variableis
referenced at least twice. Z variables that appear but once are replaced with the original
expressions.

172

o000 O0000

o000

OO0

OO0 o000 000

Equations of notion, fromsubroutine D FEQN

Each derivative eval uation requires 108 mul ti ply/divides, 69
add/ subtracts, and 6 function/subroutine calls.

S(3) = SINQ3))
S(4) = SINQ4))
q'3) = A¥(Q3))
q4) = a8(Q4)

Ki nemat i cal equati ons

Q(1) = (SPEED*(3) -WU1)*¥(3))
QR(2) = (U1)*Q3) + SPEED*¥(3))
QR(3) = U2
P(4) = U3

define expression for Side force, front axle

Z(1) = (STEER - ATAN2((L*U(2) + W1)), SPEED))
FORCEM 1) = (PQ(1)*Q4) -CAL*Z(1))

define expression for Side force, rear axle

2(2) = (-KRS2*Q(4) + ATAN2(U(1), SPEED))
FORCEM 2) = CA2*Z(2)

define expression for Aigning nmorment, front axle
FCRCEM 3) = CAML*Z(1)
define expression for Aligning nonent, rear axle

FORCEM 4) = CAMR*Z(2)

define expression for roll nonent from suspension

FORCEM5) = (KROLL*Q(4) + PQ(3)*U3))

Figure 9.1.13. First part of Fortran code for computing derivatives of
state variables.

173

C Dynamcal equations

C
Z(3)
Z(4)
Z(5)
Z(6)
Z(7)
Z(8)
Z(9)
Z(10)
Z(11)
7(12)
Z(13)
Z(14)
Z(15)
Z(16)
7(17)
Z7(18)
7(19)
&
Z(20)
&

Z(21)
2(22)
Z(23)
Z(24)
Z(25)
7(26)
2(27)

Ro

Z(28)

Ro Ro Ro Ro Ro

Z(29)
Z(30)
7(31)
2(32)
Z(33)
Z(34)

&

&
Z(35)
Z(36)
2(37)
Z(38)

&

&
Z(39)
UP(3)
UP(2)

PQ(2) *U(2) * (4)
PQ(2) *U(2) *((4)

U(3)*Z(4)

U 3) *Z(3)

U(2)* U 1)

SPEED* | 2)

Z(4)*Z(8)

Z(8)**2

Z(3)**2

(-HZ(3)*Z(4) + CB*(Z(3)*Z(8)
PQ(4)*Z(14)*S(4))
S(CE*(Z(12) -Z(16)) -H(Z(17) + Z(18)) -PQ(4)*Z(14)* 4)
+ Z(15)*S(4))

| XZ* Z(4)

(Z(3)*(PO(8)*Z(4) -1XZ*Z(8)) + | Xz*Z(13))

RBMF Z(11)

RBM Z(10)

RBM Z(9)

| Xz* Z(7)

(-NRBMZ(15) + FORCEM 1) + FORCEM2) - RBM(Z(19)*((4)
-Z(20)*S(4)))

-PQ(23)*Z(11) -Z(6)*(1YY*Z(12) -1X2*Z(17) + Z(4)
(PO(9)*Z(8) + Z(21))) + Z(7)*(1ZZR*Z(13) + Z(3)
(PO(7)*Z(8) + Z(21))) + PQ(4)*Z(22) -(PQ2)*Z(14) + H
(Z(12) + Z(16)) + CE*(Z(18) + Z(4)**2))*Z(23) +
Z(20)*Z(24) -7(19)*Z(25) + L*FOREM 1) - FORCEM3) +
FORCEM 4) + PQ(24)*(-Z(10)*Q(4) + Z(9)*3(4)))
(Z(25)*C(4) + Z(24)*S(4))

PQ(12) *(4)

(PO(11) + PO(12)*Z(9) + Z(26))

PQ(16) *Z(29)

PQ(16) *Z(30)

(PO(22) + IYY*Z(6)**2 + (PQ(10) + | ZZRZ(7))*Z(7) +
Z(11)*Z(23) + Z(10)*Z(24) + Z(9)*Z(25) + PO 4)*Z(26)
-2(29)*7(32))

(Z(31) -2(29)*Z(33))/Z(34)

(z(31) -2(30)*Z(32))

2(27)*Z(32)

-(PO(12)*Z(19) -2Z(22) + Z(27)*Z(33) + Z(35)*(Z(28)
-Z(37)) + FCRCEM5) -PQ(14)*S(4))/ (PQ(15) - Z(30)*Z(33)
-Z(35)*Z(36))

(Z(28) -2(37) -Z(36)*2(38))/Z(34)

Z(38)

Z(39)

-Z(13)) + Z(15)*Q(4) +

(
*
*
*

UP(1) = PO(16)*(Z(27) -Z(30)*Z(38) -Z(29)*Z(39))

Figure 9.1.14. Continuation of Fortran code for computing derivatives of

state variables.

174

9.2 Four-Wheeled Cart

The example described in this section illustrates how typical nonholonomic constraints
are handled. Also, it shows how masses and inertias are combined into composite bodies.

573

Figure 9.2.1. Four-wheeled cart.

Model Description

A cart with four wheels and a steered front axle is shown in Figure 9.2.1. Dimensions,
bodies, and reference points are defined in Figure 9.2.2. The cart rolls without slipping on
asmooth flat surface. The front axle steers about a point Fy that is located slightly in front
of the axle, and which is shown by a black dot in Figure 9.2.2. The cart is pushed from
rest by a constant force applied to the point By, in a direction oriented along the longitudinal
axis of the cart, [b1]. Given aninitia steer angle (nominally, 0.25 radian), the objective of

175

the simulation is to study the motions of the cart over the first few seconds, to determine
characteristics of the response.

LRWp, LRW® ' LRW LFW, LFW*_ | LFw
2 | |
ffffffff -}
B
L | CMF1 —»| |-
| |
' B B* P B
. L e
| | .
TRK2 - CMBI o

i |
B **@**\7@
RRW,, RRW’ < RRW RFWp, RFW? RFW

- L1 -

Figure 9.2.2. Bodies, reference points, and dimensions for cart.

Theingpiration for thismodel isa®Rocket Car” system analyzed by Ge and Cheng [28]
as an example of a system with a variable mass. The system shown isused in as an
example in a course taught at The University of Michigan!. Equations of motion for the
system as shown have been derived previously and used to compute time responses of
some of the variables.

The constraints imposed by the condition that the wheels roll without slipping are
described mathematically in two ways: (1) the forward velocity of each wheel center must
equal the spin of the wheel multiplied by its radius, and (2) the lateral velocity of each
wheel center iszero. That is, for arbitrary wheel W, whose center point is W*,

vWiews = WR (9.2.1)
where W1 is a unit-vector oriented along the centerline of the wheel, Wis the spin of the
wheel, and Risitsradius. Also,

W

VT ew; =0 (9.2.2)

where W2 is a unit-vector oriented along the spin axis.

1 Course notes for “Computational Mechanics,” Aero 541, taught by Prof. D. Greenwood.

176

AUTOSM Description

The rigid-body information from Figure 9.2.2 is entered into AUTOSIM as shown in
Figure 9.2.3.

Thefirst Lisp form introduces the body B of the cart with two translational degrees of
freedom and one rotation. That is, it is free to move in the plane normal to [n3]. The
second form introduces the front axle F. Body B isits parent, and F is able to rotate about
axis 3 relative to B. Note that because the dimensions in the figure are defined relative to
the spin axis of the front wheels, rather than the pivot point for the front axis, the first

coordinate for the center of massis not a parameter, but the expression “- eps + cnf 1.”
(add-body b :name "body of cart" :translate (1 2)

‘parent-rotation-axis 3

:cmcoordinates #(cnbl 0 0))

(add-body f :parent b
:name "front axle"
‘parent-rotation-axis 3
:cmcoordinates #(!"-eps + cnfl" 0 0)
;joint-coordinates #(L1 0 0))

(add-body Irw :parent b :name "l eft-rear wheel"
‘parent-rotation-axis 2
:joint-coordinates #(0 !"-trk2" 0)
sinertia-matrix #(it iait) :nass mw

(add-body rrw :parent b :nane "right-rear wheel"
‘parent-rotation-axis 2
:joint-coordinates #(0 trk2 0)
tinertia-matrix #(it iait) :nass mw)

(add-body I fw :parent f :nane "left-front wheel"
sparent-rotation-axis 2
;joint-coordinates #(!"-eps" !"-trk2" 0)
cinertia-matrix #(it iait) :nass mw)

(add-body rfw :parent f :name "right-front wheel"
iparent-rotation-axis 2
;joint-coordinates #(!"-eps" trk2 0)
cinertia-matrix #(it iait) :nass mw

(add-line-force F :pointl bO :direction [bl])
Figure 9.2.3. AUTOSIM description of cart example.

The next four entries define the four wheels. The rear two wheels have B as their
parent body, and the front two wheels have F as their parent. Because all four wheels have
the same mass and inertia properties, the mass and inertia matrices are explicitly identified

177

in the inputs. Also, note that the inertia properties are summarized by two moments of
inertia: one about the spin axis (I A) and one about any axis normal to the spin axis (I T).

The force that pushes the cart is described very simply, sinceit is a constant F.2

Next, the nonholonomic constraints are entered, as shown in figure 9.2.4. The
nonglipping condition for each wheel can be used to generate two constraint equations, one
based on eg. 9.2.1 and one based on eg. 9.2.2. Thus, eight constraints are entered in the
figure. (Two of these are redundant, however. If one wheel on an axleis constrained to
have zero lateral velocity, the other wheel on that axle is also constrained. However, if the
analyst does not realized this, an entry such as that shown in the figure can be handled. It
will be seen later that the redundant constraints areignored by AUTOSIM.)

;; constrain spin of wheels to define zero longitudinal slip

(add-constraint !"r*dot([b2], (rot(rrw - rot(b)))
- dot(vel (rrw0),[b1])"

(add-constraint !"r*dot([b2], (rot(lrw) - rot(b)))
- dot(vel (1rw0),[b1])")

(add-constraint !"r*dot([f2], (rot(rfw - rot(f)))
- dot(vel (rfwo),[f1])")

(add-constraint !"r*xdot([f2], (rot(lfw - rot(f)))
- dot(vel (1fw0),[f1])")

~—

;; define zero lateral velocity for each wheel

(add-constraint !"dot([b2], vel (rrwd))")
(add-constraint !"dot([b2], vel (Irwd))")
(add-constraint !"dot([f2], vel (rfwd))")
(add-constraint !"dot([f2], vel (1fw)))")

Figure 9.2.4. AUTOSIM description of nonholonomic constraints for cart
example.

The remainder of the AUTOSIM input, shown in Figure 9.2.5, defines the yaw rate of
the body, the steer rate for the front axle, and all generalized coordinates as output variables
to be generated by the smulation code. The figure also listsinputs that set the units system
to be metric (nks) , and default values for the parameters of the system.

1 Although the same symbol (F) is used for both a force and a body, there is no conflict in AUTOSIM
because the symbol for a body does not appear in the equations of motion.

178

;; define output variables

(add-out !'"dot([n3], rot(b))" "r"
:long-nane "yaw rate" :body b :units !"a/t")
(add-out !'"dot([n3], (rot(f) - rot(b)))" "deldot"
:body f :long-name "steer rate" :units !"a/t")
(add- coor di nat es-t o- out put)

(dynam cs)
(MKS)
(setf *mul tibody-system name* "Cart--Exanpl e #2")

(set-defaults BM20 FM5 BI33 12 FI33 .5 TRK2 .5 L1 1.5 Ol .5
OW1l .02 EPS.1 R.2 MNV1 IT .01 IA .02 F 100)

Figure 9.2.5. AUTOSIM description of cart output variables and parameter
values.

Results

The complete list of output variables (obtained with the plotter [105]) is shown in Table
9.2.1.

Table 9.2.1. List of output channels generated by simulation code for cart.

- : Time - sec
1-r : yawrate - rad/s
2 - deldot : steer rate - rad/s
3- Q1 . Trans. of BOrel. to Q dir=[nl] - m
4 - Q2 : Trans. of BOrel. to Q dir=[n2] - m
5- Q3 : Rot. of Brel. to N axis #3 - rad
6 - Q4 : Rot. of Frel. to B, axis #3 - rad
7 - Q5) : Rot. of LFWrel. to F, axis #2 - rad
8 - Q6 : Rot. of RFWrel. to F, axis #2 - rad
9- Q7 . Rot. of LRWrel. to B, axis #2 - rad
10 - 8) . Rot. of RRWrel. to B, axis #2 - rad

179

Body Of Cart

Front Axle

Angular Speed - rad/s
2

T

NV

0 5 1 15 2 2.5 3

Time- sec
Figure 9.2.6. Transient responses of yaw rate and steer rate.
The time histories of the yaw rate and the steer rate are shown in Figure 9.2.6 From

the list of output variables, the yaw angle and steer angle are seen to be named Q(3) and
Q(4). Thetime historiesfor these variables are shown in Figure 9.2.7.

180

Body Of Cart
Front Axle
Rotation - rad
.25
2 \
15

5x10° >’\
0 \ §

AN B

N~ — |
-5x1072
0 5 1 15 2 25 3
Time- sec

Figure 9.2.7. Transient responses of yaw angle and steer angle.

The above numerical results were compared with numerica results obtained using
equations that were formulated manually, and were found to agree.

The complete parameter list, produced as an echo file by the simulation code, is shown
in Table9.2.2.

181

(Ssw) Z sixe buoe ,g Jo peads 'suell sqv 000000 ° (Zhn
(sw) ‘T sixe Buoje ,g jo paads -‘suel) ‘sqv 000000 ° (TN
(pes) ‘z# sixe 1noge 1ued jo Apog 8yl 01 dAlle |9l [9ayw Jeal-1yb 1l 8yl Jo uo Ileloy 000000 ° (80
(pel) "z# sixe noge 1Jed Jo Apog 8yl 01 8Alle @) [99yw Jeal-1Jo| 8yl JO uo I1e1oy 000000 ° D
(pe 1) "Z# SIxe 1noge 8 |xe 1UOJ} 8yl 01 SAIIe |84 [83Yym JuoJ}-1yb 11 8yl Jo uo Ileloy 000000 ° (9
(peJ) "Z# SIXe Inoge 8 |Xe JUOJ) 8Yl 01 8A e [8) [88YW JUOJJ-1J8| 8yl JO UuO I1e]loy 000000 (s
(pel) "c# sixe Inoge 1Jed Jo Apog 8yl 01 8Alle|aJ o |Xe Juol} 8yl JO uo Ileloy 0000SZ - (r O

el
‘S# S IXe 1noge 920Ul laJdl |elllaul 8yl 01 BAIle |2l 1Jed Jo Apog a8yl JO uo I1leloy oooooo.AU VAmmu
() -[zu] Buoje uib 110 pax 1) 8yl 01 dA IR |84 0d JO UO Ile |suell 000000 ° (2
) "[tu] Buoe uib1io pax 1y 8yl 01 8A IR 81 0 JO UO IJe |Suel] 000000 (T

) z 11pur j@ayn woly-wyb 11 ay1 1oy} wiod juauyoelile Jo dleu Ipiood
(0o9s) au 11 dois uolle rwuis

(o8s) dais aull uolle | is

W) 1IN

(B3) M4 j0 ssuau

(u) T JIpul a|xe ol 8yl Jo} wiod juauydoe1lle JO d1leuU Ip 002
(qu-63) M4d O e 11J8U I JO juauaU

(sunodo) Buiriui1id ndino usawmiaq sdails aull Jo Jagqunu

(gu-63) M4 Jo eIlJ8U 1 JO juauQU

(6%) 4 o ssau

(qu-6x) 4 Jo e11J8U 1 JO juaUAU

N) 4

(u) T 41p ur @aym woiy-1yb 11 B8yl J10) 1w lod uauyoe1le JO B1leU IPpI00I BA I1ebau

T JIp Ul @|Xe JUOJ} 8yl JO SSAU JO Ja]1uad JO 3leulplood aallebau ulwial anllebau
(u) T 11p ur 11e2 Jo ApOQg BY1 JO SsSau JO JID1UdD JO d]leU IP I00ID

(6%) g j0 ssuau

(gu-6x) g Jo ®l1lBU | JO 1uauau

SNOILIANOD W ILINIT «

000005 °
00000 ‘€
T0-300000¢ 0
00000¢ °
00000 ‘T
0000S 'T
T0-300000T "0
00000 'S
T0-300000¢ 0
00000 'S
00000S -
000 00T
00000T *

T0-300000¢ 0
00000S °
0000 "0¢
0000 ‘¢T1

oL

1d01S
da1s
d

M

T1

11

AN 1d |
Vi

N4
eeid

=]

Sdd

w)
TINO

Tand
ng
eed

SANTVA d31IAVEVd «

71ed 10} SUOITIPUOD [eNIul pue San[eA JejleWeled ¢ 26 o|0eLl

182

Analysis Details

This system was included in part to show details in the analysis of a system with
extensive nonholonomic constraints. Also, the dynamics analysisis of interest because
significant modeling simplifications involving the wheels are possible.

The Constraint Analysis

Eachadd- const r ai nt form nominally removes one degree of freedom by changing
a generalized speed from an “independent speed” to a “nonholonomic speed.” When a
degree of freedom is removed, a description of the variable that is eliminated is printed on
the screen together with the replacement expression. However, when the constraint is
already identically zero, AUTOSIM merely prints a message to this effect. To show this,
theadd- const r ai nt formsare shown again in Figure 9.2.8, along with the responses.
The inputs are shown in boldface type and the AUTOSIM responses are shown in
plainface.

Six of theadd- const r ai nt formsresult in the removal of generalized speeds. The
replacement expressions involve remaining independent speeds. In two cases, the
constraint is aready satisfied as a consequence of previoudly introduced constraints.

The current generalized speeds and nonholonomic constraint equations can be viewed at
any stage of the analysis. Tables 9.2.3 through 9.2.5 list the speeds and constraints at
three stages of the analysis: (1) before any constraints are removed, (2) after the first four
congtraints are added, and (3) after al constraints are added.

183

;; constrain spin of wheels to be zero-slip

(add-constraint !"r*dot([b2], (rot(rrw) - rot(b)))
- dot(vel (rrw0),[b1])")

Repl ace Rot. of RRWrelative to B, axis 2.

-(TR2*U(3) -U1))/R

(add-constraint !'"r*dot([b2], (rot(lrw) - rot(hb)))
- dot(vel (I rwd),[b1])")

Repl ace Rot. of LRWrelative to B, axis 2.

(TR2*3) + U1))/R

(add-constraint !"r*dot([f2], (rot(rfw) - rot(f)))
- dot(vel (rfwd),[f1])")
Repl ace Rot. of RFWrelative to F, axis 2.
(-TRZ*(U3) + U4)) + U1)*q4) + ((L1 -QB1)*U3) + U2))*F(4))/R

(add-constraint !'"r*dot([f2], (rot(lfw) - rot(f)))
- dot(vel (I fwO),[f1])")

Repl ace Rot. of LFWrelative to F, axis 2.

(TRZ*(U3) + U4)) + UD*A4) + ((L1 -QwBL)*U3) + U2))*(4))/R

define zero sideslip for axles

~—~

(add-constraint !"dot([b2], vel(rrwd))")
Repl ace Abs. rot. of B, axis 3.
U 2)/ owvBl

(add-constraint !'"dot([b2], vel(lrwd))")
"Constraint equation is already zero."

(add-constraint !"dot([f2], vel(rfwd))")
Repl ace Rot. of Frelative to B, axis 3.
-(W2)/avBl -(L1*U2)*q4)/avBl -U1)*S(4))/ EPS)

(add-constraint !"dot([f2], vel(Ifwd))")
"Constraint equation is already zero."

Figure 9.2.8. AUTOSIM responses to constraint definitions.

Table 9.2.3. Generalized speeds before any constraints are added.

U 1): Abs. trans. speed of B* along axis 1. (ms)
U2): Abs. trans. speed of B* along axis 2. (ms)
U3): Abs. rot. of B, axis 3. (rad/s)

U4): Rot. of Frelative to B, axis 3. (rad/s)
U5): Rot. of LFWrelative to F, axis 2. (rad/s)
U6): Rot. of RFWrelative to F, axis 2. (rad/s)
U7): Rot. of LRWrelative to B, axis 2. (rad/s)
U8): Rot. of RRWrelative to B, axis 2. (rad/s)

184

Table 9.2.4. Generalized speeds and constraints, after four constraints are

added.

U1): Abs. trans. speed of B* along axis 1. (nmis)
U2): Abs. trans. speed of B* along axis 2. (mis)
U3): Abs. rot. of B, axis 3. (rad/s)

U4): Rot. of Frelative to B, axis 3. (rad/s)

Rot. of LFWrelative to F, axis 2.: (TRZ2*(U3) + U4)) + U1)*q4)
+ ((L1 -OMBL)*U3) + U2))*(4))/R

Rot. of RFWrelative to F, axis 2.: (-TRZ2*(U3) + U4)) + U1)*4)
+ ((L1 -OMBL)*U3) + U2))*Y(4))/R

Rot. of LRWrelative to B, axis 2.: (TRK2*U3) + W1))/R

Rot. of RRWrelative to B, axis 2.: -(TRK2*U3) -U1))/R

Table 9.2.5. Generalized speeds and constraints, after all constraints are

added.

U 1): Abs. trans. speed of B* along axis 1. (ms)
U 2): Abs. trans. speed of B* along axis 2. (ms)

Abs. rot. of B, axis 3.: U2)/0wBl

Rot. of Frelativeto B, axis 3.: -(U2)/0OwBl -(L1*W 2)*4)/CvBl
-U1)*S(4))/ EPS)

Rot. of LFWrelative to F, axis
-(L1*u2)*q4)/avBlL -U 1
-OMBL)*U(2)/OMBL + U(2))

Rot. of RFWrelative to F, axis

O (TRR2Y(U(2)/avBL + - (WU(2)/ avBl
*S(4))/EPY)) + U1 *q4) + ((L1
S(4))/R

S (FTRR2F(U2)/avBl + -(U(2)/ OvBl
-(L1*U2)*q4)/avBl -U1)*S(4))/EPS)) + UL1)*q4) + ((L1
-OMBL) *U(2)/OvBL + U(2))*S(4))/R

Rot. of LRWrelative to B, axis 2.: (TRKR2*U2)/OvBlL + U1))/R

Rot. of RRWrelative to B, axis 2.: -(TRK2*U2)/OMBl - 1))/R

2
)
2
)

Note that in the intermediate stage (Table 9.2.4) some of the constraints include the
speeds U(3) and U(4), which are subsequently removed. Inthe later stage (Table 9.2.5) ,
those constraint equations have been updated so that the only speeds referenced are the two
remaining generalized speeds, U(1) and U(2).

The Dynamics Analysis

In this example, the four wheels have mass centers that cannot move relative to the
coordinate system of their parent (the parent is B for the rear wheels and F for the front
ones). Further, the moment of inertia of each wheel is the same about any axis normal to
the spin axis. Thus, the wheels fit the special cases identified in Chapter 8 for “fixed
masses’ and “rotors.”

Because the four wheels were classified as “fixed masses,” their masses were lumped
with the inertia properties of their parents (bodies B and F). Table 9.2.6 lists all of the
poi nt objects created for the system. Note that for bodies B and F, two points were

185

created for the center of mass. One (e.g., BCMB) applies to the mass center of the body
aone. The other (e.g., BCM) applies to a composite mass and includes the mass

properties of al children that are “fixed masses’ (e.g., bodies LRW and RRW).

Table 9.2.6. Pointsin the cart example.

Points | Description
Point BO: | Body B: #(0 0 0): coord. origin of the body of cart
Point BCM: | Body B: # BM*CMB1/(BM + 2.0*MW) 0 0): center of mass of B
Point BCMB: | Body B: #CMB1 0 0): center of mass of the body of cart
Point FO: | Body F: #(0 0 0): coord. origin of the front axle
Point FCM: | Body F: #(-FM* (EPS -CMFL)/(FM + 2.0*MW) 0 0): center of mass
of F
Point FCMB: | Body F. #(-(EPS-CMF1) 0 0): center of mass of the front axle
Point FJ: | Body B: #(L1 0 0): attachment point for the front axle
Point LFWO: | Body LFW: #(0 0 0): coord. origin of the left-front wheel
Point LFWCM: | Body LFW: #(0 0 0): center of mass of LFW
Point LFWJ: | Body F: #(-EPS -TRK2 0): attachment point for the left-front wheel
Point LRWO: | Body LRW: #(0 0 0): coord. origin of the |eft-rear wheel
Point LRWCM: | Body LRW: #(0 0 0): center of mass of LRW
Point LRWJ: | Body B: #(0 -TRK2 0): attachment point for the left-rear wheel
Point O: | Body N: #(0 0 0): fixed origin
Point RFWO: | Body RFW: #(0 0 0): coord. origin of the right-front wheel
Point RFWCM: | Body RFW: #(0 0 0): center of mass of RFW
Point RFWJ: | Body F: #(-EPS TRK2 0): attachment point for the right-front wheel
Point RRWO: | Body RRW: #(0 0 0): coord. origin of the right-rear wheel
Point RRWCM: | Body RRW: #(0 0 0): center of mass of RRW
Point RRWJ: | Body B: #(0 TRK2 0): attachment point for the right-rear wheel

Thebody object for B isshown in Table 9.2.7, after the constraints have been applied.
As mentioned before, the inertia properties apply to a composite body comprised of bodies
B, LRW and RRW. Hence, the mass ot of B contains the combined mass, the inertia slot
contains an inertia dyadic that includes the effects of the wheel masses, and the cm-point
slot contains a point with the center of mass of the composite body. Also, the two
translation speeds U(1) and U(2) are defined as scalar values of the velocity of the mass
center of the composite body. Hence, the velocity vector in the abs-vO slot is derived from
the mass center of the composite body.

186

Table 9.2.7. Slotsin body B.

Summary of body:
parent:

recursive-r:
recursive-t:

level:

children:

Name:

mass:
inertia:

unit-vectors:
trandation-coordinates:
trand ation-speeds.
rotation-coordinates.
rotation-speeds.
rotation-directions:
trandation-directions.
joint-pos:

CIMHPOS.

abs-w:

abs-vO:

COS matrix:

B

N

T

NIL

1

(F LRW RRW)

Body Of Cart

(BM + 2.0*MW)

(... +(BI33+BM*((1-BM/(BM +
2.0*MW))*CMB1)**2 +
MW?*(2.0*(BM*CMB1)**2/(BM + 2.0*MW)**2 +
2.0*TRK2**2))*([N3].[N3]))

#[B1] [B2] [N3])

(Q(1) Q(2)

(U(1) U(2)

(Q(3))

((BM + 2.0rMW)*U(2)/BM/CMB1)
(IN3])

(IN1] [N2])

(Point O: Body N: #(0 0 0): fixed origin)

(Point BCM: Body B: #(BM*CMBL/(BM + 2.0+MW) 0

0): center of mass of B)
(BM + 2.0*MW)*U(2)/BM/CMB1*[N3]

-((BM*CMB1*(BM + 2.0 MW)*U(2)/BM/CMBL/(BM +

2.0:MW) -U(2))*[B2] -U(1)*[B1])
#C(3) S(3) 0)

#-S(3) C(3) 0)

#0 0 1.0)

After the constraints are applied, the entire system has only two independent speeds:
U(1) and U(2). Theyaw rate, originaly designated U(3), was removed. The replacement
expression appears everywhere the symbol U(3) originally appeared, such asin the listing

of Table 9.2.7 for the rotation-speeds sot and the abs-w dlot.

187

Table 9.2.8. Slotsin body LRW

Summary of body: | LRW
parent. | B
recursve-r: [ROTOR
recursve-t: | FIXED

level: | 2
children: | NIL
Name: | Left-Rear Whed
mass. | MW

inertiac | (IT*([B1].[B1]) + IA*([B2].[B2]) + IT*([N3].[N3]))
unit-vectors. | #[LRW1] [B2] [LRW3])
rotation-coordinates. | (Q(7))
rotation-speeds. | (((BM + 2.0*MW)*TRK2*U(2)/BM/CMB1 + U(1))/R)
rotation-directions. | ([B2])
joint-pos. | (Point LRWJ: Body B: #(0 -TRK2 0): attachment point for
the left-rear wheel)
cmpos. | (Point LRWCM: Body LRW: #(0 0 0): center of mass of
LRW)
absw: | ((BM +2.0:MW)*U(2)/BM/CMB1*[N3] + ((BM +
2.0*MW)*TRK2*U(2)/BM/CMB1 + U(1))/R*[B2)])
absv0: | ((TRK2*(BM + 2.0-MW)*U(2)/BM/CMB1 + U(1))*[B1]
-(BM*CMB1*(BM + 2.0-MW)*U(2)/BM/CMB1/(BM +
2.0*MW) -U(2))*[B2])
cosmatrix: | #COS(Q(7)) 0-SIN(Q(7)))
- | #(01.00)
#SIN(Q(7)) 0 CO¥(Q(7)))

Table 9.2.8 shows the slotsin the body object created by the add- body macro for
the left-rear wheel, LRW. Here also, the speed introduced for the rotational degree of
freedom has been removed, and is replaced with an expression involving the two
independent speeds. Because the wheel is categorized asa r ot or, the inertiadyadic is
written using unit-vectors of the parent.

188

Two worksheet objects are shown to illustrate how the partid velocities and
acceleration remainders are defined for this system. Table 9.2.9 shows the worksheet for
body B and Table 9.2.10 shows the worksheet for body LRW.

Table 9.2.9. Worksheet for body B of cart.

Worksheet for body: | B
recursver: | T
recursve-t: | NIL

w. | QP(3)*[N3]

wisaarray. | (0,0,0,0,0,0,0,0)
wisabarray: | (0,0, [N3],0,0,0,0,0)
wisarray: | (0,0,[N3],0,0,0,0,0)
nhwisarray: | (O, (BM + 2.0*MW)/BM/CMB1*[N3])
alpha-rem: | O
alpha-ab: | O

nh-alpha-rem: | O

ra*b0: | O
v¥isarray. | ([B1],[B2],0,0,0,0,0,0)
v*isbodies. | (B, B, B, B, B, B, B, B)
nhv*isarray. | ([B1], [B2])
nhv*isbodies. | (B, B)
acc-rem: | -(-Z(12)*[B2] + Z(13)*[B1])
nh-acc-rem: | -(-Z(12)*[B2] + Z(13)*[B1])
acc-dyadic: | -(QP(3)**2*([B2].[B2]) + QP(3)**2*([B1].[B1]))

For al bodies, there are eight holonomic partial angular and central velocities, and two
nonholonomic counterparts. For this system, it so happens that the two independent
speeds were originally numbered U(1) and U(2), so they never changed indices as the
constraints were added. For body B, the holonomic and nonholonomic partial velocities
areidentical. However, holonomic partial angular velocities differ from the nonholonomic
ones, because the rotational speed of B (originaly U(3)) was removed by a constraint.

Body LRW isidentified as being recursive with respect to both rotation and trand ation.
Further, it isidentified asa“fixed mass’ for the trandational part of the analysis, and asa
“rotor” for the rotational part. Note that all unit-vectors that appear in the various terms

189

shown in Table 9.2.10 are based in either bodies N or B. That is, none of the terms are
defined in the basis of LRW. The equations of motions are kept simpler than they might be
otherwise, by not transforming any vectors into the coordinate system of LRW. Also, all
of the quantities used in the translational analysis are assigned to zero, since the mass of
RRW was accounted for in the analysis of B.

Table 9.2.10. Worksheet for body RRW of cart.

Worksheet for body: [RRW
recursve-r: [ROTOR
recursive-t: | FIXED
w-a: | QP(3)*[N3]
w-ab: [(U -(BM +
2.0*MW)*TRK2*U(2)/BM/CMB1)/R*[B2]
w: [(QP(3)*[N3] + QP(8)*[B2])
wisaarray. | (0,0,[N3],0,0,0,0,0)
wisabarray: | (0,0,0,0,0,0,0, [B2])
wisarray: | (0,0,[N3],0,0,0,0,[B2])
nhwisarray: | (1L.0/R*[B2], (-(BM +
2.0"MW)*TRK2/R/BM/CMB1*[B2] + (BM +
2.0"MW)/BM/CMB1*[N3]))
alpha-rem: | -PC(8)*(U(1) -Z(8))*QP(3)*[B1]
alpha-ab: | -(U(1) -(BM +
2.0*MW)*TRK2*U(2)/BM/CMB1)* QP(3)/R*[B1]
nh-alpha-rem: | -PC(8)* (U(1) -Z(8))* QP(3)*[B1]
v¥isarray. | (0,0,0,0,0,0,0,0)
v*isbodies. | (B, B, B, B, B, B, B, B)
nhv*isarray: | (O, 0)
nhv*isbodies. | (B, B)
acc-rem | O
nh-acc-rem: | O

190

Equations of Motion

The equations of motion for this system are shown in Figures 9.2.8, 9.2.9 and 9.2.10.
Thereisan interesting use of intermediate variables in the listings here. Without the
nonholonomic constraints, the kinematica equations for generalized coordinates Q(3)
through Q(8) would simply be of the form:

QR(3) = U3)
(4 = U4)
Q@(5) = U5)
Q(6) = U6)
QR(7) = U7)
QR(8) = U8)

However, the speeds U(3) through U(8) were eliminated as independent variables. Hence,
more complicated kinematical equations appear, which are essentially statements of the
constraint equations. Later, when a dependent speed might normally appear (e.g., in an
accel eration remainder), the derivatives QP(3) through QP(8) are likely to appear. For
example, they appeared in expressions for angular velocity and angular acceleration
remainder in the listing of the worksheet of body RRW in Table 9.2.9.

191

PQ(1) = 2. 0*MV

PQ(2) = (BM+ 2.0*MY

PQ(3) = (BM + 2. 0* MY/ BM QvBL

PQ(4) = (L1 -BMCMVBL/ (BM + 2. 0*MY)

PQ5) = (1 + (BM+ 2. 0*MY*(L1 - BMCMBL/ (BM + 2. 0*MY)/ BM Q\VB1)
PQ6) = 1.0/EPS

PQ(7) = TRK2/ EPS

PQ(8) = 1.0/R

PQ(9) = (BM+ 2. 0* My *TRK2/ BM CMVBL

PQ(10) = (FM + 2. 0*MA
PQ(11) = (2. 0*MNYEPS + FM (EPS - QW1))/(FM + 2. 0* MY

PQ(12) = (2. 0*MNEPS + FM (EPS - OWF1))/ (FM + 2. 0*MA/ EPS
PQ(13) = (1 -(2.0*MNEPS + FM (EPS - OW1))/(FM + 2. 0*MY/ EPS)
PQ(14) = (1 + (BM+ 2. 0*MY*(L1 - BV QVBL/ (BM +

& 2. 0*MY)/ BM OMBL) / EPS

PQ(15) = (FI33 + FM(-EPS + QW1 + (2. O*MNEPS + FM (EPS

& ~QWFL))/ (FM+ 2. 0*MY)**2 + MN (2. 0*(EPS - (2. 0*MVEPS +
& FM (EPS - OWFL))/ (FM + 2. 0*MY)**2 + 2. 0* TRK2**2))/ EPS
PQ(16) = (1 + (BM+ 2. 0*MA/*(L1 - BMFOVBL/ (BM + 2. 0*MA)/ BM QVBL)
& *(FI33 + FM(-EPS + QW1 + (2. 0*MNWEPS + FM (EPS

& -OWFL))/ (FM + 2. 0*MY)**2 + MA (2. 0*(EPS - (2. 0* MN EPS +
& FM (EPS - OWF1))/ (FM + 2. 0*M) **2 + 2. 0* TRK2**2))/ EPS
PQ(17) = INR

PQ(18) = | T/ EPS

PO(19) = IA*(1 + (BM+ 2. 0*My*(L1 - BMFQVBL/ (BM +

& 2.0*MY)/ BM OMBL)/ R

PQ(20) = IT(1 + (BM+ 2. 0*My*(L1 - BV OVBL/ (BM +

& 2. 0* M)/ BM OMBL) / EPS

PO(21) = 2.0*IAR

PQ(22) = (BM+ 2.0*MNV+ (2.0%IT + BI33 + BV ((1 -BM (BM +

& 2. 0* M) *OMVBL) **2 + MA(2. 0% (BM OVBL) **2/ (BM +

& 2.0*MA/**2 + 2. 0*TRK2**2) + 2.0*| A*TRK2**2/ R**2) * (BM +
& 2. 0* MAY ** 2/ (BIVF OMVBL) * * 2)

PQ(23) = (BM+ P((1))

PO(24) = PQ(23)/BM QvBL

PQ(25) = BMFOVBL/ PQ(23)

PQ(26) = (L1 -P((25))

PQ(27) = PQ(23)*PQ26)/ BM OVBL

PQ(28) = (1 + P((27))

PQ(29) = 2. 0*PQ(18)

PQ(30) = (PQ(15) + P((29))

PQ(31) = P('5)*P]17)

PQ(32) = PO 3)*P]11)

PQ(33) = P 3)*PJ 4)

PQ(34) = PQ(11)*P(14)

PQ(35) = (1 + PQ(33) -P((34))

PQ(36) = (1 + P((33))

PQ(37) = 2. 0*PQ(20)

PQ(38) = (PQ16) + PQ(37))

PQ(39) = PQ5)*PQ8)
PQ(40) = PQ(5)*Pq6)
PQ(41) = PQ(6)*P]30)
PQ(42) = PQ(8)*P]21)
PQ(43) = PQ(8)*Pq 17)
PQ44) = (PQ2) + PQ42))

Figure 9.2.8. Constantsthat are precomputed for the cart.

192

C Equations of Mtion

C
C Each derivative evaluation requires 94 nultiply/divides, 48
C add/subtracts, and 4 function/subroutine calls.
C
q3) = 0¥(Q3))
q4) = 0B(Q4))
3) = SINQ3))
. S(4) = SINQ4))
C Kinematical equations
C
QQ(1) = U1)*q3)
Q(2) = U1)*(3)
Q(3) = PA(3)*U2)
Z(1) = W2)*q4)
Z(2) = UW1)*(4)
Z(3) = (PA5)*Z(1) -2(2))
Z(4) = PO6)*Z(3)
Q(4) = (Z(4) -QF(3))
Z(5) = U1)*q4)
Z(6) = PQ7)*Z(3)
Z(7) = PQ5)*U2)*3(4)
Q(5) = PA8)*(Z(5) + Z(6) + (7))
Q(6) = PA8)*(Z(5) -Z(6) + Z(7))
Z(8) = Pq9)*U2)
Q(7) = PA8)*(U1) + Z(8))
QR(8) = PA8)*(U1) -7(8))
g

Figure 9.2.9. Kinematical equations for the cart.

The equations shown here are significantly more complex than those developed by Ge
and Cheng [28]. Neglecting the variable mass, their equations of motion require only 34
multiplications. The reason for thisisthat the “rocket car” had a front axle with no offset
from the steer point. That is, the mass center of the axle coincided with the steer point.
Also, the steer point was located along the spin axis of the front wheels. The input to
AUTOSIM was modified to match the description in [28], and interesting results were
obtained. Firgt, it was found to be necessary to change the relationship between the steered
front axle and the car body, such that the axle was the parent of the body. This ensured
that the constraint equations were non-singular.

The independent speeds defined by AUTOSIM were the forward velocity and yaw rate
of the steered axle. (Ge and Cheng used the forward velocity of the steered axle, and the
steer rate of the axle) The AUTOSIM formulation had the same efficiency (34
multiplications), but one of the dynamical equationsistrivial: UP(2) = 0. (U(2) isthe
symbol for the yaw rate of the front axle.) The equations of motion obtained by Ge and

193

Cheng can be transformed to show the same thing, but it is not obvious from a casual
inspection of the equations.

C
C Dynamcal equations
C
Z(9) = PQ(13)*(4)
Z(10) = PQ(35)*(4)
Z(11) = PQ(36)*S(4)
Z(12) = UW1)*Q(3)
Z(13) = U2)*Q(3)
Z(14) = (Z(13) + P(4)*P(3)**2)
Z(15) = (PO(11)*Z(4)**2 -Z(14)*q 4) + Z(12)*3(4))
Z(16) = (Z(5) + 2(7))*QP(4)
Z(17) = PQ(10)*Q(4)
Z(18) = PQ(10)*Z(9)
Z(19) = PQ(10)*Z(11)
Z(20) = PQ(10)*Z(10)
Z(21) = PQ(7)*S(4)
Z(22) = (-2(21) + ((4))
Z(23) = PA(7)*(4)
Z(24) = (Z(23) + $(4))
Z(25) = -(-PQ31)*U2)*Z(22) + PQ(17)*U1)*Z(24))*QP(4)
Z(26) = PQ(19)*Z(24)
Z(27) = (Z(21) + 4))
Z(28) = (-2(23) + (4))
Z(29) = -(-PQ31)*U2)*Z(27) + PQ(17)*U1)*Z(28))*Q(4)
Z(30) = PQ(19)*Z(28)
Z(31) = PQ(30)*Z(16)
Z(32) = (PO(12)*Z(16) + Z(12)*Q(4) + Z(14)*S(4))
Z(33) = (F + PQ2)*Z(13) -Z(15)*Z(17) -PQ8)*(Z(22)*Z(25) +

& 2(27)*2(29)) + Z(18)*Z(32) -PQ6)*Z(31)*(4))
Z(34) = (PO 44) + Z(9)*Z(18) + PQ(43)*(Z(22)**2 + Z(27)**2) +
& Z(17)*Q(4) + PQ(41)*(4)**2)

Z(35) = PQ(38)* 4)

Z(36) = (Z(9)*Z(20) -PQ(8)*(Z(22)*Z(26) + Z(27)*Z(30))

& -Z(19)*Q4) + PO 6)*Z(35)*Y(4))

Z(37) = Z(36)/Z(34)

2(38) = (-PQ2)*Z(12) -Z(15)*Z(19) -PQ(39)*(Z(24)*Z(25) +

& 2(28)*2(29)) -2(20)*Z(32) + Z(33)*2(37) +

& PQ(40)*Z(31)*Q(4))/ (PQ(22) + Z(11)*Z(19) + Z(10)*Z(20) +
& PO(39) *(Z(24)*Z(26) + Z(28)*Z(30)) -Z(36)*Z(37) +

& PQ(40) *Z(35) *((4))

UP(2) = Z(38)

UP(1) = (Z(33) + Z(36)*Z(38))/Z(34)

Figure 9.2.10. Dynamical equations for the cart.

194

9.3. Four-bar Linkage with Spring

The example described in this section illustrates (1) how closed kinematical loops are
handled, (2) the use of alternative coordinate systemsin the input description, and (3) use
of a“strut” force element.

Mode Description

The system is comprised of afour-bar linkage with a strut, shown in Figure 9.3.1. In

thisfigure, the coordinates of key points are shown using aglobal coordinate system
fixed in N. The system has three
bodies, A, B, and C. However, N-——C 32/(\L6' L7)
all mass is lumped in body B. Br Cp
. . Co

Bodies A anc.iCarema_sslaslmks (L5 L4)‘\€Q ® (L1, L
and there is a spring/damper
combination that is fixed between * g C B*

: . 5 @ (L1, L
two points. (The spring/damper
strut is shown as a simple spring.) | ! B h\ s
The system is subject to auniform (L1, L2
gravitational field. The system is (¢ 9}\ B,

- : X (L1 0

planar. The coordinates of points Ao (0, 0)

of joint locations, the mass center

of B, and the points of attachment

of the spring are shown for the Figure 9.3.1. Four-bar linkage.
nominal configuration.

The ssimulation will be used to obtain time histories of the angles of the three bodies, the
trgjectory of the mass center of B, and the force produced by the strut.

AUTOSM Description

The complete description of the system is shown in Figure 9.3.2. Thefirst three input
macros define the three rigid bodies, A, B, and C. The optional arguments : nass,
cinertia-matrix, :body-rotation-axes, :joint-coordinates, and
: cm coor di nat es were used in previous examples and should be familiar by now.
Thenext two macros, add- poi nt, should also be familiar. An additional optional
argument named : coor di nat e- system is used in most of these macros This

195

argument is used to specify an aternative coordinate system for coordinates provided to the
macro. Inthisexample, it isused for theadd- body and add- poi nt macrosto indicate
that coordinates are in the coordinate system of N. Thus, the global coordinates shownin
Figure 9.3.1 are provided directly as arguments.

(add-body a :mass 0 (add- poi nt s2 :body n

cinertia-matrix O ‘nane “strut pt 2"

- body-rot ati on-axes 3) :coordinates #(L6 L7 0))
(add-body b :parent a (add-strut f :nane "strut”

: body-rotation-axes 3 : magni t ude

;joint-coordinates #(L1 0 0) I"-k*(x - x0) - v*d"

:cmcoordinates #(L1 L3 0) spointl sl :point2 s2)

: coor di nat e- syst em n)

descri be out put vari abl es
(add-body c :mass O

cinertia-matrix O (add-out !'"-fm(f)" "F' :body b

: body-rotation-axes 3 :long-nane "strut force")

;joint-coordi nates #(L5 L4 0)

: coor di nat e- syst em n) (add-out !"dot([nl], pos(bcm)" "B*

X' :body b
(add- poi nt bp :nane "b-point" : | ong- nane

:body b "X coordi nate of B*")

:coordinates #(L1 L4 0)

: coor di nat e- syst em n) (add-out !"dot([n2], pos(bcm)"

"B* Y :body b
(add- poi nt cp :nane "c-point" : | ong- nane

body ¢ "Y coordi nate of B")

:coordinates #(L1 L4 0)

: coor di nat e- syst em n) (add- coor di nat es-t 0- out put)
(no- noverrent bp cp [bl]) (add-out !"g(1) + q(2)" "B-angle"
(no-moverrent bp cp [c2]) : | ong- nane

"angle of Brel. to N'
;; add gravity and strut force : body b)
(add-gravity (nks)
sdirection !'"-[n2]") (set-defaults L1 .5 12 .113 .2
4 .315.11L6 .3L7.5
(add-poi nt sl1:body b k 10000 d 10

:hame "strut pt 1" bm 10 bi33 1

:coordinates #(L1 L2 0) step .005 stopt 1 iprint 5)

: coor di nat e- syst em n)

Figure 9.3.2. Description of kinematics of four-bar linkage.

The closed kinematical loop is described by declaring that there is no movement
between two points: onein body B and onein C. First, the two points are defined with
add- poi nt macros, and called BP and CP. Then, the no- novenent macro is used
twice to add the constraints. The directions of the constraints ([b1] and [c2]) were chosen
with the rotational speeds of B and C in mind, such that the new constraints would not
duplicate constraints inherent in other joint kinematics. The component of the velocity of

196

point BP due to the rotational speed of B isin the direction [b1], and the component of the
velocity of point CP due to the rotational speed of C isin the direction of [c2]. On the other
hand, the component of the velocity of BP in direction [b2] is the same as the component of
the velocity of By in direction [b2], and has no relationship whatsoever to the rotational
speed of B. (Depending on the orientation of the bodies, it may or may not be related to
other generaized speeds.)) No matter how the bodies in the system are oriented,
coefficients obtained for speed constraints defined for the directions [bl] and [c2] are
nonsingular.

Themacros add- gravi ty and add-strut apply forces due to gravity and the
strut, respectively. The add- st r ut macro is used for a force whose direction changes
as needed so that the force passes through two known points. The magnitude of the force
is provided as an expression with the keyword : magni t ude. Three dummy variables
can appear in the expression, and all three are used in the example: (1) the symbol x is
replaced by an expression for the distance between the two points, (2) the symbol x0 is
replaced by a constant expression for the nominal distance between the two points, and (3)
the symbol v is replaced by an expression for the speed between the two points, along line
connecting the points. Because the spring force is proportional to thedistance (x - x0),
the free spring length is the nominal length. That is, when the system is oriented as drawn
in Figure 9.3.1, the spring produces zero force.

Next, output variables are defined. The simulation code will include the strut force, the
coordinates of the mass center of B, the generalized coordinates of the system, and the
absolute rotation angle of B.

Results

Time history plots are shown in Figures 9.3.3 through 9.3.6 for two sets of initial
conditions: (1) the nomina configuration, and (2) the lower link rotated down by an angle
of 0.5 radian. Inthefirst case, the orientation isinitially trivial to compute, because it
exactly matches the drawing of figure 9.3.1. Itisnot in equilibrium, however, because the
spring is not producing atensile force to balance the weight of B. In the second case, the
initial values of the angles of bodies B and C must be computed to maintain the constraints.

197

Rotation - rad -0—0- Q(1) (angleof A)
6x10° | ~A—A- Q(2) (angle of B rel. to A)
-0—0- Q(3) (angleof C
wio? | Q) (angleof)
% 4 B-angle (absolute)
2x10°
0
-2x10°
4x10°
-6x10°2
0 2 4 .6 8 1
Time- sec

Figure 9.3.3. Time histories of rotation angles for nominal initial

conditions.
Rotation - rad

ot a9 gp \ﬁ]:_/ @(-
-] \/ === Q(1) (body A)

——— Q(2) (body B rel. to A)

-4
-0—0- Q(3) (body C)
-.€ & < B-angle (absolute angle)
- '
0 2 A4 6 8 1
Time- sec

Figure 9.3.4. Time histories of rotation angles for displaced initial
conditions.

198

strut force- N
2500 —3—- nominal initial conditions
2000 ~—— Body A initialy rotated 0.5 rad down

1500
1000

500

-500

-1000

-1500

Time- sec
Figure 9.3.5. Time histories of strut force.

The model was validated by running a similar model through the DADS program. To
simplify the representation in DADS, the model was modified to include nonzero mass and
inertiavalues for bodies A and C. When a corresponding simulation code was generated
with AUTOSIM (i.e., with bodies A and C having nonzero masses and moments of inertia)
the results from DADS and the smulation code generated by AUTOSIM agreed.

Analysis Details

This system involves several analysis methods that were not used in previous
examples. First, the coordinates of points in the system were all provided in the global
coordinate system. When the AUTOSIM inputs were processed, the coordinates of each
point were converted to the coordinate system of the body containing the point. This can
be seen by viewing all of the pointsin the systems, shown in Table 9.3.1.

The state variables and constraint equations are shown in Table 9.3.2. The constraints
applied by the no- novenent macros reduce the number of degrees of freedom to one: the
rotational speed of body A. Also, two of the coordinates are classified as “computed
coordinates,” rather than as “independent coordinates.”

199

Y coordinate of B* - m

4

0 d 2 3 4

X coordinate of B* - m
Figure 9.3.6. Trajectory of mass center of body B.

Table 9.3.1. Points defined for four-bar linkage.

Point: | Description
Point O: | Body N: #(000): fixed origin
Point AO: | Body A: #(0 0 0): coord. origin of A
Point BJ: | Body A: #(L1 0 0): attachment point for B
Point BO: | Body B: #(0 0 0): coord. origin of B
Point BCMB: | Body B: #(0 L3 0): center of mass of B
Point BCM: | Body B: #(0 L3 0): center of mass of B
Point CJ: | Body N: #L5 L4 0): attachment point for C
Point CO: | Body C: #(0 0 0): coord. origin of C
Point BP: | Body B: #(0 L4 0): B-point
Point CP: | Body C: #((L1-L5) 00): C-point
Point S1: | Body B: #(0 L2 0): strut pt 1
Point S2: | Body N: #(L6 L7 0): strut pt 2

200

Table 9.3.2. State variables and speed constraints for four-bar linkage.

Generalized Coordinates:
Q(2): Rotation of A relative to theinertial reference about axis #3. (rad)
Q(2): Rotation of B relativeto A about axis#3. (rad)
Q(3): Rotation of C relativeto the inertia reference about axis#3. (rad)

Independent Speeds:
U(1): Abs. rot. of A, axis 3. (rad/s)

Nonholonomic Constraints:

Rot. of B relativeto A, axis 3.: -U(1)* (1 -L1*(S(2) -(L1 -L5)* (C(3)* (C(L)*C(2)**2 -
C(2)*$(1)*S(2)) + C(2)* (C(2* (1) + C(1)* K(2))* S(3))* (S(2)* (C(D)*C(3) +
S(1)*S(3)) + C(2)*(C(3)* (1) -C(1)* S(3)))/(L1-L5 -(L1 -L5)*(S(2)* (C(1)*C(3)
+ S(1)*S(3)) + C(2)*(C(3)* (1) -C(1)* (3)))**2))/L4)

Abs. rot. of C, axis 3.: L1*U(1)* (C(3)* (C(1)*C(2)**2 -C(2)*S(1)* S(2)) +
C(2)*(C()* (1) + C(1)*(2))* S(3))/(L1 -L5 -(L1 -L5)* (S(2)* (C(1)*C(3) +
S(1)*S(3)) + C(2* (C(3)* (1) -C(1)*(3)))**2)

The simulation code, listed in Appendix C, includes several subroutines that are not
written for the other examplesin this chapter. After the input data are read, the main
program calls the subroutine MNEWT to solve the multiple equation set for the initial
conditions using a Newton-Raphson iteration. The subroutine MNEWT in turn solves
multiple linear equations with subroutines LUDCMP and LUBKSB. The algorithms used
are fairly standard (the subroutines were adopted from listings provided in []). The
subroutine INITR, generated by AUTOSIM, computes the constraint errors for the system
and the Jacobian coefficients to define the linear equations solved by LUDCMP and
LUBKSB.

A section of the code in the subroutine INITNR is shown in Figure 9.3.7. Each of the
two constraint equations has an error function (BETA) that is zero when the constraint is
satisfied. The Jacobian (ALPHA) providesthe partial derivative of each error function with
respect to a computed variable. In this subroutine, the independent variableis called Q(1),
just asit is elsewhere in the simulation code. However, the two computed variables,
normally called Q(2) and Q(3), are called X(1) and X(2) in this subroutine. (The changein
names is made to accommodate the subroutine MNEWT that computes candidate val ues of
the computed coordinates.)

201

BETA(1) = (-L1*OO8(X(1)) + L4*(QOB(X(1))*SINQ1)) +

& OC5((1)) *SINCX(1))) + L5*(Q08((1)) *Q08(X(1))

& -SINQ(L))*SINCX(1))) + (L1 -L5)*(-SIN(X(1))

& *(OO(X(2))*SINQ1)) -CA8(Q1))*SINCX(2))) + Q(X(1))
& *(0X(Q1))*OB(X(2)) + SINQ1))*SINX(2)))))

ALPHA(L, 1) = - (-L5*(OB(X(1))*SINQ(1)) + OB(Q1))*SIN(X(1))) +
& L4*(OCB((1)) *CB(X(1)) -SINQ1))*SIN(X(1))) +

& L1*SINCX(1)) -(L1 -L5)*(SINCX(1))* (00 Q1)) *OB(X(2)) +
& SINQ(1))*SINCX(2))) + GO8(X(1))*(OB(X(2))*SINQ1))

& -005(Q(1))*SINCX(2)))))

ALPHA(L, 2) = - (L1 -L5)*(O05(X(1))*(Q3B(X(2)) *SI N(Q(1))

& -008(Q(1))*SINCX(2))) + SINCX(1))*(0B(Q1))*OB(X(2)) +
& SINQ1))*SINCX(2))))

BETA(2) = -(L5*SINCX(2)) -L4*(Q0(X(2)) + SIN(X(1))

& *(OO(X(2))*SINQ1)) -CB(Q1))*SINX(2))) -OB(X(1))

& *(O0(Q1))*008(X(2)) + SINQ1))*SINX(2)))) + L1

& *(OB(X(2))*SINQ1)) -OB(Q1))*SINX(2))))

ALPHA(2, 1) = -L4*(SINCX(1))* (00X Q1)) *OO(X(2)) +

& SINCQ(1))*SINCX(2))) + GO8(X(1))*(OB(X(2))*SINQ1))

& -005(Q(1))*SINCX(2))))

ALPHA(2,2) = (L5*CO8(X(2)) + LA*(SINX(2)) + SIN(X(1))

& *(O0(Q1))*Q0(X(2)) + SINQ1))*SINCX(2))) + OO(X(1))
& *(OO(X(2))*SINQ1)) -OB(Q1))*SINX(2)))) -L1

& *(OO(QD))*OB(X(2)) + SINQD)*SINX(2))))

Figure 9.3.7. Jacobian matrix (ALPHA) and error function (BETA) used to
compute initial conditions for four-bar linkage.

The computer code shown in Figure 9.3.7 is obviously not optimized in the same
fashion as the Fortran code appearing elsewhere in the simulation code. The Newton-
Raphson iteration is performed only once in each simulation run, as part of the
initialization. Thus, the numerical efficiency of this code has a negligible effect on the
efficiency of the simulation code as awhole.

The computed initial conditions are written in the echo file, made for each simulation
run. The simulation run that generated the data plotted in in Figures 9.3.3 through 9.3.6
produced the echo file shown in Table 9.3.3.

After the initiaization, constraints on the coordinates are handled largely by the
inclusion of constraints on the corresponding speeds in the formulation of the dynamical
equation. However, to avoid violating a constraint due to accumulated integration error, a
correction is made each time the subroutine DIFEQN is caled. The codethat “corrects’ the
computed coordinatesis listed in Figure 9.3.8. The purpose of the code isto correct the
values of the variables Q(2) and Q(3), which are both shown in boldface.

202

Table 9.3.3. Echo filefor 4-bar linkage with displaced initial conditions.
PARSFI LE

Echo file created by:

4-bar |inkage simlation program

Version created Decenber 11, 1989 by AUTCSl M

TITLE Default paraneter val ues

* |nput File: echoic
* Run was nade 13:02 on Dec 11, 1989

* PARAMETER VALUES

Bl 33 1. 00000 nmonent of inertia of B (kg-nR)

BM 10. 0000 nmass of B (kg)

D 100. 000 coefficient in termin strut (N-sec/rad/nm

| PRINT 1. 00000 no. of tine steps between printing (counts)
K 10000. 0 stiffness coefficient intermin strut (Nn
L1 . 500000 coord. of attachment point for Bindir 1 (m
L2 . 100000 coordinate of strut pt 1 indir 2 (m

L3 . 200000 coordinate of center of nass of Bindir 2 (n)
L4 . 300000 coordinate of b-point indir 2 (m

L5 . 100000 coord. of attachment point for Cindir 1 (n
L6 . 300000 coordinate of strut pt 2indir 1 (m

L7 . 500000 coordinate of strut pt 2indir 2 (m

STEP 0. 500000E-02 simulation time step (sec)

STCPT 1. 00000 simul ation stop tine (sec)

* INTIAL COND TI ONS

Q1 -. 500000 Rotation of Arelative to the inertial reference about
axis #3. (rad)

Q2 . 563473 Rotation of Brelative to A about axis #3. (rad)

Q3) -. 644491 Rotation of Crelative to the inertial reference about
axis #3. (rad)

U 1) . 000000 Abs. rot. of A axis 3. (rad/s)

END

The corrections made by the code in Figure 9.3.8 arerecursive. That is, the new
values of Q(2) and Q(3) are computed by adjusting the values that were provided by
numerically integrating their derivatives. If there were no error in the numerical integration,
then the correction terms Z(21) and Z(41) would be zero. With the second-order numerical
integration method used in Appendix C, the error istypically on the order of 10-6 radian.
By using the correction technique illustrated in the above listing, acceptable accuracy is
obtained with simple integration agorithms and single precision variables.

203

Z(1) = L5*S(3) Z(23) = LI*Q(2)

Z(2) = q3)*Y(1) Z(24) = q1)*q2)

Z(3) = q1)*¥(3) Z(25) = §(1)*¥(2)

Z(4) = (A2) -Z(3)) Z(26) = (Z(24) -Z(25))
Z2(5) = Z(4)*S(2) Z(27) = L5*Z(26)

Z(6) = q1)*q3) Z(28) = q2)*Y(1)

Z(7) = §(1)*(3) Z(29) = 01)*Y(2)

Z(8) = (Z(6) + Z(7)) Z(30) = (Z(28) + Z(29))
2(9) = 2(8)*Q(2) Z(31) = L4*Z(30)

Z(10) = (Z(5) -Z(9) + A3)) Z(32) = (-Z5) + Z(9))
Z(11) = L4*Z(10) Z(33) = PQ(1)*Z(32)
2(12) = L1*Z(4) Z(34) = (Z(23) -2(27) -Z(31) -Z(33))
Z(13) = (Z(1) -Z(11) + Z(12)) Z(35) = L4*Z(26)

Z(14) = L5*Q(3) Z(36) = L5*Z(30)

2(15) = Z(8)*S(2) 2(37) = L1*S(2)

2(16) = Z(4)*Q(2) Z(38) = (Z(15) + Z(16))
Z(17) = (Z(15) + Z(16) + (3)) Z(39) = PQ(1)*Z(38)
Z(18) = L4*Z(17) Z(40) = (Z(35) -Z(36) + Z(37) -Z(39))
Z(19) = L1*Z(8) Z(41) = Z(34)1Z(40)
Z(20) = (Z(14) + Z(18) -Z(19)) Q(2) = (Q(2) + Z(41))
Z(21) = Z(13)/2Z(20)

2(22) = (-Q(3) + Z(21))

Q3) = -2(22)

Figure 9.3.8. Correction of integration error in computed coordinates Q(2)
and Q(3) for four-bar linkage.

Forces

F: strut: Expression = FORCEM (1): Direction = -(L7/SQRT(L6*(L6-L1*C(1) +
L2*(C(2)*S(1) + C(1)*S(2))) + L2* (L2 + L6*(C(2)* (1) +C(1)*S(2)) -L1*S(2) -
L7*(C(1)*C(2) -S(1)*S(2))) + L1*(L1-L6*C(1)-L7* (1) -L2*S(2)) + L7*(L7 -
L1*S(1) -L2*(C(1)*C(2)-S(1)* S(2))))*[N2] + L6/SQRT(L6*(L6 -L1*C(1) +
L2*(C(2)*S(1) +C(1)*S(2))) + L2* (L2 + L6*(C(2)*S(1) + C(1)*S(2)) -L1*S(2) -
L7*(C(1)*C(2) -S(1)*S(2))) + L1*(L1-L6*C(1) -L7*S(1) -L2*S(2)) +L7*(L7 -
L1*S(1) -L2*(C(1)*C(2) -S(1)*S(2))))*[N1] -L2/SQRT(L6*(L6-L1*C(1) +
L2*(C(2)*S(1) + C(1)*S(2))) + L2* (L2 + L6*(C(2)* (1) +C(1)*S(2)) -L1*S(2) -
L7*(C(1)*C(2) -S(1)*S(2))) + L1*(L1-L6*C(1)-L7* (1) -L2*S(2)) + L7*(L7 -
L1*S(1) -L2*(C(1)*C(2)-S(1)*S(2))))*[B2] -L/SQRT(L6*(L6-L1*C(1) +
L2*(C(2)*S(1) +C(1)*S(2))) + L2* (L2 + L6*(C(2)* (1) + C(1)*S(2)) -L1*S(2) -
L7*(C(1)*C(2) -S(1)*S(2))) + L1*(L1-L6*C(1) -L7*S(1) -L2*S(2)) +L7*(L7 -
L1*$(1) -L2*(C(1)* C(2) -S(1)* S(2))))* [A1D).
Actson B from the inertial reference through strut pt 1 and strut pt 2

Figure 9.3.9 For ce object created to represent strut.

204

One final note about this exampleisthat it includes a force-producing component that
involves complicated algebraic expressions. The add- st r ut macro shown in Figure
9.3.2 createsthef or ce object listed in Figure 9.3.9.

9.4. “Spacecraft #1”

A spacecraft model with 10 degrees of freedom is described in the SD/FAST Users
Manual [5]. That model was analyzed with AUTOSIM to determine how the simulation
codes produced using the methods described in this dissertation compare with those
produced by SD/FAST in terms of efficiency and agreement of the predicted variables.
Also, this example illustrates how external subroutines are incorporated into the simulation
codes generated by AUTOSIM.

Mode Description

The spacecraft is composed of three rigid bodies and one flexible body modeled as a
rigid body with au-joint. The rigid bodies are the main body of the craft, called the bus
and designated body B, a camera (body D), and a supporting shaft called aclock (body C).
The flexible member is called the boom (massless body E and body F). Figure 9.4.1
shows a sketch of the rigid bodies, reference points, and dimensional parameters.

\

Camera, D Axisdirections
'—?f’ forN,B, C, E, F
\ I:% L3 - >
AXxis : |
directions (L6 Co! ! Do
for D —~[————¢—1—
1 A 1
3
L2 |
2 \ | cx Clock, C 3
L1 é
| L7 L8
! B*, Bo | e
| Eo,Fo,‘ -
Bus, B Boom, F

Figure 9.4.1. Sketch of bodies in Spacecraft #1.

205

The flexibility of the boom is modeled with a two-degree of freedom hinge, with
torsional stiffness KB and torsional damping rate BB in the directions 1 and 3.

Movements of the clock and camera are controlled. The controller is modeled as
applying atorgue through a massless eement with torsiona stiffness KCLOCK and
torsional damping rate BCLOCK to the clock. The torque applied to the camerais also
through a massless element with the same stiffness and damping properties as used for the
clock.

The object of the simulation isto simulate a“slew maneuver” in which the clock and
camera are moved from initial values of 4 and -0.5 radians, respectively, to final values of
3.75 and -0.4 radians, over aten-second interval. A Fortran subroutine, based on the
examplein [5], islisted in the left-hand column of Figure 9.4.2. The smulation code
should include this subroutine to obtain the control signals.

SUBROUTI NE CMX(T, CLKOVD, CAMOMD)
IF (T .LT. 1.) THEN
CLKOWD = 4.
CAMOMD = -.5
ELSE IF (T .LT. 11.) THEN
COLKOWD = 4. -.025*(T-1.)
CAMOVD = -.5 + .01*(T-1.)
ELSE

CLKOWD = 3.75
CAMOVD = - . 4
END | F
RETURN

FUNCTI ON THRUST(T, AXI S, ERROR)

| NTEGER AXI S

REAL DBAND, TM N FIRE(3), TCFF(3)
SAVE TCFF, FIRE

DATA DBAND /. 0025/

DATA TM N /. 02/

DATA FIRE, TOFF /3*0., 3*0./

|F (ERRCR . LT. -DBAND) THEN
FIRE(AXS) =1
TOFF(AXIS) = T + TMN

ELSE | F (ERRCR . GI. DBAND) THEN

FIRE(AXIS) = -1
TOFF(AXIS) = T + TMN

ELSE IF(T .GE. TOFF(AXIS)) THEN
FIRE(AXIS) =0

END | F

THRUST = FI RE(AXI)

RETURN

END

Figure 9.4.2. Subroutines for computing control signals and couples from
thrusters.

The orientation of the spacecraft body is controlled by three pairs of thrusters that fire
bursts of propellent when the angle of the craft drifts beyond a“dead zon€e” tolerance. Each
pair of thrustersis balanced to apply a pure couple to B about the directions 1, 2, and 3.

The control laws of the thrusters used in Ref. [5] are shown in the Fortran listing in the
right-hand column of Figure 9.4.2. Each of three thruster pairs fires when an error signal
exceeds a threshold of 0.0025, and remains on for at least atime duration of 0.02 seconds.

206

The algorithm shown in the figure assumes that the function is always caled with
increasing values of time.

AUTOSM Description

Theinputsto AUTOSIM that define the rigid bodies of the system are shown in the
listing of Figure 9.4.4. The two-degree-of-freedom joint between the bus and the boom is
entered as two bodies, each with a single rotational degree of freedom. (Thefirst, E, is
massless.) Therotation axis of the camera (axis #1) is reversed from the direction of axis
#1 in the clock. Hence, the coordinate system of D in the nominal orientation is reversed
relative to the coordinate systems of the other bodies.

Two simulation codes are generated for this model. The first uses the full, nonlinear
equations generated with the input shown in Figure 9.4.3. The other makes use of the
knowledge that some of the variables are numerically small. To make the small-variable
eguations, the input of Figure 9.4.3 is modified asindicated in Figure 9.4.4. (Changes are
shown in boldface.)

Describing the moments acting between bodies is made quite smple if the names of the
state variables are known. The listings obtained from AUTOSIM are shown for reference
in Tables9.4.1 and 9.4.2.

The moments acting on the multibody system are described in the listing of Figure
9.2.5, which continues the input to AUTOSIM started in Figure 9.4.3.

The first two lines define moments acting on the boom (body F) from the bus (body
B). The magnitudes of the moments are specified with equations defining simple torsional
springs and dampers, involving the coordinates and speeds defined in Table 9.4.1 and
9.4.2.

In order to obtain expressions for the moments acting on the clock and camera, the
subroutine that computes new control signals must be included. As shown by thelisting in
Figure 9.4.2, the subroutine CMD computes two control variables as functions of time.
First, two variables are defined in AUTOSIM to pass as arguments to this subroutine,
using the macro add- var i abl esl. The macro indicates that (1) the variables will be

1 If the add-vari abl es macro were not used, AUTOSIM would assume that the symbols
CLKCMD and CAMCMD are parameters, and would write code to read them from the input file. Asit
turns out, the simulation code would run correctly. However, its operation might be obscure to a person

207

used in the subroutine DIFEQN that AUTOSIM will soon generate, (2) the variables are
REAL, and (3) there are two variables, called CLKCMD and CAMCMD. The next input,
with the macro add- subr out i ne, instructs AUTOSIM to include the subroutine CMD
when DIFEQN iswritten. Also, the argumentsto CMD are specified.

(add- body B : nanme "Bus"
:translate (1 2 3)
:body-rotation-axes (1 2 3))

(add-body c :name "cl ock"
iparent b
cinertia-matrix #(ci ci 0)
:body-rotation-axes 3
;joint-coordinates #(0 0 !"-L1")
:cmcoordinates #(0 0 L2))

(add-body d : nane "Canera"
‘parent c
;joint-coordinates #(0 !"-L3" 0)
:cmcoordi nates #(0 L5 L6)
:body-rotation-axes 1
“parent-rotation-axis #(-1 0 0))

(add-body e :parent b
:Joi nt-coordinates #(0 !"-L7" 0)
sinertia-matrix O :nass O
“parent-rotation-axis 3
: body-rotation-axes 3)

(add- body f :name "Boont
:parent e
cinertia-matrix #(FI1 FI2 Fl1)
:cmcoordinates #(0 !"-L8" 0)
‘parent-rotation-axis 1
. body-rotation-axes 1)

Figure 9.4.3. Description of spacecraft bodies for AUTOSIM

Next, the two torques generated by the clock and camera motors are added. Thefirst,
CLOCKT, defines a torque acting between the bus and the clock. The magnitudeis an
expression involving the relative angular position of the clock, Q(7), the relative angular
speed, U(7), and the control variable, CLKCMD. The second, CAMT, defines a similar
torque acting between the clock and the camera.

The last three inputs describe the moments applied by the thruster pairs. The function
THRUST, listed earlier, is referenced by name in the expressions for the magnitude of the
active moments.

perusing the source code.

208

(add- body B : nanme "Bus"
:small-angles (t t t)
:small-translations (t t t)
‘translate (1 2 3)
:body-rotation-axes (1 2 3))

(add-body e :parent b
:Joint-coordinates #(0 !"-L7" 0)
sinertia-matrix O :nass O
:smal | -angles (t)
‘parent-rotation-axis 3
: body-rotation-axes 3)

(add- body f :name "Boont
:parent e
cinertia-matrix #(FI1 FI2 Fl1)
:cmcoordinates #(0 !"-L8" 0)
:smal | -angles (t)
iparent-rotation-axis 1
: body-rotation-axes 1)

;;; declare parameters “large” so nonents resulting from*“snall”
;; variables are not snall

(Il arge kb bb)

Figure 9.4.4. Modificationsto define “small” variables.

Table 9.4.1. Generalized coordinates for Spacecraft #1.

Q(2): Trandation of BO relative to the fixed origin along [n1]. (m)
Q(2): Trandation of BO relative to the fixed origin along [n2]. (m)
Q(3): Trandation of BO relative to the fixed origin along [n3]. (M)
Q(4): Rotation of Bpp relative to N about axis #1. (rad)

Q(5): Rotation of Bp relative to Bpp about axis #2. (rad)

Q(6): Rotation of B relative to Bp about axis #3. (rad)

Q(7): Rotation of the clock relative to the bus about axis #3. (rad)
Q(8): Rotation of the camerarelative to the clock about axis#1. (rad)
Q(9): Rotation of E relative to the bus about axis #3. (rad)

Q(10): Rotation of the boom relative to E about axis#1. (rad)

209

Table 9.4.2. Independent speeds for Spacecraft #1.

U(1): Abs. trans. speed of B* along axis 1. (m/s)
U(2): Abs. trans. speed of B* along axis 2. (m/s)
U(3): Abs. trans. speed of B* along axis 3. (m/s)
U(4): Abs. rotation of B about axis#1. (rad/s)
U(5): Abs. rotation of B about axis#2. (rad/s)
U(6): Abs. rotation of B about axis#3. (rad/s)
U(7): Rot. of relative to B, axis 3. (rad/s)

U(8): Rot. of D relativeto C, axis 1. (rad/s)
U(9): Rot. of E relativeto B, axis 3. (rad/s)
U(10): Rot. of F relativeto E, axis 1. (rad/s)

5, Add nmonents that are due to flexing of the boom

(add-monent bt1 : nane "boomtorque Z'
:direction [e3] :bodyl f :body2 b
:magni tude !"-kb*q(9) - bb*u(9)")

(add-morrent bt 2 : nane "boomtorque X'
:direction [f1] :bodyl f :body2 b
:magni tude !'"-kb*q(10) - bb*u(10)")

;. add nonments fromclock and camera notors

(add-vari abl es difegn real clkend cancnd)
(add-subroutine difegn cnd t cl kend cantnd)

(add- morrent cl ockt :name "torque fromclock notor"
:direction [c3] :bodyl c :body2 b
:magni tude !"kcl ock*(-q(7) + clkend) - bcl ock*u(7)")

(add- monent cant :name "torque fromcanera notor”
:direction [d1l] :bodyl d :body2 c
:magni tude !"kcl ock*(-q(8) + cantnd) - bcl ock*u(8)")

;; add nonents fromthrusters

(add-rmonent tt1 :nane "thruster nonent #1"
:direction [bl] :bodyl b
:magnitude !'"Itt1*func(thrust, t, 1, (gyro*u(4) + q(4)))")

(add-rmorent tt2 :name "thruster nmoment #2" :direction [b2] :bodyl b
:magnitude !"ltt2*func(thrust, t, 2, (gyro*u(5) + q(5)))")

(add-rmonent tt3 :nane "thruster nonent #3" :direction [b3]
:magnitude !'"Itt3*func(thrust, t, 3, (gyro*u(6) + q(6)))"
: bodyl b)

Figure 9.4.5. AUTOSIM description of active moments.

210

The remaining inputsto AUTOSIM are shown in the listing of Figure 9.4.6. They
specify (1) that the units system is metric, (2) default values for the parameters, (3) that the
simulation code should include all coordinates, speeds, and moments as output variables,
and (4) that the dynamics analysis should be performed.

(mks)

(set-defaults L1 1.5L2 .75 L3 .1 L5 .22 L6 .2 L7 1.2 18 3.3
BM410 OM6.8 DM57.5 FM 10.7
Bl 11 115 Bl 12 -14 Bl 13 14
Bl 22 316 BI 23 -34.6 Bl 33 440
a .35
D11 4.85 D12 -0.41 D13 -.07
D222 2D23-0.54D32-0.54D335.5
Fll127.2 FI2 0.2
LTT1 .23 LTT2 .21 LTT3 .31 GYRO 2
KALACK 3500 BOLOK 20 KB 2000 BB 10
STEP .02 STCPT 30)

(add- coor di nat es-t o- out put)
(add- speeds-t o- out put)
(‘add- morrent s-t 0- out put)
(dynam cs)

Figure 9.4.6. Define units, default values, output variables, and name of
multibody system.

Results

Time histories from the simulated slew maneuver are shown in Figures 9.4.7 and
9.4.8. Performances of the different smulation codes are summarized in Table 9.4.3.

211

-0—0- Q(4); AUTOSIM--full nonlinear
——2— Q(5); AUTOSIM--full nonlinear
-0—0- Q(6); AUTOSIM--full nonlinear
- Q(4); AUTOSIM--small variables
23¢ Q(5); AUTOSIM--small variables
1 Q(6); AUTOSIM--small variables
-V—V Q(4); SD/Fast

——0— Q(5); SD/Fast

—-a—8- Q(6); SD/Fast

Rotation - rad

3x10°

2x10° /A/’;_gz, e o
X.,-Zﬂ WW—H

10 -)
L
\

-10 }f

M—f g

-3x10°
0 5 10 15 20 25

Time- sec
Figure 9.4.7. Time histories of satellite attitude variables during slew
maneuver .

212

-0—0- AUTOSIM--full nonlinear
2~ AUTOSIM--small variables
-0—0O- SD/Fast

Rot. of Frel. to E, axis#1 - rac
2x10™

1.5x10™

S i

5x10°

>

0 u HA r\\# Wﬂvn\ji\vl\ynvavﬂvﬁvﬂvﬂvfg /

o)
S

-5x10”°
-10™ 4
-1.5x1C™* A
0 5 10 15 20 25 30
Time- sec

Figure 9.4.8. Time histories of boom deflection during slew maneuver.

Table 9.4.3. Performance comparisons between three simulation codes.

Source addsand | multiplies, divides,
subtracts | and function calls
SD/FAST Users Manual! 709 1094
AUTOSIM, using full, nonlinear formulation 628 791
AUTOSIM, using small variablesfor 8 d.o.f. 442 514

1 The subroutine SDNSIM contains 920 multiply/divides, 576 add/subtracts, and 14 trig function
evaluations. The solution of 7 simultaneous equations adds 139 multiply/divides and 126 add/subtracts.
The DERIV subroutine and additional routines add 14 multiplies, 7 adds, and 6 function/subroutine calls.

213

9.5. “Spacecraft #2”

A spacecraft model with 10 degrees of freedom was used to demonstrate the methods
used by Nielanin his SYMBA symbolic analysis code. Thisexampleis provided mainly to
compare the efficiencies of AUTOSIM and SY MBA for spacecraft vehicles.

Model Description

The spacecraft is composed of five rigid bodies: amain body W and four antennas, Al,
A2, A3, and A4. Dimensions and pointsin the spacecraft are shown in figure 9.5.1.

A4,

A3,

A4* A
-
° i : 3

2

1 ts
A A3 /1 .
r N Al
A20¢ Wo, W*
<

1,

Figure 9.5.1. Dimensions of “ Spacecr aft #2.”

The hinge points for the four antennas are located at points Alg, A2p, A3p, and Adg. The
coordinates of those pointsare (L1, 0, L2), (L1, L2, 0), (L1, 0,—-L2),and (L1, -L2, 0),
respectively, in the coordinate system of W. The centers of mass of the four antennas are
located a distance L3 from the hinge points, as shown.

The antenna hinges have torsional stiffness K and damping rate D. The rotation axes
for Al and A3 lie parallel with the #3 axis of W, for A2 and A4 therotation is parallel with
the #2 axis. Giventheinitial conditions of the antennas al aligned as shown, and an initia
angular rotation vector for W, the objective of the smulation isto view the time histories of
the body velocity components and the antenna angular displacements.

214

AUTOSM Description

The description of this system in AUTOSIM is straightforward and is presented in
Figure 9.5.2. All of the inputs have been described in previous examples and should be
familiar to the reader. The state variables introduced for the system are listed in Table
9.5.1. (They appear in the expressions for the moments applied by the torsional springs

and dampers.)

(add- body W
cinertia-matrix #(1xx lyy |1zz)
:translate (1 2 3)
:body-rotation-axes (3 2 1)
s mass)

(add-body al :parent w
cinertia-matrix #(0 iaia)
s mass n?
;joint-coordinates #(L1 0 L2)
:cmcoordinates #(L3 0 0)
:body-rotation-axes (2))

(add-body a2 :parent w
cinertia-matrix #(0 iaia)
s mass n?
:joint-coordi nates #(L1 L2 0)
:cmcoordinates #(L3 0 0)
: body-rotation-axes (3))

(add- body a3 :parent w
cinertia-matrix #(0 ia ia)
> mass nP
:j oi nt-coordi nat es

#(L1 0 !'"-L2")
:cmcoordinates #(L3 0 0)
. body-rotation-axes (2))

(add-body a4 :parent w
sinertia-matrix #(0 ia ia)
s mass n?
:j oi nt-coordi nat es
#(L1 !"-L2" 0)
:cmcoordinates #(L3 0 0)
:body-rotation-axes (3))

(add-norent t1
;direction [w2]
: magni t ude
1"-K¥q(7) - D'u(7)"
:bodyl al :body2 w)

(add- norrent t2
;direction [w3]
: magni t ude
1"-K¥q(8) - D*u(8)"
:bodyl a2 :body2 w)

(add- norrent t3
;direction [w2]
: magni t ude
I"-K*q(9) - Dru(9)"
:bodyl a3 :body2 w)

(add- norrent t4
;direction [w3]
: magni t ude
I"-K*q(10) - D*u(10)"
:bodyl a4 :body2 w)

(nks)
(setf *mul ti body-system nane* "Synba
spacecraft")

(set-defaults I XX 110 1YY 100 |1 ZzZ 70
A .02 ML 500 M 2
K . 0000285 D . 001359
L1 .5L2 .31L3.2)

(add- coor di nat es-t 0- out put)
(add- speeds-t o- out put)

Figure 9.5.2. Description of Spacecraft #2 in AUTOSIM.

215

Table 9.5.1. State variables for Spacecraft #2.

Generalized Coordinates

Q(1): Trandation of WO relative to the fixed origin along [n1]. (m)
Q(2): Trandation of WO relative to the fixed origin along [n2]. (m)
Q(3): Trandation of WO relative to the fixed origin along [n3]. (m)
Q(4): Rotation of Wpp relativeto N about axis#3. (rad)

Q(5): Rotation of Wp relative to Wpp about axis #2. (rad)

Q(6): Rotation of W relative to Wp about axis #1. (rad)

Q(7): Rotation of Al relative to W about axis#2. (rad)

Q(8): Rotation of A2 relative to W about axis#3. (rad)

Q(9): Rotation of A3 relativeto W about axis#2. (rad)

Q(10): Rotation of A4 relative to W about axis #3. (rad)

Independent Speeds

U(1): Abs. trans. speed of W* along axis 1. (m/s)
U(2): Abs. trans. speed of W* along axis 2. (m/s)
U(3): Abs. trans. speed of W* along axis 3. (m/s)
U(4): Abs. rotation of W about axis #3. (rad/s)
U(5): Abs. rotation of W about axis #2. (rad/s)
U(6): Abs. rotation of W about axis#1. (rad/s)
U(7): Rot. of Al relativeto W, axis 2. (rad/s)
U(8): Rot. of A2 relativeto W, axis 3. (rad/s)
U(9): Rot. of A3 relativeto W, axis 2. (rad/s)
U(10): Rot. of A4 relativeto W, axis 3. (rad/s)

Results

The vehicle was simulated with the initial conditions U(4) = .0017 rad/sec, U(5) =
U(6) = .00017 rad/sec. Figure 9.5.3 shows time histories of the first 1000 seconds in
response to thoseinitial conditions.

216

0—- A1l

—“N—N— A2
Rotation - rad

-0—0O- A3

-.6
Angular speed - rad/s

-3 -0——0o- U(5)
3x10

—&—2— U(6)

2x10°

10°

0 '
0 \3 200

107

2x10°3

-3x10°°
Figure 9.5.3. Time histories for Spacecr aft #2.

The numerica efficiencies of the smulation codes generated by AUTOSIM and
SYMBA are compared in Table 9.5.2.

217

Table 9.5.2. Performance comparisons for Spacecraft #2.
Source addsand | multiplies, divides,
subtracts | and function calls
SYMBA [83] 514 760
AUTOSIM 338 455

9.6. The“Stanford Arm” Manipulator

The Stanford Arm is arobot with six degrees of freedom that is of interest here because
it has been used to benchmark various methods for forming equations of motion. In
contrast to most vehicle systems, the topology isa*chain,” in which each body except one
has one and only one child. It isincluded here to compare the efficiency of the methods
developed in this dissertation with formulations for manipulators that have been published.

L3

L5 < | wYa

Figure 9.6.1. Sketch of “Stanford Arm” points, dimensions, and
coordinates.

218

Model Description

The robot is composed of six rigid bodies |abeled simply bodies A,B,C,D,E, and F for
the AUTOSIM input. The geometry is sketched in Figure 9.6.1. BodiesA, B, D, E, and
F each have asingle rotational degree of freedom shown in thefigure. Body C hasasingle
translational degree of freedom. The generalized coordinates introduced by AUTOSIM,
di, -.- e, are aso shown in the figure. Each joint has an associated servo-motor. The
torques produced for the five rotational degrees of freedom are designated ty, ... ts and the
force produced for the trandlational degree of freedom isdesignated s. Controller torques
and forces have been defined as follows [57]:

t1=—ky(q1-ar*) +koqil (9.6.1)
kalgp —) + kaQp

2 +g/[mCOI3+ mp(ds + Ls) + (Mg + Mg) (gs + Lz)]Sz\
\ +(mele + MeL3)(CsS, + C4S5C7) f (9.6.2)
t3=—ks5 (04 - 94*) + ke Qa — 9(MmeLe + MEL3)sp S4 S5 (9.6.3)
t4=-k7 (ds5 - g5*) + kg s + g(meLe + MEL3) (C2S5 + S2C4C5)] (9.6.4)
ts =—ko (06 - 06*) + k10 Cle] (9.6.5)
s =—{k11 (93 - d3*) + k12 g3 —g(mc + Mp + Mg + mMF) ¢2] (9.6.5)

where ¢, C4, Cs, S2, S4, and ss represent cosine and sine functions of the generdized
coordinates gp, q4, and gs; k1, ... k12 are feedback controller gains; and q1*, ... g6* are
the desired final values of the coordinates.

Theinitial conditions are that all speeds are zero, five of the generalized coordinates are
zero, and gz = p/2. Thefinal values for the rotational coordinates are g1* = g2* = q4* =
gs* = ge* = p/3, and thefina valuefor q3is 0.1 m. Values of the simulation parameters
are taken from [57], and are shown in Table 9.6.1 for the names appearing in the
AUTOSIM input. (Note that the dimension L4 is not in the table, because it does not
appear in the equations of motion. Also, moments of inertia Al and A2 do not appear.)
The target rotations are designated AROT, BROT, DROT, EROT, and FROT, while the
target displacement is CDISP.

Table 9.6.1. Parameters and values for Stanford Arm.

219

A2 0. 200000E-01 nonent of inertia of A (kg-nR)

AROT 1. 04720 target rotation of A (rad)

Bl 0. 600000E-01 nonent of inertia of B (kg-nR)

B2 0. 100000E-01 nonent of inertia of B (kg-nR)

B3 0. 500000E-01 nonent of inertia of B (kg-n®)

BROT 1. 04720 target rotation of B (rad)

Cl . 400000 nmonent of inertia of C (kg-nR)

(7] 0. 100000E-01 nonent of inertia of C (kg-nR)

c3 . 400000 nmonent of inertia of C (kg-nR)

o spP . 100000 target displacement of C (m

D1 0. 500000E-03 nonent of inertia of D (kg-n®)

o2 0. 100000E-02 nonent of inertia of D (kg-n®)

03 0. 100000E-02 nonent of inertia of D (kg-nR)

DROr 1. 04720 target rotation of D (rad)

El 0. 500000E-03 nonent of inertia of E (kg-nR)

E2 0. 200000E-03 monent of inertia of E (kg-nR)

E3 0. 500000E-03 nonent of inertia of E (kg-n®)

EROr 1. 04720 target rotation of E (rad)

F1 0. 100000E-02 nonent of inertia of F (kg-nR)

F2 0. 200000E-02 nonent of inertia of F (kg-nR)

F3 0. 300000E-02 nonent of inertia of F (kg-nR)

FROT 1.04720 target rotation of F (rad)

K1 3. 00000 stiffness coefficient (N-nj

K2 5. 00000 danpi ng coefficient (Nms)

K3 1. 00000 stiffness coefficient (N-nj

K4 3. 00000 danpi ng coefficient (Nms)

K5 . 300000 stiffness coefficient (N

K6 . 600000 danpi ng coefficient (Nms)

K7 . 300000 stiffness coefficient (N-nj

K8 . 600000 danpi ng coefficient (Nms)

K9 . 250000 stiffness coefficient (N-nj

K10 . 250000 danpi ng coefficient (Nms)

K11 30. 0000 stiffness coefficient (N

K12 41. 0000 danpi ng coefficient (Ns/nj

L1 . 100000 coordinate of center of nass of Bin dir 1 (n)
L2 . 600000 coord. of attachment pt. for Eindir 2 (m
L3 . 200000 coordinate of center of nass of Findir 2 (n)
L5 . 700000 coordinate of center of nass of Din dir 2 (n)
L6 0. 600000E-01 coordi nate of center of mass of Ein dir 2 (m
MA 9. 00000 mass of A (kg)

MB 6. 00000 mass of B (kg)

MC 4. 00000 mass of C (kg)

MD 1. 00000 nmass of D (kg)

ME . 600000 nmass of E (kg)

M- . 500000 nmass of F (kg)

STCPT 10. 0000 simulation stop ti me (sec)

AUTOS M Description

The description to AUTOSIM for the uncontolled system is shown in the listing of
Figure 9.6.2. Note that the direction for the gravitational field is changed from the default
([n3]) to {n2] for compatibility with the coordinate systems shown in Figure 9.6.1.

220

(add-body a :body-rotation-axes 2 :nass na
cinertia-matrix #(al a2 a3) :cmcoordinates #(0 !"-L4" 0))

(add-body b :parent a :body-rotation-axes 1 :nass nb
tinertia-matrix #(bl b2 b3) :cmcoordinates #(L1 0 0))

(add-body c :parent b :inertia-matrix #(cl c2 c3) :mass nt
:translate 2 :joint-coordinates #(L1 0 0))

(add-body d :parent c :body-rotation-axes 2 :mass nmd
tinertia-matrix #(dl d2 d3) :cmcoordinates #(0 L5 0))

(add-body e :parent d :body-rotation-axes 1 :nass ne
cinertia-matrix #(el e2 e3)
;joint-coordinates #(0 L2 0) :cmcoordinates #(0 L6 0))

(add-body f :parent e :body-rotation-axes 2 :nass nf
tinertia-matrix #(f1 f2 f3) :cmcoordinates #(0 L3 0))

(add-gravity :direction !'"-[n2]")
Figure 9.6.2. Description of uncontrolled Stanford Arm.

The controller torques and force (from egs. 9.6.1 through 9.6.6) are described with the
inputs shown in Figure 9.6.3. The controller rules from egs. 9.6.1 through 9.6.6 are
entered directly as expressions for the : magni t ude argument of the add- nonent and
add- | i ne-f or ce macros.

Results

The time history plots obtained by the simulation code are shown in Figure 9.6.4 and
agree with results published earlier [57].

The efficiency of the simulation code generated by AUTOSIM is compared with other
formulationsin Table 9.6.2. The operation countsin this table have been published from a
variety of sources, and were summarized by Neilen and Kane previously. In ther
summaries, the computation needed to uncouple the dynamical equations was not included
and therefore more operations are shown here: 65 adds and 86 multiply/divides. (A small
savings is obtained here, as the symbolic solution involves only 74 multiplications).

Because none of the other counts include the controller equations (egs. 9.6.1 through
9.6.6), the AUTOSIM results are for the uncontrolled system. (The additional arithmetic
operations generated by AUTOSIM when the control equations are included are: 28
add/subtracts and 25 multiply/divides. These are fewer than appear in egs. 9.6.1 through

221

9.6.6, due to the use of intermediate expressions that arise elsewhere in the equations of

motion.)

(add- monment taul :nane "torque applied to A
;direction [n2] :bodyl a
cmagnitude !'"-KL*(Q1) - ARON - KR2*QP(1)")

(add- morrent tau2 :nane "torque applied to B
:direction [al] :bodyl b :body2 a
: magni t ude
I"-(K3*(Q2) - BRON + K4*QP(2) + CEES*
(((MCHMD) *Q(3) + MXL5)*SINQ2))
+ (ME*L6 + MF*L3)
*(AB(Q5))*SINQ2)) + A08(Q4))*SINQS5))*CAB(Q2)))
+ (M + M)*(Q3) + L2)*SINQ2))))")

(add- monment tau3 :nane "torque applied to D'
;direction [d2] :bodyl d :body2 c
: magni t ude
1"-(K5*(Q4)-DRON) + K6*QP(4)
- CEES*(ME*L6 + MPL3)*SINQ2))*SINQ4))*SINQ5)))")

(add- monment tau4 :nane "torque applied to E'
:direction [el] :bodyl e :body2 d
: magni t ude
- (K7*(Q5) - ERON + K8*QP(5) + CEES*(ME*L6 + MF*L3)
*(O(Q2))*SINQS)) + SINQ2))*00(Q4))*0B(Q5))))")

(add- monment tau5 :nane "torque applied to F"
cdirection [f2] :bodyl f :body2 e
:magni tude !'"-(K9*(Q6) - FROT) + KLO*QP(6))")

(add-line-force signa :name "force applied to C'
:direction [c2] :pointl cO :point2 b0
: magni t ude
"-(K11*(Q3) - ISP + K12*QP(3)
- CEES* (MCEMDEMEHMF) *OCB(X 2))) ")

Figure 9.6.3. Description of control torques and force for Stanford Arm.

In viewing Table 9.6.1, keep in mind that all but one of the formulations are based on
Kane' s equations. The formulation obtained by AUTOSIM is the most efficient known,
being almost twice as efficient as the first formulation of this sort, obtained manually by
Kane and Levinson [57].

The equations of motion produced by AUTOSIM areincluded in Appendix E.

222

Rot. of A rel. to N, axis#2 - rad Rot. of B rel. to A, axis#1 - rad
12 1 16

1t 15

8 14

.6 13

A4 12

2 11

0 ' ' 1 ' '

0 5 10 0 5 10

Rot. of D rel. to C, axis#2 - rad Rot. of Erel. to D, axis#1 - rad
12 g 12 1

1 1

8t 8

6 t 6

4 1 4

21 2

0 ' ' 0 ' '

0 5 10 0 5 10

Rot. of Frel. to E, axis#2 - rad Trans. of COrel. to BCM, dir=[b2] - m
12 ¢ i

0 5 10 0 5 10
Time- sec Time- sec
Figure 9.6.4. Time history plots of generalized coordinates.

Table 9.6.1. Performance comparisons between four simulation codes.

223

Formulation for uncontrolled system* adds and multiplies
subtracts | and divides
Symbolic using Macsyma (Hussain and Noble) [44] 1902 5406
Numerical Newton-Euler (Walker and Orin) [124] 1255 1627
Symbolic using Macsyma (Kane and Nielan) [82] 521 858
Symbolic, by hand (Kane and Levinson) [57] 459 732
SD/EXACT (Rosenthal and Sherman) [83] 465 718
SD/FAST (Rosenthal and Sherman) [99] 390 576
Symboalic, by hand (Wampler) [125] 318 448
SYMBA (Nielan) [83] 268 384
AUTOSIM 240 353

* for AUTOSIM, the control equations add 28 add/subtracts and 25 multiply/divides.
The control equations also add to the other formulations, but the amount is not known.

10. SUMMARY AND CONCLUSIONS

This chapter summarizes the preceding materiad and then presents conclusions.
Possible directions for continuing the research are noted.

10.1 Summary

Simulation codes for ground vehicles and other multibody systems assembled from
rigid bodies, joints, and massless force- and moment-producing components have
previously been programmed by hand for specific systems. Also, genera-purpose
programs have been developed to simulate classes of multibody systems. In the latter
approach, the equations of motion are developed for each system according to a multibody
formalism. The multibody formalisms used to automatically formulate equations, whether
numerically or symbolically, have not been representative of how human analysts formulate
the equations. They have represented analysis strategies that can be programmed easily,
whereas the human analyst usualy applies modeling and engineering knowledge to
simplify the work. Simulation codes for ground vehicles that are developed by hand can
run orders of magnitude faster than popular general-purpose codes simulating the same
model. Hence, for applications in which computation time is critical, such as real-time
hardware-in-the-loop simulations, or simulations run on desktop computers, simulations
are coded by hand because there is no alternative.

In this dissertation, a multibody formalism was devel oped that includes methods and
concepts employed by human analysts. The formalism is built on Kane's method (written
for students of dynamics), and then extended with specific tactics for (1) choosing state
variables, (2) defining appropriate forms of vector representations, (3) grouping rigid
bodies together and choosing coordinate systems so as to simplify expressions that |ater
arise, and (4) obtaining equations of motion for numerical solution. Thisformalism is made
possible by developing a new computer language caled AUTOSIM to represent a
multibody system and the vector and dyadic expressions involved in its description.
Computer data objects are defined in Chapter 5 for representing (1) symbolic agebraic
expressions for vector/dyadic analyses, (2) physical components in a multibody system,

224

225

and (3) program structures needed in asimulation code. With these representations, the
multibody formalism is programmed almost exactly asit is presented in Chapter 8.

AUTOSIM is capable of automatically producing equations of motion in symbolic form
for multibody systems that cannot be represented with most symbolic multibody analysis
methods. The analyst using AUTOSIM can handle systems with arbitrarily oriented forces
and moments, nonholonomic constraints, and closed kinematical loops. The forces,
moments, and output variables can involve external subroutines linked to experimental
measurements, unconventional models, interfaces with hardware in the loop, etc.
Congtraints are described using high-level representations that relieve the analyst of the task
of manually forming constraint equations or obtaining matrix coefficients.

Closed kinematica loops are handled by a blend of anadytical and computational
methods. Constraint equations that are too complicated to yield closed-form analytica
solutions are used to create recursive numerical procedures that compute certain dependent
variables called “ computed coordinates.”

The equations formed by AUTOSIM are simplified when possible to remove terms that
are negligible when one or more variables or parameters are known to be “small.”
Parameters and constants are handled symbolically, and are factored out of the equations
when possible so that they can be “precomputed.” As aresult, the equations have the same
efficiency as would be obtained if numerical values were specified for all parameters (if the
numerical values are not zero or one). However, since the parameters are represented by
symbols, the same simulation code can be used for any set of valid parameter values.

Six example multibody systems were analyzed. The first three examples could not
have been analyzed symbolically with the automation level demonstrated here using
previously available methods. The other three examples were systems that have been
analyzed with other symbolic multibody computer codes. In the three latter cases, the
equations derived by AUTOSIM were more efficient than the most efficient formulation
previously published by amounts ranging from 6% (the robot manipulator) to a factor of 2
(the spacecraft in Section 9.4).

10.2 Conclusions
The above results lead to the following conclusions:

1. Kane's method of analyzing dynamic systems of constrained rigid bodiesis easily
extended to aform required for computer solution.

226

2. Methods and concepts used by human analysts can be programmed into a
multibody formalism.

3. The derivation of constraint equations and the coefficients needed to form the
dynamical equations of a constrained system can be automated.

4. Advancesin computer software and hardware permit the above methods to be
progranmed on desktop computers. This diminishes the need for multibody
formalisms designed to fit within the limits of traditional computer languages at the
expense of versatility and efficiency.

5. Extremely high efficiency in smulation codes is obtained when the above methods
are applied.

6. Regarding the attention to the three areas of (1) the rigid-body dynamics formalism,
(2) the algebraic manipulation methods, and (3) the generation of numerica
computation code: the general strategy of spreading the analysis methods over
these areas permits the use of relatively simple methods within each area.

7. A symbolic analysis method that closely parallels the approach taken by a human
analyst may be easier to use than other types of analysis languages, because the
automated part of the analysis begins from a description of the problem in terms that
are most familiar to the analyst.

Several limitations of the symbolic analysis approach should also be mentioned. First,
there is an underlying assumption that for a given system, the correct equations of motion
can be derived for once and for all. With some models the system gains or loses degrees of
freedom. For example, a man walking has fewer degrees of freedom when both feet are on
the ground than when one or two feet are in the air. For some mechanisms, a set of
equations obtained to best describe motions about a nominal configuration becomes
singular for other configurations. In these cases, generalized numerical codes that change
equations “on the fly” may be preferable.

Symbolic analysis methods have had a reputation for being unsuitable for large
systems. When using general-purpose computer algebra languages (e.g., Macsyma,
Reduce), this is indeed a serious limitation because the languages maintain complete
expressions that grow rapidly unless the analyst makes an effort to break up the analysis
into segments. With symbolic analyses programmed especialy for multibody systems
(e.g., AUTOSIM, SD/FAST) thisis much less of a problem because expressions are kept

227

to a manageabl e size as the analysis proceeds. (In AUTOSIM thisis done through the
introduction of intermediate variables. In other codesit is done by printing equations as
they are derived, and immediately recovering the computer memory that they occupied.)
Also, with the widespread use of virtual memory on workstations, memory requirements
of several hundred megabytes can be accommodated if necessary. (Asapoint of reference,
the examples in Chapter nine were all performed with a memory limit of 3 MB, and took
one to ten minutes of computation time on an Apple Macintosh.)

Although much larger systems can be analyzed symbolically with programs such as
AUTOSIM than was possible ten years ago, the performance of AUTOSIM has not yet
been investigated for systems that involve more than seven thousand arithmetic operations.
(Note that the limiting factor is not the number of bodies, nor the number of degrees of
freedom. It isthe complexity of the equations, measured approximately by the number of
multiply/divide arithmetic operations contained in the equations, that most directly
determines the memory and time needed to analyze a system.)

Equations for some multibody systems can be formulated in a numerical code using
iteration loops, so that all of the equations are not explicitly formed as they are in
AUTOSIM. (For example, a pure chain topology.) For these systems, the explicit
formulation developed according to the methods presented in this dissertation might be too
lengthy to be derived in areasonable time.

Since 1980, there have been a number of dynamics formalisms developed for chain
topologies that yield explicit equations of motion without forming a mass matrix. Asthe
number of bodies in the chain becomes large, the computation needed to obtain the
derivatives of the state variables grows in proportion to the number of links. Hence, these
algorithms are called “Order(n) formulations.” For chains of length six and less, these
formulations typically require more computation than methods leading to implicit equations
(such as presented here). However, for large systems, the decomposition of the mass
matrix requires an ever greater effort, that grows in proportion to n3. Therefore, the
method presented here is probably not the most efficient when dealing with long chains of
bodies.

228

10.3 Further Research Opportunities

There are many possibilities for extending the methods developed in this work to other
formsof analysis. Two general areas of application arein (1) analytical methods, and (2)
numerical methods. In the area of analytical methods, virtually any analysis involving
moving reference frames can be programmed directly using the algebra functions defined in
Chapter 5. Although this work was limited to the development of efficient smulation
codes, the computer a gebra methods can be applied to such applications as.

1.

Equations for the inverse dynamic problem. (That is, forces and torques in a
multibody system are computed as needed to cause known movements.)

Symbolic solution of nonlinear statics problems. A Jacobian matrix isformed to
solve for forces and torques and equilibrium position, given known values of
independent coordinates.

Derivation of matrices needed as inputs for other software (e.g., mass, stiffness,
and damping matrices for the linearized equations of motion are inputs for popul ar
controller design software).

Analysis of constrained systems to define alternative formulations and code for
switching between the formulations to avoid singularities.

Applications involving numerical analysisinclude the following:

1

The simulation codes generated by AUTOSIM can be produced in languages other
than Fortran, such as smulation languages (ACSL, ADSIM, etc.) or other
programming languages (C, Pascal, Lisp, etc.).

The output code can be tailored for a particular computer architecture. For example,
the method used to remove unused code (described in Section 5.3) can be modified
slightly to isolate sections of code that can be computed independently of each
other, in support of parallel processors.

The equations can be tailored to novel numerical integration methods. The most
critical parameter in determining smulation efficiency is the step size of the
numerical integration. Methods that allow larger time steps to be used for the
equations of motion, or even portions of the equations, provide a great potential for
improving computation speed. Combinations of anayticad and computational
methods, such as the one used for updating “computed coordinates’ in this work,

229

offer great promise for using symbolically generated numerica algorithms to
improve the accuracy and efficiency of the equations.

“Interface software” needed to link related analyses can be written automatically.
One possibility is to generate subroutines to link with finite element codes to
combine rigid-body motions with deformations of flexible bodies. Another
possibility is the handling of systems that change degrees of freedom, but which
have a small number of possible combinations (e.g., awalking man). Equations
could be formulated for each configuration, and the appropriate equations set would
be selected “on the fly” during the simulation. A subroutine would be needed to
map the values of the state variables for one equation set onto a proper set of initial
conditions for another set of equations.

APPENDICES

230

231

APPENDIX A — AUTOSIM REFERENCE

The AUTOSIM software runs under Common Lisp. The user interface is that of the
Lisp system on which AUTOSIM isinstalled, and al AUTOSIM commands are Lisp
forms. Lisp syntax is detailed fully in many introductory textbooks, and usually in the
reference material provided with the Lisp software. However, is not necessary to be fluent
inLisptouse AUTOSIM. The syntax of Lispisso simple that the basics should be fairly
apparent from the examples in Chapter 9. Additionally, selected reference information
about the the Lisp environment is presented in this appendix for the reader who is
unfamiliar with Lisp and desires “just enough” information to fully understand the
examples in Chapter 9. The summary of Lisp is followed by descriptions of the
AUTOSIM functions and macros used to describe and analyze a multibody system.

A.l. Brief Summary of Lisp Syntax and Data Types

Working in aLisp environment is very smple: the analyst typesin a“Lisp object” and
the machine prints the value of that object. Lisp objects used in AUTOSIM are the
following:

* number — numbers are entered and printed as might be expected. Although Lisp
has separate representations for different types of numbers (floating point, integer,
ratio, etc.) it is not necessary that the analyst using AUTOSIM be concerned with
this.

e symbol — asymbol is afundamental data object in Lisp that has a name and
possibly avalue. Itisdescribed in more detail below.

» list— alist is a sequence of zero or more objects enclosed by parentheses and
separated by spaces. Many forms of data are well represented by lists, such asthe
termsin asum, the factorsin a product, etc. A list by itself istreated asa“Lisp
form” and is“evaluated,” as described below.

* string — astring is a sequence of aphanumeric characters enclosed with double
guote characters, e.g.,"This is a string".

232

» 1-D array — a sequence of zero or more objects that are normally referenced with
anindex. An array isenclosed by parentheses and preceded by a‘# character,
e.g., #(1 2 3). Superficialy, al-D array appears similar to alist, but it is not
represented the same internaly on the computer. It is not essentia here to
understand how and why arrays and lists differ, only that they are not always
interchangeable.

e 2-D matrix — amatrix iswritten as alist of lists, preceded by “#2a’ (without the
guotes) to indicate that the data are in a matrix of rank 2. For example, the inertia
matrix for the examplein section 9.1 iswritten “#2a((1 xx 0 Ixz) (0 lyy
0) (Ixz 0 lzzr)).

e Comments — anything following a semi-colon character isignored by Lisp.

e F-strings— a string preceded by an exclamation mark is parsed to obtain an
algebraic expression, e.g., ! "dot ([n1l], vel (b))". Thisisnot a part of
Lisp, but isan addition made by AUTOSIM. F-strings are described in more detall
in the next subsection.

Lisp Symbols

The symbol isabasic element in Lisp. A symbol has a printed representation, which
usually has the appearance of aword written in capital |etters. Some examples are: RESET,
M2, T, NI L, ADD- BODY, and B*. Symbol names may include numbers and many non-
alphabetic characters, suchas‘*’ and ‘-’. Names read as input are automatically converted
to capital letters, and therefore most a phabet charactersin symbol names are upper-case,
regardless of how they appear asinpuit.

A symbol may also have an associated value. In fact, the Lisp symbol is a data
structure with several forms of associated data beyond a print name and avalue. However,
in AUTOSIM, symbols are used by the analyst mostly for their printed representation or
for functions that the symbols represent. The value of aLisp symbol isviewed by typing
the name of the symbol. A new valueis assigned using the set f macro, as described
later.

Two reserved symbolswidely used inLispare Tand NI L. NI L means empty or false
(depending on context). Anempty list (e.g., “()”) isrepresented as NI L. All conditional
forms (IF-THEN, etc.) base the decision on whether a Boolian formis NI L or not NI L.
The symbol T is commonly used to indicate unconditionally not NI L (i.e., True).

233

Listsand Lisp Forms

Most of the inputs from the analyst using AUTOSIM are Lisp forms, entered as lists.
Each form begins and ends with a parenthesis, and includes at |east one element. For
example, the form used to reset the AUTOSIM environment is

(reset)

The above formisalist with one item, namely, the symbol r eset . In genera, itemsin a
list are separated by one or more spaces, tabs, or newline characters. The following two
lists are equivaent:

; Mersion 1 (note the use of “;” to insert comments)

(add-body b :name "new body" :joint-coordinates #(L 0 0)
:cmcoordinates #(RL 0 R2) :inertia-matrix #(ixx iyy izz))

; Version 2

(add-body b
' harre "new body"
;joint-coordinates #(L O 0)
: cm coor di nat es #RL O R2)
cinertia-matrix #ixx iyy izz))

The second version, entered with multiple lines and spaces for readability, isinterpreted
exactly the same asthefirst version.

If alistisentered directly into the system, it is “evduated’” and the result of the
evaluation isthen printed. For example, if onetypes (add 3 4), thefollowing display
would be seen.?

? (add 3 4)
;
?

Theformsused in AUTOSIM are technically classified in Lisp as either functions or
macros. They have three types of itemsin the list: (1) the name of the function or macro
(e.g., reset, add- body, add), (2) zero or more required arguments, and (3) zero or
more pairs of optional keyword arguments. The pairs of keyword arguments consist of a
keyword and an argument. Keywords always begin with the colon character, asin the
above example. In the example (add- body), there is one required argument, (the symbol

1 Allegro CL, the Lisp package sold by Apple computer, shows user entries in boldface and the
machine responses in plain type. The question mark is a prompt issued by Allegro to indicate it is ready
for the next input. Examples in this dissertation follow the same convention.

234

b), and four optiona keyword arguments. The keywords are : nane, :joint-
coordinates, :cmcoordinates, and :inertia-matrix. Keyword
arguments are always optional, and can appear in any order after the mandatory arguments.
If akeyword argument is not provided, then the argument associated with that keyword
defaults to a value specified in the Lisp program. Numerous examples of keyword
arguments appear in Chapter 9.

Assigning Values to Lisp Symbols with SETF

The language Common Lisp includes hundreds of predefined functions, macros, and
“gpecial forms.” Only one of these forms appears in the examplesin Chapter 9. Thisisthe
macro set f, used to modify Lisp data. With AUTOSIM, it is mainly used to assign
values to Lisp symbols. In Fortran, assignment is performed with the ‘=" symbol. A
symbolic equivaent of the Fortran statement

X=A+B
is performed with the Lisp form
(setf x !"a + b")

Later, if the expression (A + B) isrequired, the Lisp symbol X can be used if we
specify that the value of x [the expression (A + B)] isof interest and not the name (the
symbol X). (To specify thisin an F-string, the name of the symbol is preceeded with the
‘# character. SeeFigure 9.1.4 for an example.)

AUTOSIM maintains about a hundred global Lisp variables. Most of these must not be
changed by the analyst. One however, isintended to be set by the analyst. It isthe symbol
mul ti body-syst em nane. Thissymbol can be assigned to a string that gives a
descriptive name for the multibody system. That name is used to generate some of the
documentation for the Fortran simulation code generated by AUTOSIM. Also, it appear on
the screen when the simulation code is run by the end user.

235

Table A.2.1. Mathematical functions that can be used in F-strings.

F-Sring | Lisp Argument(s) | Description
- neg X —X
— sub X, y X—Yy
* mul X,y XYy (either x or y must be a scalar)
*x power X, Y xY (x isscalar, y isanumber)
+ add X,y X+y
div X, Y x /1y (yisscaar)
N A symbol use value of Lisp symbol named symbol
atan | make-at an X y=tarix (p/2E£y £ +p/2)
atan2 | nake- at an sl, s2 y=tarl(sl/s2) (p£y £ +p)
cos nmake- cos X cosx (xisscalar)
func | nmake-func fname, arbitrary Fortran function:
{argt*
nom nal [nom nal X expression when al variables are zero
sin nake-sin X sinx (xisscaar)
angl e angl e vl, v2, {v3} | angle between two vectors, sign determined
by optional third vector (right-handed rule)
Cross Cross vl, v2 Vi’ Vp
dir dir v v/
dot dot vl, v2 VieVs
dpl ane | dot - pl ane vl, v2 project vector onto plane
dxdt dxdt X X
mag mag v v
partial [parti al Y, X ‘HY/ﬂx (x isscalar)
pos pos* pl, { p2} position vector connecting two points
(default for p2 isthe fixed origin)
r ot rot* B absolute rotational velocity of body B
vel vel * pl, { p2} difference between absolute vel ocities of 2

points (default for p2 is the fixed origin)

NOTE: arguments enclosed with braces{} are optional. Those followed witha‘*’ are
repeated zero or more times.

236

A.2 AUTOSIM Algebraic Expressions

In Chapter 5, a number of Lisp functions were defined to perform algebraic operations.
Algebraic expressions containing these operations are printed in Fortran syntax, e.g.,
3. 0*A*B**2/ SI N(Q(3)) . TheLisp functions are used to automate all operations that
are performed in aformal procedure. In addition to predefined analyses, these functions
are also needed by the analyst to describe forces, moments, output variables, and constraint
equations. To simplify their use by the analyst, AUTOSIM includes a parser that reads a
Fortran-style expression and convertsit to aLisp equivalent. The parser isinvoked by
putting the expression in a string, and preceding the string with an exclamation mark.
Expressions entered in this way are called F-strings. Examples of F-strings appear
frequently in the examples of Chapter 9.

Briefly, the parser reads a string in two steps. It first removes any spaces and linefeeds
from the string and converts all of the text to upper-case. Then, through a sequence of
“find and replace’” operations, it replaces known functions with Lisp equivaents.
Arithmetic operators (+, —, /, *, **) are also replaced. Table A.2.1 summarizes the
functions recognized by the parser.

Normally, any symbols that appear in an F-string are assumed to represent parameters
or variables in the multibody system. However, it is sometimes convenient to assign an
expression to aLisp symbol viatheset f macro, and then include that expression in an F-
string. To do this, the name of the Lisp symbol should be preceded with the character ‘#
(without the quotes). Examples of this are seen in Section 9.1.

A.3 AUTOSIM Functions and M acros
The basic procedure for analyzing a system is as follows:
1. Invokethefunctionr eset toinitiaize AUTOSIM and clear any old data.

2. Describe the multibody system. Include all of the bodies, additional points of
interest, constraint equations, forces, moments, and external subroutines.

3. Defineal output variables of interest.

4. Invokethefunction dynam cs to derive efficient equations for computing state
variables and output variables.

237

5. (thisstepisoptional.) Check the descriptions of the input parametersidentified by
AUTOSIM. Set names and unitsin the paramater definitions (replacing names and
units chosen automatically) if the existing descriptions are not clear enough.

6. Generate the Fortran ssimulation code by invoking the functionwr i t e- sim

The analysis functions are listed in Table A.3.1. The macros and functions used to
describe the multibody system and the output variables are described below.

Table A.3.1. AUTOSIM functions for analyzing the multibody system.

Lisp Function Action

reset clear all AUTOSIM datato start new anaysis
dynam cs analyze system to derive equations of motion
wWite-sim write sSimulation code in the Fortran language

Describing the Multibody System

Table A.3.2 lists the macros used to build a description of the multibody system. The
order in which these macros are entered as inputs by the analyst is not critical, other than
the obvious restriction that it is not possible to reference an object until it has been entered.
For example, if body B is entered with body A listed as the parent, it is necessary to add
body A before adding body B. The macrosin the table are described in more detail below.

add- body symbol

This macro creates a body object and sets most of its dots. The conventions for
representing system topology and joint kinematics that were presented in Chapter 8 are put
into use with thismacro. In addition to creating the body object, this macro createsuvs as
needed for the coordinate system of the new body, a number of sy mobjects for mass and
inertia parameters, and three poi nt objects representing (1) the origin of the new
coordinate system, (2) thejoint position (fixed in the coordinate system of the parent), and
(3) the the center of mass. The macro has one required argument, symbol, which is a
unique symbol used to identify the body, e.g., B. The keyword arguments are defined
below:

238

Table A.3.2. AUTOSIM macros for describing a multibody system.

Lisp form Arguments
Required Optional Keywords

add- body symbol : parent :coordi nate-system
“nane :mass :inertia-
matri x :joint-coordinates
:cmcoordinates :translate
:parent-rotation-axis
: body-rotati on-axes
-reference-axis
:smal | -angl es
:snmal |l -transl ati ons

add- const rai nt || expression :variabl e

add-gravity - direction :gees

add- | i ne- f or ce || symbol :name :direction
:magni tude : no-forcem
cpointl :point2 :x :x0 :v

add- nonent symbol :name :direction
:magni tude : bodyl : body2
: no-forcem

add- poi nt symbol : name : body : coordinates
: coor di nat e- system

add- st rut symbol - magni tude :pointl :point2

no-forcem:x :x0 :v :nane

add- subrouti ne

where name { symbol} *

add- vari abl es [where type{symbol}*
| ar ge { symbol}*
no- novenent pointl point2 direction |: confirm

set-defaults

{ symbol number} *

set - nane { symbol name} *
set-units { symbol units}*
snal | {symbol}*

NOTE: arguments enclosed with braces{}* are repeated zero or more times.

239

parent — the parent body. The default is N.

mass — an expression for the mass of the new body. If thisargument is not provided, a
symbol is created by appending the letter M to symbol . (e.g., BM

name— a string that describes the body. (e.g., "l eft-front wheel ") If the
argument is not provided, symbol isused as the name.

Inertia-matrix — the inertia matrix of the body, with respect to the local coordinate
system. Three forms of input are allowed: (1) a3~ 3 matrix, containing all of the
terms; (2) athree-element array, containing the moments of inertia (the products are
set to zero); and (3) zero (all moments and products are set to zero). If this
argument isnot provided, a full 3 ~ 3 matrix is used. AUTOSIM generates
symbols by appending the letter | and two digits to symbol, e.g., Bl 11, Bl 12,
Bl 22, Bl 13, Bl 23, and Bl 33.

coordinate-system — the body whose coordinate system is used to specify point
locations and movement directions. The default is the parent body for all
coordinates except the center of mass. The default for the center of massisthe
coordinate system of the new body.

joint-coordinates— a 3-element array containing the coordinates of the joint, using the
specified coordinate system. In Figure 8.1.1, the vector defined by these
coordinates is designated 2. The defaultis#(0 0 0).

cm-coordinates — a 3-element array containing the coordinates of the center of mass,
using the specified coordinate system. In Figure 8.1.1, the vector defined by these
coordinatesis designated 58", The defaultis#(0 0 0).

trandate — alist of consecutive translations allowed by the joint. Translations are
allowed in any direction, with the direction(s) fixed in the parent body. This
argument is normaly a list. The length of the list provides the number of
tranglational generalized coordinates for the body. Each item on the list must be
either (1) anumber specifying an axis parallel to the direction of trandation, or (2) a
3-element array giving the coordinates of the trandational direction. Directions are
defined in the specified coordinate system. Thejoint shownin Figure 8.1.1 hasa
single trandational degree of freedom in the direction r¥. Assuming thisdirection
isnot aligned with an axis in the parent, an array of 3 coordinates would be used to
describe the direction.

240

When there is one trandational generalized coordinate, it can be provided in lieu of
alist with one element. ThedefaultisNI L (ajoint with no translational degrees of
freedom).

parent-rotation-axis — the direction of the first rotation (if the joint has one or three
rotational degrees of freedom) in the specified coordinate system. In the figure, this
direction is designated rE,;. The direction is described either by (1) a 3-element
array containing its coordinates, or (2) the number of an axis parallel to the rotation.
The default isthat the parent-rotation-axis is the same as the first element of the
body-rotation-axes list. If neither the parent-rotation-axis nor the body-rotation-
axes arguments are provided, the joint has no rotational degrees of freedom.

body-rotation-axes — alist of consecutive rotation axesin the new body. The axes of
the coordinate system of the new body are defined by this argument. The number
of rotationsis obtained from the length of thislist (O, 1, or 3). Each element of the
list must be an axis number (1, 2, or 3) indicating about which axis the rotation
occurs. If the joint has one degree of freedom, asingle number isvalid as avalue.
(It need not be enclosed in parentheses.) If thisargument is not provided and the
parent-rotation-axisis also not provided, then the joint has no rotational degrees of
freedom. If the body-rotation-axeslist is not provided and the parent-rotation-axis
is provided, then the body-rotation-axes list is set to a single rotation about an axis
included in direction of parent-rotation-axis. (Unless the parent-rotation-axisis an
axis number, the analyst should not depend on the default body-rotation-axes being
set asintended.)

reference-axis — the coordinates (or axis number) of the reference axis, in the
coordinate system of the parent. The reference axis determines the orientation of
the new body relative to the parent in the nominal state. (The nominal state exists
when al generalized coordinates are zero.) In Figure 8.1.1, this direction is
designated FBs. The default is determined by the right-handed convention from the
parent-rotation-axis.

small-angles — a list whose length matches the number of rotational degrees of
freedom, and which identifies the rotation angles as “small” or “not small.” If this
argument is provided, it must have the same length as the list provided for the
argument body-rotation-axes. Small angles are identified as T, large angles are
identified asNI L. If thejoint has one rotational degree of freedom, the value can

241

be provided without enclosing it in parentheses. The default isthat all generalized
coordinates and speeds introduced for rotation in this body are not small.

small-trandations— alist whose length matches the number of translational degrees of
freedom, and which identifies the translational displacements as“small” or “not
small.” If thisargument is provided, it must have the same length as the list
provided for the argument trandate. Small displacements areidentified as T, large
displacements areidentified as NI L. If the joint has one translational degree of
freedom, the value can be provided without enclosing it in parentheses. The default
isthat all generalized coordinates and speeds introduced for trandation of this body
are not small.

add- constr ai nt zero-exp

Thisfunction is used to apply a constraint equation. The required argument zero-exp is an
expression that isidentically zero when the constraint is satisfied. The optional argument
variableis a state variable (generaized speed or generalized coordinate) that is eliminated by
the constraint. The expression zero-exp is used to “solve-for” variable. If variableis not
provided, then the units of zero-exp are used to determine if the variable to be eliminated
should be a coordinate or aspeed. The criteriafor selecting the variable to eliminate was
described in Chapter 8.

add-gravity

This macro applies aforce to each body at its mass center, in the direction direction, with
magnitude megees where mis the mass of the body. The default direction is [N3] and the
default symbol for geesis GEES.

add-11i ne-force symbol

Thismacro createsaf or ce object that represents aforce in the system that passes through
aknown point with aknown line of action. The required argument, symbol, is a symbol
used to identify the force. The optional arguments are defined below. Note that at |east
one of the optional arguments pointl or point2 must be included in order for the force to
actually affect the system. Typically, most of the additional arguments are used.

name — string that describes the force, used by AUTOSIM when creating
documentation and for labeling output variables, e.g., "tire force". The
default is symbol.

242

direction — expression for the direction in which the force acts. The defaultis[N3] .

magnitude — expression for the force magnitude. (E.g., !"-K*(x - x0) -
D*v"). This expresson must be scalar. Because springs, dampers, and
controllers involve deflections, dummy variables are provided to simplify the
specification of simple elements. (See descriptions for the keywords x, x0, and
v.) Thedefault isaconstant that prints the same as symbol.

pointl — point upon which the force acts. The line of action for the force passes
through this point to affect the body containing pointl. The default is the fixed
origin (i.e., the origin of the inertial reference).

point2 — second point. This point serves two functions: (1) the second body influenced
by the force is the body containing point2, and (2) relative deflection and velocity
are define between pointl and a plane perpendicular to direction that contains
point2. Theline of action for the force does not necessarily pass through this point.
The default isthe fixed origin.

x — adummy variable for the distance between pointl and a plane perpendicular to
direction that passes through point2. If the expression for magnitude contains this
symbol, the symbol is replaced with an expression for the distance. The default
symbol isX. This need only be changed if the analyst has provided an expression
for magnitude that uses the symbol X to represent an existing parameter or external
variablein the system.

X0 — adummy variable for the nominal value of x when all generalized coordinates are
zero. This expression is the “datic” distance between pointl and the plane
containing point2 that is perpendicular to direction. The default symbol is X0. This
need only be changed if the analyst has provided an expression for magnitude that
uses the symbol X0 to represent an existing parameter or external variable in the
system.

v — a dummy variable for the speed between pointl and point2, in the direction
direction. If the expression for magnitude contains this symbol, the symbol is
replaced with an expression for the speed. The default symbol is V. This need
only be changed if the analyst has provided an expression for magnitude that uses
the symbol V to represent an existing parameter or external variable in the system.

243

no-forcem— AUTOSIM normally introduces a new symbol for each force magnitude
(an element of the Fortran array FORCEM) to make the simulation code easier to
read. To disable thisbehavior, set no-forcem to any value except NI L (e.g., T).
ThedefaultisNI L.

add- moment symbol

This macro creates anmonent object that represents the moment of a couple between two
bodies. The required argument, symbol, is a symbol used to identify the moment. The
optional arguments are defined below. Note that at |east one of the optional arguments
bodyl or body2 must be included in order for the moment to actually affect the system.

name— string that describes the moment. The default is symbol.
direction — expression for the direction or the moment. The defaultis[N3] .

magnitude — expression for the moment magnitude. This expression must be scalar.
The default is a constant that prints the same as symbol.

bodyl — symbol for body upon which the moment acts. The defaultisN.
body2 — symbol for body from which the moment acts. The default isN.

no-forcem— AUTOSIM normally introduces a new symbol for each force magnitude
(an element of the Fortran array FORCEM) to make the simulation code easier to
read. To disablethisbehavior, set no-forcemT. The default isNI L.

add- poi nt symbol
This macro definesapoint on a body for later reference in describing forces, output

variables, or constraint equations. The required argument symbol is used to reference the
point later. The optional arguments are the following:

name— astring that describes the point. The default is symbol.
body — the body/coordinate system in which the point islocated. The default isN.

coordinates—a 3-element array containing the coordinates of the point in the specified
coordinate system. Thedefaultis#(0 0 0).

coordinate-system — a coordinate system to use for specifying the coordinates of the
point. If coordinate-systemis not the same as body, the coordinates are converted
by assuming the systemisinits nomina state (all generalized coordinates are zero).
The default is body.

244

add- strut symbol

This macro defines aforce that connects two known points. The direction of the forceis
derived by AUTOSIM. Thismacroissimilar to add- | i ne-f or ce, and most of the
arguments have the same meanings. The difference is that aforce defined with add-

I i ne-f or ce hasaknown direction and a single point through which the line of action
passes, whereas a force defined with add- st r ut has an unknown direction that passes
through two known points. Thus, add- st r ut does not include an argument for the
direction. Also, the argument point2is more simply defined as the second point upon
which the force acts. The dummy variables x, x0, and v involve displacement and vel ocity
along the line connecting point1 and point2.

add- subr out i ne where name { variable} *

This macro is used to specify that an external subroutine should be included in the code
generated by AUTOSIM. nameis the name of the subroutine, and the arguments are listed
as zero or more variable arguments. The variables can be any scalar expressions. An
example use of this macro appear in section 9.4.

The argument wher e specifies where in the simulation code the subroutine is needed. The
valid symbolsthat can be provided are the following:

di f egn — the subroutine call should be made in the DIFEQN subroutine, to contribute
to the equations of motion. For example, an externa tire model might be
implemented as a subroutine that has several input variables and several output
forces and moments that appear in the equations of motion.

echo — the subroutine call should be made in the ECHO subroutine, to print data into
an echo file. For example, if an external tire model is used, a subroutine might be
included to print all of the tire parameters that are hidden from AUTOSIM.

I nput — the subroutine call should be madein the INPUT subroutine, to parse lines of
input for keywords related to external subroutines.

I ni t — the subroutine call should be made when initializations are performed.

out put — the subroutine call should be made in the OUTPUT subroutine, to compute
values needed for one or more output variables.

245

updat e — the subroutine call should be made once per time step, so that local variables
in the subroutine can be “updated.” This is necessary with many models that
involve hysteresis.

add- vari abl es wheretype{variable} *

Thismacroissimilar to add- subr out i ne, and exists mainly to define variables that
appear in external subroutines (added with add- subr out i ne) that receive values from
the subroutines. The argument wher e has exactly the same meaning and accepted values as
described above for add- subr out i ne. The argument type is a Fortran variable type,
such as REAL, | NTEGER, CHARACTER* 20, REAL* 8, etc. Therest of the arguments are
the variables being added.

| ar ge {symbol}*

This macro is used to declare that one or more symbols are “large.” Thisis commonly
applied to large stiffness values that are multiplied with “small” deflections to obtain forces
or moments that are not small. For example, see section 9.4. The macro assigns the
smal | - or der dot of each argument avalue of —1.

no- novement pointl point2 direction

This macro adds two constraint equations, one for speed and one for position, that declare
that there is no movement between pointl and point2 in the direction direction. The macro
no- novenent works by invoking the add- const r ai nt macro twice. The first time,
it takes the difference in velocity of the two points and dots the result with direction to
obtain a scalar constraint equation. The second time, it takes the difference in position
between the two points and again dots the result with direction to obtain a scalar
expression. It verifiesthat it can select two variables to eliminate (one speed and one
coordinate) before invoking add- const r ai nt , and will do nothing if it cannot find both
variables. The keyword: conf i r mcanbesetto T to allow the analyst a chance to cancel
if he or she does not approve the choice of variablesto eliminate. (If the analyst does not
approve of the variable selected by the macro, no action istaken.) The default is NI L.
That is, the macro does not offer the analyst a chance to cancel.

set - def aul t s {symbol number}*
All parametersin the simulation code generated by AUTOSIM have default values. If the

analyst provides no information, all default values are 1.0. This macro is used to assign
different values. The numerical values assigned here are used in the smulation code only if

246

the end user does not provide values asinputs. That is, al parameters can be modified by
the user, whether or not this macro was used by the analyst.

set - name {symbol name} *

All parameters and variables in the simulation code generated by AUTOSIM have names.
However, the names generated automatically by AUTOSIM may not be as meaningful to
the end user as names that the analyst might have in mind. This macro is used to override
names of parameters and variables that appear in documentation and output files of the
simulation code.

set - uni t s {symbol units}*

All parameters and variables in the simulation code generated by AUTOSIM have units.
However, there is not always enough information to deduce the units of some parameters
and external variables. This macro is used to override units of parameters and variables
that appear in documentation and output files of the smulation code.

smal | {symbol}*

This macro is used to declare that one or more symbols are “small.” Thisis commonly
applied to speeds that are small, but which apply to coordinates that are not small. For
example, see section 9.1. The macro assignsthe snal | - or der dlot of each argument a
value of +1.

Foecifying Output Variables

Although most of the materia in this dissertation involves the derivation of equations of
motion, the actual purpose of a simulation code is to generate time histories of variables of
interest. Thus, it isessential to specify exactly which variables are of interest and should
be written as output by the simulation code. The macro add- out is used to specify
virtually any output variable that might be of interest. Additionally, afew functions have
been prepared to automatically specify that the simulation code generated by AUTOSIM
include groups of “standard” variables as output variables. These functions are listed in
Table A.3.

247

Table A.3.3. AUTOSIM functions for specifying outputs.

Lisp Function Action

add- accel erati ons-t o- out put Add all derivatives of generalized speeds
to the list of output variables.

add- coor di nat es-t 0- out put Add all generalized coordinates to the list
of output variables.

add-f or ces-t 0- out put Add al force magnitudes to the list of
output variables.

add- nonent s-t o- out put Add all moment magnitudes to the list of
output variables.

add- speeds-t o- out put Add all generalized speedsto the list of

output variables.

Function Required Optional

add- out expression | long-name | Add onevariableto list of outputs.
short-name | gen-name Specify labels with keyword arguments.
body units

add- out expression short-name

This macro defines a variable that will be computed in the ssmulation code and written into
an output file. The required argument expression isascalar expression. The second
required argument short-nameis a string with up to 8-characters that describes the variable.
The optional keyword arguments provide additional labeling information. The program
generated by AUTOSIM will put this information into the header of the output file to
facilitate automated post-processing of file generated by the smulation code. The keyword
arguments are defined as follows:

long-name — a string with up to 32 characters that provides a more detailed name for the
variable. The default is short-name.

gen-name — a string with up to 32 characters that provides generic name for the
variable. The default is determined by the units of the variable.

body — the body most closely associated with the variable. The default is N.

units— the units of the variable. The default isthe expression for units that is obtained
using the AUTOSIM functionget - uni t s.

248

APPENDIX B — PASSENGER CAR HANDLING
MODEL

This appendix contains the compl ete source code for the passenger car handling model

described in Section 9.1. Thisversion is based on statements that some of the variables are

small.

O000O0

Passenger car handling nodel sinulation program
Version created Decenber 13, 1989 by AUTCSI M

(c) Mke Sayers and The Regents of The University of M chigan, 1989.
Al rights reserved.

Thi s program si mul ates the passenger car handling nodel by
nunerically integrating the 7 ordinary differential equations that
descri be the kinenatics and dynam cs of the system The passenger
car handling nodel is conposed of 2 bodies and has 3 degrees of
freedom

Each derivative evaluation requires 34 nultiply/divides, 24
add/ subtracts, and 2 function/subroutine calls.

Non-rol ling body (NRB); parent=N 3 coords: Q1) Q2) Q3)
Rolling body (RB); parent=NRB; 1 coord: 4)

Ceneral i zed Coor di nat es:

Q1): Translation of NRBO relative to the fixed origin along [nl].
(in)

Q2): Translation of NRBO relative to the fixed origin along [n2].
(in)

Q3): Rotation of the non-rolling body relative to the inertial
ref erence about axis #3. (deg)

Q4): Rotation of the rolling body relative to the non-rolling
body about axis #1. (deg)

| ndependent Speeds:

U 1): Abs. trans. speed of NRB* along axis 2. (in/s)
U2): Abs. rot. of NRB, axis 3. (deg/s)
U3): Rot. of RBrelative to NRB, axis 1. (deg/s)

Nonhol onom ¢ Constraints:

Abs. trans. speed of NRB* along axis 1.: SPEED

Active Forces:

FORCEM 1): (negative) Side force, front axle
FORCEM 2): (negative) Side force, rear axle

O00000000000000000000000O0

oXeXe

o0 000

249

Active Mrments:

FORCEM 3): (negative) Aligning nmonent, front axle
FORCEM 4): (negative) Aigning nonment, rear axle
FORCEM 5): (negative) roll nonment from suspension

Program Secti ons:

MAIN -- Control flow of programand performnunerical integration

BLOCK DATA -- initialize variables in COMN bl ocks
DFEN (T, Q @, U UP) -- conpute @ and UP given T, Q and U
ECHO (IFILE, Q U -- create output file with echo of input

par anet ers
INPUT (Q U -- read parameters and initial conditions
Function LENSTR (STRING -- count characters in left-justified
string
Function NCRVA(A) -- Nornalize angl e
Function CPNFI L(PROWPT, STAT, IUNT) -- let user open file

CPNQUT(I FILE) -- create output file and wite header
QUTPUT(IFILE, T, Q @, U W) -- wite variables at tine T
PREQW -- pre-conpute constants used in simulation

TI MDAT(TI MEDT) -- get time and date from conputer

IMPLIA T NONE

CHARACTER*80 | NFI LE, TITLE

REAL NCRVA, PARS, STEP, STEP2, STOPT, T, Y, YM YP
| NTEGER I, ECHO [IFILE [ILOCPL, ILOCP2, |PRNT2, |SECL,
& [SEC2, NOOCRD, NLOCP, NPARS, NSPEED, NTIOr

PARAMETER (NOOCRD = 4, NSPEED = 3, IFILE = 1, NTOT = 7)
DIMENSION Y(NTOT), YMNTOT), YP(NTOT)

PARAMETER (NPARS = 24)

DIMENSI ON PARS(NPARS)

COMVON /INPARS PARS, TITLE, |NFILE

SAVE /| NPARS/

EQU VALENCE (PARS(22), STEP), (PARS(23), STCPT)
WRI TE(*, '(5A)")
& ' Passenger car handling nodel sinulation program'’
WR TE(*, " (5A)")
& ' Version created Decenber 13, 1989 by AUTCSI M
WRITE(*, '(5A)")
&'
Read input data

CALL I NPUT(Y, Y(NOOORD + 1))
| PRNT2 = PARS(10)

Conput e constants in common bl ock / PROMP/ before starting.
CALL PREOWP

ption to echo data to output file

250

cC
CALL ECHQ(I FILE, Y, Y(NOOORD + 1))
Cc
C Set up output file with sirmulated time histories
C
CALL GPNOUT (| FILE)
CALL TIME (I SECL)
C

C Start by evaluating derivatives and printing variables at t=0
C

T=0.

CALL DFEQ\(T, Y, YP, Y(NOOORD + 1), YP(NOOCRD + 1))

CALL QUTPUT(IFILE, T, Y, YP, Y(NCOORD + 1), YP(NCOORD + 1))

Integration |l oop. Continue until printout tine reaches final tirme.
Use two eval uations of the derivatives to integrate over the step.

o000

NLOOP = STCPT / STEP / IPRNT2 + 1
STEP2 = STEP / 2.
DO 60 |LOOPL = 1, NLOCP
DO 50 ILOCP2 = 1, |PRNT2
DO 10 | = 1, NTOT
YM1) = Y(1) + STEP2 * YP(I)
10 CONTI NUE
CALL DIFEQN (T + STEP2, YM YP, YMNOOORD + 1),
& YP(NOOORD + 1))

DO20 | =1, NTOT
Y(1) = Y(1) + STEP * YP(I)
20 CONTI NUE

T=T+ STEP
CALL DIFEQN (T, Y, YP, Y(NOOORD + 1), YP(NOOORD + 1))

50 CONTI NUE
CALL QUTPUT (IFILE, T, Y, YP, Y(NOOORD + 1), YP(NOOORD + 1))
IF (T .GE STCPT) GO TO 70

60 CONTI NUE

70 CONTI NUE

CALL TIME (I SEC2)

End of integration loop. Print final status of run

o000 O

WRTE (*, *) ' Termnation at time =, T, ' sec.'

WR TE (*,*) ' Conputation efficiency: ', (ISEC - ISECL) / T,
& ' sec/sim sec'

WRTE (*,*) ' '

CLCBE(| FI LE)
PAUSE ' Done'
END

251

BLOCK DATA

CHARACTER*80 | NFI LE, TITLE

REAL
I NTEGER

PARAMETER
DI MENS|I ON
GCOWEN
SAVE

DATA

&
&
&

DATA
DATA
END

PARS
NPARS

(NPARS = 24)

PARS(NPARS)

/INPARS PARS, TITLE,
/ | NPARS/

I NFI LE

PARS /-444.0, -428.0, 1080.0, 1000.0, 0.82, 63.4,
78.0, 212.0, 15.48, 2.0, 5580.0, 0.0, 37080.0,
6211.0, -0.016, 125.5, 1.0, 704.0, 3831.0, 968.0,
1.0, 0.025, 2.0, 5.1/

INFILE /" "/

TITLE /'Default paraneter val ues'/

SUBROUTINE DIFENT, Q P, U, UP)

O000000000000000 O

Thi s subroutine defines the equations of notion for the Passenger
car handling nodel, which includes 3 degrees of freedom

--> T
- > Q

<- -

--> U

<- -

Each derivative eval uation requires 34 nul tiply/divides,

add/ subtracts, and 2 function/subroutine calls.

(c) Mke Sayers and The Regents of The University of M chigan,

r eal
real
P real
r eal
UP real

time

array of 4 generalized coordi nat es
array of derivitives of Q

array of 3 generalized speeds
array of derivatives of U

24

1989.

Al rights reserved.

IMPLIA T NONE

CHARACTER*80 | NFI LE, TITLE

REAL C CA1, CA2, CAM, CAMZ, QOCEF1, CE, QGL, CROLL,
& DEGREES, FORCEM GCEES, H IPRINT, IXX |XZ, |ZZR
& KROLL, KRS2, L, NRBI33, NRBM PARS, PC Q P, RBM
& S, SPEED, STEER STEP, STCPT, T, THETAR U WP, Z
| NTEGER NOOCRD, NPARS, NSPEED

PARAMVETER (NOOCRD = 4, NSPEED = 3)

D MENSI ON Q NOOCRD), QP(NCOCRD), WU(NSPEED), UP(NSPEED)

Dl MENSI ON Qq4), FCRCEM5), S(4), Z(30)

COWEN /DWARS C FORCEM S, Z

SAVE / DYVARS

PARAMETER (NPARS = 24)

D MENSI ON PARS(NPARS)

COWEN /I NPARS PARS, TITLE, |N-FILE

SAVE /1 NPARS

EQU VALENCE (PARS(1), CAl), (PARS(2), CA2), (PARS(3), CAML),

o000

OO0

oXoXe

OO0 000 000 000

252

& (PARS(4), CAWR), (PARS(5), COCEF1), (PARS(6), CE),
& (PARS(7), OGl), (PARS(8), OROLL), (PARS(9), H),

& (PARS(10), IPRINT), (PARS(11), XX, (PARS(12),
& IX2), (PARS(13), 1ZZR), (PARS(14), KRCLL),

& (PARS(15), KRS2), (PARS(16), L), (PARS(17), NRBI33),
& (PARS(18), NRBV), (PARS(19), RBM), (PARS(20),

& SPEED), (PARS(21), STEER), (PARS(22), STEP),

& (PARS(23), STCPT), (PARS(24), THETAR)

DIMENSI N PQ(43)

COMMON / PROMPI PC

SAVE / PROVP/

PARAMETER (GEES = 386.2, DEGREES = 57. 29577951308232)

(3) = SINQ3))

q3) =0y Q3))

Ki nemati cal equations

(SPEED*((3) -U1)*(3))
(U1)*Q3) + SPEED*(3))

define expression for Side force, front axle

Z(1) = (STEER -PQ43)*U2) -PQ2)*U1))
FOREM 1) = (-PQ1)*Q4) + CAL*Z(1))

define expression for Side force, rear axle

Z(2) = (KrRS2*Q4) -Pq(2)*U1))
FORCEM 2) = CA2*Z(2)

define expression for Aigning monent, front axle
FORCEM 3) = CAML*Z(1)

define expression for Aligning nonent, rear axle
FORCEM 4) = CAWVR*Z(2)

define expression for roll nonment from suspension
FORCEM 5) = (KRALL*Q(4) + PA(4)*U(3))

Dynam cal equations

Z(3)
Z(4)
Z(5)
Z(6)

&
Z(7)
&

Z(8)
Z(9)

PQ(3)*Q4)

SPEED* | 2)

(PA(8)*Q4) -Z(4))

(PO(32)*Q4) + NRBMFZ(4) -RBMZ(5) + FORCEM 1) +

FORCEM 2))

= (PQ(36)*Z(3) -PQ(10)*Z(5) + L*FORCEM 1) + FORCEM3) +
FORCEM 4))

= P(16) *Z(6)

= (PQ(37)*Z(5) + PA(38)*Z(6) + PQ(39)*(Z(7) -Z(8))

253

& - PQ(28) * FORCEM 5))

Z(10) = (PQ(29)*(Z(7) -Z(8)) + PQ(40)*Z(9))

WP(3) = 2(9)

WP(2) = -2(10)

WP(1) = -(PQ30)*Z(6) + PQ41)*Z(9) -P42)*Z(10))
RETURN

END

SUBROUTI NE ECH(I FILE, Q U

O00000000 O

Thi s subroutine pronpts the user for the nanme of an optional echo
file for the passenger car handling nodel. |If afile is selected,
all of the paraneter values and initial conditions are witten to
confirmthat the intended val ues were used in the simlation.

(c) Mke Sayers and The Regents of The University of M chigan, 1989.
Al rights reserved.

IMPLIA T NONE
CHARACTER* 24 TI MEDT
CHARACTER*80 I NFI LE, CPNFIL, TITLE

REAL
&
&
&

| NTECER

PARAMETER
DI MENSI ON

SAVE

EQU VALENCE

Ro Ro Ro Ro Ro Ro Ro Ro

PARAMETER
DI MENSI ON
PARAMETER

CAl, CA2, CAML, CAMWR, COCEF1, CE Gl, CRALL,
DEGREES, GEES, H IPRINT, I XX [XZ, 1Z2ZR KRCOLL,
KRS2, L, NRBI33, NRvBM PARS, Q RBM SPEED, STEER
STEP, STOPT, T, THETAR U

| FILE, NOCOORD, NPARS, NSPEED

(NPARS = 24)

PARS(NPARS)

/INPARS/ PARS, TITLE, |NFILE
/| NPARS/

(PARS(1), CAL), (PARS(2), CA2), (PARS(3), CAM),
(PARS(4), CAMR), (PARS(5), COCEF1), (PARS(6), CE),
(PARY(7), Ga&l), (PARS(8), CRALL), (PARY(9), H),
(PARS(10), IPRINT), (PARS(11), IXX), (PARS(12),
IX2), (PARS(13), 1ZZR), (PARS(14), KROLL),
(PARS(15), KRS2), (PARS(16), L), (PARS(17), NRBI33),
(PARS(18), NRBM), (PARS(19), RBN), (PARS(20),
SPEED), (PARS(21), STEER), (PAR(22), STEP),
(PARS(23), STCPT), (PARS(24), THETAR)
(NCOCRD = 4, NSPEED = 3)

Q NOOORD), U NSPEED)

(CEES = 386.2, DEGREES = 57.29577951308232)

IF (CPNFIL(' Nane of (optional) file to echo the input data',
& "CPTAJT, IFILE) .EQ ' ') RETURN

CALL TI MDAT(TI MEDT)

WR TE(| FI LE,
WR TE(| FI LE,

'(A)') ' PARSFILE
"(5A4)")

& "Echo file created by:'

WR TE(| FI LE,

"(5A)")

& ' Passenger car handling nodel sinulation program'

WR TE(| FI LE,

"(5A)")

& 'Version created Decenber 13, 1989 by AUTCSI M

254

WR TE(I FILE, ' (5A)")

&
WR TE(IFILE, ' (A T8,A') 'TITLE, TITLE
WR TE(IFILE, '(/AA') '* Input File: ', INFILE

WRTE(IFILE, '(A A') '* Run was nade ', TI MEDT
WRTE(IFILE, '(/A)") '* PARAMETER VALUES

WRI TE(I FILE, '(A T8,Gl3.6,T24,5A)') 'CAl', CAl/ DEGREES,

& 'front cornering stiffness (Ib/deg)’

WR TE(I FILE, ' (A T8,Gl3.6,T24,5A)"') ' CA2', CA2/ DEGREES,

& 'rear cornering stiffness (Ib/deg)’

WR TE(I FILE, ' (A T8,Gl3.6,T24,5A)"') 'CAML', CAML/ DEGREES,

& 'front aligning nonent coefficient (in-1b/deg)’

WRI TE(I FILE, '(A T8, Gl3.6,T24,5A)"') ' CAM', CAMR/ DEGREES,

& 'rear aligning nmonent coefficient (in-Ib/deg)’

WR TE(I FILE, ' (A T8, GL3.6,T24,5A)"') ' COCEF1', OOCEF1,

& '"prop. of body roll resulting in front wheel canber (-)'

WR TE(IFILE, ' (A T8,Gl3.6,T24,5A)') 'CE, CE

& 'distance fromrear axle to sprung mass c.g. (in)'

WRI TE(I FILE, '(A T8,Gl3.6,T24,5A)') 'CGl', OGL/ DEGREES,

& 'front canber stiffness (Ib/deg)’

WR TE(I FILE, ' (A T8,GL3.6,T24,5A)') 'CROLL', CRO.L/DEGREES,

& 'torsional danping rate for the vehicle body in roll’

&' (in-1b-s/d)’

WR TE(IFILE, ' (A T8,Gl3.6,T24,5A)') 'H, H

& 'height of sprung nass c.g. above roll axis (in)'

WR TE(IFILE, ' (A T8,GI3.6,T24,5A)') 'IPRINT", |PRNT,

& 'nunber of time steps between output printing (counts)'

WRITE(IFILE, '(A T8,Gl3.6,T24,5A)') "I XX, | XX

& 'nmonent of inertia of RB (in-1b-s2)’

WRTE(IFILE, '(A T8,Gl3.6,T24,5A)') 'IXZ', | Xz

& 'product of inertia of RB (in-1b-s2)'

WR TE(IFILE, ' (A T8,GI3.6,T24,5A) ') '1ZZR, |ZZR

& 'moment of inertia of RB (in-1b-s2)'

WRITE(I FILE, ' (A T8,Gl3.6,T24,5A)') 'KRALL', KROLL/DEGREES,

& 'torsional spring rate for the vehicle body in roll®

&' (in-1b/deg)’

WRI TE(I FILE, ' (A T8, Gl3.6,T24,5A)") 'KRS2', KRS2,

& 'roll-steer coefficient for rear axle (-)'

WR TE(I FILE, ' (A T8,GL3.6,T24,5A)"') 'L', L,

& 'wheel base (in)'

WRI TE(I FILE, ' (A T8,Gl3.6,T24,5A)') 'NRBI 33", NRBI 33,

& 'nonent of inertia of NRB (in-1b-s2)'

WR TE(I FILE, ' (A T8,GL3.6,T24,5A)') 'NRBM, CGEES*NRBVM

& 'mass of NRB (I bm)'

WRI TE(I FILE, ' (A T8,Gl3.6,T24,54)"') 'RBM, RBW CEES,

& 'mass of RB (1 bm’

WRI TE(I FILE, '(A T8, Gl3.6,T24,5A)') 'SPEED , SPEED,

& 'forward speed (in/s)'

WR TE(I FILE, ' (A T8, Gl3.6,T24,5A)') ' STEER , STEER*DEGREES,

& 'Steer angle at road (deg)'

WR TE(I FILE, ' (A T8, Gl3.6,T24,5A)') 'STEP, STEP,

& 'sinulation time step (sec)’

WRI TE(I FILE, '(A T8, Gl3.6,T24,5A)') 'STCPT', STCPT,

& "sinmulation stop tine (sec)’

WRI TE(I FILE, '(A T8,Gl3.6,T24,5A)') ' THETAR , THETAR* DEGREES,

& 'inclination angle of roll axis (deg)'

WRITE(IFILE, '(/A)") '"* INTIAL CONDI TI ONS

WR TE(| FI LE,

255

"(A T8, GI3.6, T24, 5A') 'Q1)', Q1),

& 'Translation of NRBO relative to the fixed origin along [n1]."

&' (in)’
WR TE(I FI LE,

"(A T8, GI3.6, T24, 5A)') 'Q2)', Q2)),

& 'Translation of NRBO relative to the fixed origin along [n2].'

&' (in)’
WR TE(I FI LE,

‘(A T8, Gl3.6, T24, 54)') 'Q3)', DEGREES*Q3),

& 'Rotation of the non-rolling body relative to the inertial'

& ' reference
WR TE(| FI LE,

about axis #3. (deg)'
"(A T8, GI3.6, T24, 5A)') 'Q4)', DEGREES*Q4),

& 'Rotation of the rolling body relative to the non-rolling body'
& ' about axis #1. (deg)'

WR TE(| FI LE,

& ' Abs. trans.

WR TE(| FI LE,
& ' Abs. rot.
WR TE(| FI LE,

"(A T8, GI3.6, T24, 5A)') 'U1)', U1,
speed of NRB* along axis 2. (in/s)'
"(A T8, Gl3.6, T24, 5A)') 'U2)', DEGREES*U 2),

of NRB, axis 3. (deg/s)'

"(A T8, GI3.6, T24, 5A4)') 'U3)', DEGREES*U3),

& '"Rot. of RBrelative to NRB, axis 1. (deg/s)’

WR TE(| FI LE,
CLOSE(| FI LE)
RETURN

END

"(/IA') "END

SUBROUTI NE | NPUT(Q U)

O0000000Q O

Thi s subroutine

pronmpts the user for the name of an optional

parameter file for the Passenger car handling rmodel. |If afileis
sel ected, paraneter values are read to override the default val ues.

(c) Mke Sayers

and The Regents of The University of M chigan, 1989.

Al rights reserved.

IMPLIO T NONE

LOG CAL ISIT

CHARACTER*80 BUFFER ECHFI L, |NFILE, CPNFIL, QUELE, TITLE
CHARACTER*8 CHARS, NAMES, QC, UC

REAL CAL, CA2, CAMl, CAWP, OOCEF1, CE, OGlL, ORCLL,

& DEGREES, GEES, H IPRNT, IXX IXZ, 1ZZR KROLL,
& KRS2, L, NRBI33, NRBM PARS, PSCALE, Q QNT,

& QSCALE, RBM] SPEED, STEER STEP, STCPT, T, THETAR
& U UNT, USCALE

| NTEGER | FILE, 1LOCP, | QUEUE, LENSTR LSTRNG MAXQ NOOCRD,
& NPARS, NQUELE, NSPEED

PARAVETER (NPARS = 24)

DIMENSION PARS(NPARS)

COMVON /INPARS PARS, TITLE, |NFILE

SAVE / | NPARS/

EQU VALENCE (PARS(1), CAl), (PARS(2), CA2), (PARS(3), CAM),
& (PARS(4), CAMR), (PARS(5), COCEF1), (PARS(6), CE),
& (PARS(7), OGl), (PARS(8), CROLL), (PAR(9), H),
& (PARS(10), IPRINT), (PARS(11), IXX), (PARS(12),
& IXZ), (PARS(13), 1ZZR), (PARS(14), KRCLL),

& (PARS(15), KRS2), (PARS(16), L), (PARS(17), NRBI33),
& (PARS(18), NRBV), (PARS(19), RBM), (PARS(20),

& SPEED), (PARS(21), STEER), (PAR(22), STEP),

OO0

O0000000000

256

(PARS(23), STCPT), (PARS(24), THETAR

PARAMETER (GEES = 386.2, DEGREES = 57. 29577951308232)
PARAMETER ~ (NOOCRD = 4, NSPEED = 3, MAXQ = 20, |FILE = 1)
DIMENSION NAMES(NPARS), Q NOOCRD), QO(NOOORD), Q N T(NOOCRD)

& QUEUE(MAXQ), QBCALE(NCOCRD), U(NSPEED), UQ(NSPEED),
& U N T(NSPEED), USCALE(NSPEED)

DATA QN T /NOOORD0./, UNT /NSPEED0. /

DATA c/'qy, 'Qq2)', 'Qq3’', 'QAH'/

DATA uc/'u1)', 'y2', 'u3)'/

DATA QSCALE /1, 1, DEGREES, DEGREES/

DATA USCALE /1, DEGREES, DEGREES/

DATA NAVES /' CAL', 'CA2', 'CAM', 'CAMR', 'OOCEFL', 'CE,
& "OGL', 'ORALL', 'H, 'IPRNT, 'IXX, 'IXZ, '1ZZR,
& "KROLL', 'KRS2', 'L', 'NRBI33', 'NRBM, 'RBM,
& ' SPEED , ' STEER, 'STEP, 'STCPT', 'THETAR/

NQUELE = 0

| QUELE = 0

pen file with parameter values and initial conditions

5 INFILE = OPNFIL (' Nanme of (optional) file with parameter val ues',

&

"CPTIN, IFILE

6 IF (INFILE .Ne "") THEN

READ(I FILE, '(A)') CHARS

IF (CHAR8 .EQ 'END') QO TO 100
IF (CHAR8 . NE. ' PARSHI LE) THEN
CLCSE(| FI LE)
WRTE (*, "(A') ' BEror--File did not begin with "PARSH LE"'
IF (IQUEELE .EQ 0) THEN
& TO5
ELSE
@0 TO 100
END | F
END | F

Read line fromfile. CHARB is the keyword, checked for:

Eoooooo

TI TLE keyword,

par amet er keyword (from NAMES array),

initial value of generalized coordinate (keyword from QC array),
initial value of generalized speed (keyword from UC array),
(possi bl y) keyword for other input subroutine, or

END keywor d.

other lines are ignored. A so, all lines are ignored after END

is found, and any line witha'* in colum 1 is ignored.

10

READ(| FILE, ' (A8, A80)', END=100, ERR=100) CHARS, BUFFER
IF (CHARS .EQ 'TITLE) THEN
TI TLE = BUFFER

@0 TO 10

ELSE IF (CHARS .EQ 'END) THEN

@0 TO 100

ELSE IF (CHARB(1:1) .EQ '*') THEN
@ TO 10

ELSE | F (CHARB .EQ ' PARSFILE) THEN

| NQU RE (FI LESBUFFER EXI ST=ISI T)
IF (1SIT) THEN

OO0

o000

OO0

OO0

C
C
C

C

257

NQUELE = NQUELE + 1
QUEUE (NQUELE) = BUFFER

ELSE
LSTRNG = LENSTR (BUFFER)
WRITE (*," (AAA'") 'Error--PARSFILE "', BUFFER(:LSTR\G,

& ""not found (skipped).'
END I F
Q0 TO 10
END IF

Check for nanes of paraneters

DO 20 ILOCP = 1, NPARS
|F (CHARS . EQ NAMES(ILOCP)) THEN
READ(BUFFER, ' (GL3.0)') PARS(|LOP)
@ TO 10
END | F
20 CONTI NUE

Check for names of generalized coordinates (initial conditions)

DO 30 ILOCP = 1, NOOORD
|F (CHARS .EQ Q(ILOCP)) THEN
READ(BUFFER ' (Gl3.0)') QN T(ILOP)
@ TO 10
END | F

30 CONTI NUE

Check for names of generalized speeds (initial conditions)

DO 40 |LOCP = 1, NSPEED
|F (CHARB .EQ UQ(ILOCP)) THEN
READ(BUFFER ' (GL3.0)') U N T(I1LOCP)
@ TO 10
END | F
40 CONTI NUE

&0 TO 10
END I F

Qose this file and process other PARS files that were referenced.

100 CLCSE (I FILE)
IF (1 QUELE .LT. NQUEUE) THEN
| QUELE = | QUELE + 1
| NFI LE = QUELE (| QUEUE)
CPEN (I FILE, STATUS=' CLD', FILE=lNFILE)
W TE (*, '(AA') ' Reading fromPARSFILE ', |NFILE
@ TO 6
END I F

Set initial conditions

DO 110 1 LOCP = 1, NOOCRD
110 QILOP) = QN T(I1LOP) / QSCALE(I LOOP)

DO 120 I LOCP = 1, NSPEED

C

120 UILOOP) = UNT(ILOOP) / USCALE(I LOOP)

258

C Convert units as needed.

C

CAl = CAL*DEGREES
CA2 = CA2* DEGREES
CAML = CAML* DEGREES

GGl = CGL* DEGREES

CROLL = CROLL* DEGREES
KROLL = KROLL* DEGREES
NRBM = NRBM CGEES

RBM = RBM CEES

STEER = STEER DEGREES
THETAR = THETAR DEGREES

RETURN
END

FUNCTI CN LENSTR (STR NG

o0 O

count characters in left-justified string.

10

CHARACTER* (*) STR NG

N = LEN (STR N

DO10L=N 1, -1
IF (STRNGL:L) .NE ' ') THEN
LENSTR = L
RETURN

END I F

CONTI NUE

LENSTR = 1

RETURN

END

M Sayers,

8-9-87

FUNCTI ON NCRVA(A)

000 O

nornal i ze angl e

REAL A NORVA, PI
PARAVETER (Pl =3. 141592653589793)
IF (A.GE PI) THEN
NORVA = A - Pl
ELSE IF (A .LE -Pl) THEN
NORVA = A + Pl
ELSE
NORVA = A
END | F
RETURN
END

FUNCTI ON CPNFI L (PROWPT, STAT, | FILE)

OO0 O

This function tries to get a file name fromthe user and open the

file.

--> PRAOWT string Message to pronpt user

259

C --> STAT string Status of file ("NEW = nmandatory out put,
C "D = mandatory i nput,
C "CPTIN' = optional input,
C "CPTQJT" = optional output)
C -->I1FILE integer Fortran I/Ounit for file
C <- CPNFIL string nane of file opened or " " if no file selected
C
C M Sayers January 30, 1989
C

LOQ CAL ISIT

CHARACTER* (*) PROWPT, STAT, CPNFIL

CHARACTER*3 STAT2

| NTEGER IFILE, L, LENSTR
C
C Set Fortran STATUS type
C

IF (STAT .EQ 'NEW .CR STAT .EQ 'CPTQUT) THEN

STAT2 = ' NEW
ELSE
STAT2 = 'ALD

END | F

C

C Ask user for file nanme, and check for no response (bl ank |ine)
C
100 WRTE(*, "(A A A)') " ', PROWT, ': '
READ(*, '(A)') CPNFIL
IF (CPNFIL .EQ ' ') THEN
IF (STAT .EQ 'CPTIN .COR STAT .EQ 'CPTQUT') THEN
RETURN
ELSE I F (STAT .EQ 'NEW) THEN
WRTE (*," (A') ' Qutput file is required!"

QO TO 100
ELSE
WRTE (*,"(A') ' Input fileis required!’
@0 TO 100
END I F
END I F
C
C Deal with existance of file (or |ack thereof)
C
I NQU RE (FI LE=CPNFI L, EXIST=ISIT)
IF ((.NOT. 1SIT) .AND. (STAT2 .EQ 'AG.D)) THEN
L = LENSTR{ CPNFI L)
WTE (*, '"(A A A'") "' File"", CPNFIL(:L),
& "" does not exist. Try again.'
@O TO 100
ELSE IF (ISIT . AND STAT2 .EQ 'NEW) THEN
CPEN (I FILE, FI LE=CPNFI L)
CLCBE (I FILE, STATUS=' DELETE)
END I F
Cc
C pen file and wite blank |ine on screen
C

CPEN(| FI LE, STATUS=STAT2, FlLE=CPNFIL)
WRTE (%" (A") "

RETURN

END

260

SUBROUTI NE CPNOUT(| FI LE)

O000000000000 O

@

o000

Thi s subroutine pronpts the user for the name of a file set that
will be created to store time histories of the 9 output variables
conput ed by the Passenger car handling nodel sinmulation program

Atext file is created and opened, and | abeling information is
witten to facilitate post-processing of the data. Then, the text
file is closed and a corresponding binary file is created and opened
to store the nurerical values of the output variables.

(c) Mke Sayers and The Regents of The University of M chigan, 1989.
Al rights reserved.

IMPLIAT NONE

CHARACTER*80 FNQUT, |NFILE, CPNFIL, TITLE

LCd CAL ISIT

REAL CAl, CA2, CAML, CAMWP, COCEF1, CF, GGl, CRALL,
& DEGREES, GEES, H IPRNT, IXX [IXZ, |1ZZR KROLL,
& KRS2, L, NRBI33, NRBM PARS, RBM SPEED, STEER
& STEP, STCPT, T, THETAR

| NTEGER I FILE, 1LOCP, |IPRNTZ2, LENSTR LSTRNG MNAXBUF,
NBYTES, NCHAN NOOCRD, NPARS, NRECS, NSAWP, NSCAN
NSPEED, NUWKEY, NVARS

CHARACTER* 32 CENNAM LONGNM R GBCD

CHARACTER* 24 TI MEDT

CHARACTER*8 (CHARB, SHORTN, UN TSN

Ro Ro

PARAMETER (NPARS = 24)

DIMENSION PARS(NPARS)

COMVON /INPARS/ PARS, TITLE, |NFILE
SAVE /| NPARS/

EQU VALENCE (PARS(22), STEP), (PAR(23), STCPT)

PARAMETER (NVARS = 9, NUMKEY = 1)
DIMENSION LONG\MNVARS), GENNAM NVARS), R GBCD(NVARS)
& SHORTN(NVARS), UNI TSN NVARS)

Pronpt user to provide nane of output file. File is opened and
attached to Fortran unit |FlLE

FNOQUT = CPNFI L(' Narme of (required) file for tine history outputs'
& "NEW, |FILE

NCHAN = 0

| PRNT2 = PARS(10)

NCHAN = NCHAN + 1

LONG\M (NCHAN) = ' Lateral Accel eration'
SHORTN (NCHAN) = ' Ay

CENNAM (NCHAN) = ' Transl ati onal Accel erati on’
UNNTSN (NCHAN) = 'g'"'s'

R GBCD (NCHAN) = ' Rol i ng Body'

NCHAN = NCHAN + 1
LCNG\M (NCHAN) = ' Yaw Rat e’

OO0

SHCRTN (NCHAN)
GENNAM (NCHAN)
UNE TSN (NCHAN)
R GBOD (NCHAN)

NOHAN = NCHAN + 1
LONGAM (NCHAN)
SHORTN (NCHAN)
GENNAM (NCHAN)
UN TSN (NCHAN)
R GBCD (NCHAN)

NOHAN = NCHAN + 1
LONGAM (NCHAN)
SHCRTN (NCHAN)
GENNAM (NCHAN)
UN TSN (NCHAN)
R GBCD (NCHAN)

NCHAN = NCHAN + 1
LONG\M (NCHAN)
SHORTN (NCHAN)
GENNAM (NCHAN)
UNE TSN (NCHAN)
R GBCD (NCHAN)

NCHAN = NCHAN + 1
LONGANM (NCHAN)
SHORTN (NCHAN)
GENNAM (NCHAN)
UNE TSN (NCHAN)
R GBCD (NCHAN)

NOHAN = NCHAN + 1
LONGAM (NCHAN)
SHORTN (NCHAN)
GENNAM (NCHAN)
UNI TSN (NCHAN)
R GBCD (NCHAN)

NOHAN = NCHAN + 1
LONGAM (NCHAN)
SHORTN (NCHAN)
GENNAM (NCHAN)
UNE TSN (NCHAN)
R GBCD (NCHAN)

NOHAN = NCHAN + 1
LONGANM (NCHAN)
SHORTN (NCHAN)
GENNAM (NCHAN)
UN TSN (NCHAN)
R GBCD (NCHAN)

Wite Header Info f

Set paraneters neede

261

tre

" Angul ar Speed'

' deg/ s'

' Non- Rol |'i ng Body'
"Front slip angle'
"al pha f'

"Sip Angle'

' deg’

' Non- Rol |'i ng Body'
"Rear slip angle'
"alpha r'

"Sip Angle'

' deg’

' Non- Rol |'i ng Body'
'Side force, front axle'
"FY1'

' For ce'

] | bl

' Non- Rol |'i ng Body'
'Side force, rear axle'
'FY2'

' For ce'

] | bl

' Non- Rol |'i ng Body'

"Aligning nonent, front axle'
" NEL

' Monent '’

"in-1b

' Non- Rol |'i ng Body'

"Aligning nonent, rear axle'
NP2

' Monent’

"in-1b

' Non- Rol |'i ng Body'

"roll moment from suspension'
' ROLLM

' Monent'

"in-1b

"Rol ling Body'

or ERDfile

dto wite header for ERD format file

262

C NUWKEY = 1 for 32-bit floating-point binary
C NSAW = nunber of sanpl es
C NRECS = nunber of "records" in output file
C NBYTES = nunber of bytes/record
C
NSAMP = STCPT / STEP / IPRNT2 + 1
NBYTES = 4 * NCHAN
NRECS = NSAWP
Cc
C Wite standard ERD fil e headi ng.
C

VWR TE(I FILE, ' (A)') ' ERDFI LEV2. 00'

WRI TE(| FI LE, 100) NCHAN, NSAMP, NRECS, NBYTES, NUWKEY, STEP*| PRNT2

WR TE(IFILE, '(AA') 'TITLE ', TITLE

WR TE(I FILE, 110) ' SHORTNAM , (SHORTN(ILQOOP), |LOOP=1, NCHAN)
WR TE(I FILE, 120) 'LONGNAME , (LONGNMILOOP), |LOCP=1, NCHAN)
WR TE(I FILE, 110) 'UNITSNAM, (UNITSN(ILOOP), |LOCP=1, NCHAN)
WR TE(I FILE, 120) ' GENNAME ', (GENNAMILOOP), |LOCP=1, NCHAN)
WR TE(I FILE, 120) 'R GBCDY', (R GBCX(ILOP), |LOCP=1, NCHAN)
WA TE(IFILE, '(A)') 'XLABEL Tine'

WRTE(IFILE, '(A)') 'XINTS sec'

IF (INFILE .EQ ' ') THEN
WRTE(IFILE, '(A)') "HSTCRY No input file (used defaults)'
ELSE
WRITE(IFILE, '"(A A') 'HSTCRY Input parameter file was ',
& | NFI LE
END | F
CALL TI MDAT(TI MEDT)
WRTE(IFILE, '(AA")
& 'H STCRY Data generated w th Passenger car handling nodel at '
& TI MEDT
WRTE(IFILE, '(A') 'END
C
C dose (text) header and create binary file.
C
CLCSE(| FI LE)
LSTRNG = LENSTR(FNQUT)
FNCQUT = FNQUT (:LSTRNG // '.BIN
I NQU RE(FI LE=FNQUT, EXI ST=I SIT)
IF (ISIT) THEN
CPEN (I FI LE, FILE=FNQUT)
CLCSE (I FILE, STATUS=' DELETE)
END | F

CPEN(| FI LE, FI LE=FNOUT, STATUS=' NEW, ACCESS=' SEQUENTIAL',
& FORME' UNFCRVATTED)
C
100 FORMAT (5(16,","), GL3. 6)
110 FORMAT (A8, 9A8)
120 FORVAT (A8, 9A32)
RETURN
END

263

SUBROUTI NE QUTPUT(IFILE, T, Q @, U, WP

O00000000000000 O

--> |FILE integer Fortran i/o unit for output

-->T real time

-->Q real array of 4 generalized coordinates
--> @ real array of derivitives of Q

--> U real array of 3 generalized speeds

--> WP real array of derivatives of U

This subroutine wites the values of the 9 output variabl es conputed
by the Passenger car handling nodel simulation programinto an
output file, using the values at time T.

(c) Mke Sayers and The Regents of The University of M chigan, 1989.
Al rights reserved.

IMPLIAT NONE

CHARACTER*80 | NFI LE, TITLE

C CAl, CA2, CAM, CAWe, COCEF1, CE, Gal, CRALL,
DEGREES, FORCEM CGEES, H IPRNT, IXX [IXZ, |ZZR
KROLL, KRS2, L, NRBI 33, NRBM QUIBUF, PARS, PC Q
&P, RBM S, SPEED, STEER STEP, STCPT, T, THETAR U,
W, Z

| NTECER IFILE, LGP, NOOORD, NPARS, NSPEED, NVARS

Q°2°2°2°§

PARAMETER (NOOORD = 4, NSPEED = 3, NVARS = 9)
DIMENSION QNCOCRD), QP(NOOORD), U(NSPEED), UP(NSPEED),

& QUTBUF(NVARS)

DIMENSION PQ(43)

COWDN /| PROVP/ PC

SAVE | PROMP/

DIMENSION (4), FORCEM5), S(4), Z(30)
COWON /DWARS C FORCEM S, Z
SAVE | DYVARS/

PARAMETER (NPARS = 24)

DIMENSION PARS(NPARS)

COMVON /INPARS PARS, TITLE, |NFILE
SAVE / | NPARS/

EQU VALENCE (PARS(1), CAl), (PARS(2), CA2), (PARS(3), CAM),
(PARS(4), CAMR), (PARS(5), COCEF1), (PARS(6), CE),
(PARY(7), Ga&l), (PARS(8), CROLL), (PARY(9), H),
(PARS(10), IPRNT), (PARS(11), IXX), (PARS(12),
IX2), (PARS(13), 1ZZR), (PARS(14), KRCLL),
(PARS(15), KRS2), (PARS(16), L), (PARS(17), NRBI33),
(PARS(18), NRBV), (PARS(19), RBM), (PARS(20),
SPEED), (PARS(21), STEER), (PAR(22), STEP),
(PARS(23), STCPT), (PARS(24), THETAR)

PARAMETER (GEES = 386.2, DEGREES = 57. 29577951308232)

Z(11) = Q4)*¥(3)

Ro Ro Ro Ro Ro Ro Ro Ro

Z(12) = PQ5)*Z(11)
Z(13) = (-Z(12) + A3))
Z(14) = Z(13)*(3)

Z(15) = Q4)*A3)

264

Z(16) = PQ(5)*Z(15)
Z(17) = (Z(16) + S(3))
Z(18) = Z(17)*Y(3)
Z(19) = (Z2(14) + Z(18))
Z(20) = Z(19)*UP(1)
Z(21) = PQ(31)*UP(2)
Z(22) = HU(3
Z(23) = (Z(21) + Z(22))
Z(24) = Z(17)**2
Z(25) = Z(13)**2
Z(26) = (Z(24) + Z(25))
Z(27) = Z(23)*Z(26)
Z(28) = (Z(4) + Z(20) + Z(27))
Z(29) = 1.0/ SQRT(Z(26))
Z(30) = Z(28)*Z(29)

C

C fill buffer with output variables.

C
QUTBUR(1) = Z(30)/CGEES
QUTBUR(2) = DEGREES*U(2)
QUTBUR(3) = - DECREES*Z(1)
QUTBUR(4) = - DECREES*Z(2)
QUTBUR(5) = - FORCEM 1)
QUTBUR(6) = - FORCEM 2)
QUTBUR(7) = - FORCEM 3)
QUTBUR(8) = - FORCEM 4)
QUTBUF(9) = - FORCEM 5)

C

C The following line wites to an unfornatted binary file
C
WR TE (I FILE) (QUTBUR(ILOCP), |LOCOP=1, NVARS)
C
G-The next 3 lines are for the Macintosh
C
IF(T.EQ 0.) WRTE (*, "(/A7XA') ' Progress:',"sec
CALL TOCOLBX (Z 89409000', 0, -11)
WITE (*, '(F6.2)') T
RETURN
END

C
SUBRQUTI NE PREGWP
C

C This subroutine defines all constants that can be pre-conputed for
C the Passenger car handling nodel. The constants are put into the
C COOWDN bl ock / PREOW/
C
C (c) Mke Sayers and The Regents of The University of M chigan, 1989.
C Al rights reserved.
C
IMPLIA T NONE
CHARACTER*80 | NFI LE, TITLE
REAL CAl, CA2, CAML, CAMP, QOCEF1, CE, Q&l, CRALL,
& DEGREES, GEES, H IPRNT, IXX [IXZ, |ZZR KRQOLL,
& KRS2, L, NRBI33, NRBM PARS, PC RBM SPEED, STEER
& STEP, STCPT, THETAR
| NTEGER NPARS

265

DIMENSION PQ(43)

SAVE

/ PROWP/ PC
| PROWP/

PARAMETER (NPARS = 24)
DIMENSION PARS(NPARS)

SAVE

EQU VALENCE (PARS(1), CAl), (PARS(2), CA?), (PARS(3), CAM),

Ro Ro Ro Ro Qo Ro Ro Ro

[INPARS PARS, TITLE, |N-FILE
/1 NPARS

(PARS(4), CAWR), (PARS(5), OOCEFl), (PARY(6),

(PARY(7), @Gl), (PARS(8), CROLL), (PARY(9), H),
(PARS(10), IPRINT), (PARS(11), IXX), (PARS(12),

IX2), (PARS(13), |ZZR), (PARS(14), KROLL),

(PARS(15), KRS2), (PARS(16), L), (PARS(17), NRBI33),

(PARS(18), NRBV), (PARS(19), RBM), (PARS(20),
SPEED), (PARS(21), STEER), (PARS(22), STEP),
(PARS(23), STCPT), (PARS(24), THETAR

PARAMETER (CGEES = 386.2, DEGREES = 57.29577951308232)

PO(1)
Pq(2)
Pq(3)
PQ(4)
PO(5)
P((6)
PA(7)
PO(8)
PO(9)
PQ(10)
PQ(11)
PO(12)
PA(13)

Ro Ro Ro

PQ(14)

PQ(15)
P 16)
PQ(17)
PQ(18)
PQ(19)
PQ(20)
PQ(21)
Pq(22)
Pq(23)
PQ(24)
PQ(25)
PQ(26)
PQ(27)
PQ(28)
PQ(29)
PQ(30)
PQ(31)
PQ(32)

Qo

OGL* COCEF1

1. 0/ SPEED

QO8(THETAR)

ORCLL* CO8(THETAR)

SI N THETAR)

CE* QO8(THETAR)

HSI N(THETAR)

GEES* OOS(THETAR)

GEES* S| N THETAR)

RBMr (OE* OO8(THETAR) + H*SI N THETAR))

H RBM

(RBM + NRBV)

= (NRBI 33 + OOB(THETAR) * (| ZZR* OOS(THETAR) +
| X2*SI N(THETAR)) + RBM(CB* CO8(THETAR) +
H SI N(THETAR)) **2 + (| XZ* C08(THETAR) +
| XX*SI N THETAR)) *SI N THETAR))

= (I XZ2*OO8(THETAR) + | XX*SI N(THETAR) + HRBM
*(CE*OO5(THETAR) + H'SIN(THETAR)))

= (RBMFH*2 + | XX)

= P((10)/ P((12)

= P((11)/ PQ(12)

= PQ(10) *PC(16)

= (PQ(13) -P((18))

= PQ(10)*Pq(17)

(PQ 14) -PQ20))

PQ(21)/ PO 19)

PQ(11) * P 16)

(Pq(14) -P(23))

PQ(11)*PQ(17)

PQ(22) * PO 24)

(PQ15) -PQ25) -PO26))

1. 0/ P(27)

1. 0/ P 19)

1. 0/ PQ(12)

(PQ6) + PA7))

RBM PC(8)

PQ(33) = PA9)*PQ(11)

266

PQ(34) = CE*RBM
PQ(35) = P 8)* P 34)
PQ(36) = (PQ(33) + P(3Y5))
PQ(37) = PQ11)*P(28)
PQ(38) = PQ(17)*P(28)
PQ(39) = P 22)*P(28)
PQ(40) = PQ 24)* P 29)
PQ(41) = P 11)*Pq 30)
PQ(42) = P 10) * P 30)
PQ(43) = L*P(2)
RETURN

END

LR R R R RS E SRS EEE SRR RS EEEEEEEEEEEEEEEEEEEREEREEEEEEEEEEEREEEEEEEEEEE S

SUBROUTI NE TI MDAT (TI MEDT)

khkkhkkhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhhhhhkhhkhhhhhhhhdhdhrkhxkxk*x*x%x

CGet date and time. On the Mac, this requires the TI ME and DATE
subroutines from Absoft.

*

by M Sayers, 1986.

O000000

<-- TIMEDT char*24 string containing tine & date.

CHARACTER: 24 TI MEDT

CHARACTER* 36 MONTHS

| NTEGER*4 M | DAY, | YEAR |SEC

| NTEGER*2 YEAR, MONTH DAY, HOR MN SEC 1100
MONTHS = ' JanFebMar Apr MayJunJul AugSepCct NovDec'

G-The following 4 lines are for the | BMPC (using M crosoft
G -tine and date functions)
CALL GETDAT (YEAR MONTH DAY)

* CALL GETTIM (IHOUR MN, SEC 1100)
* WR TE (TI MEDT, 100) 1HOUR, M N MONTHS (MONTH:3-2: MONTH 3) ,
* & DAY, YEAR

G -get tinme for MIS version
C CALL TIME(22, 0, TIMEDT)

G-The following 5 lines are for the Apple Mac
G -(using Absoft tine & date functions)

CALL DATE (M | DAY, |YEAR

CALL TIME (I SEQ

WR TE (TI MEDT, 100)

& | SEC/ 3600, MDD (1SEC, 3600) / 60, MONTHS (M3-2: M3),
& | DAY, 1900 + | YEAR

100 FCRVAT (12,":',12.2," on',A3,13,",",15)
RETURN

END

267

APPENDIX C — FOUR-BAR LINKAGE

This appendix contains the complete source code for the four-bar linkage described in
Section 9.3.

4-Bar |inkage sinulation program
Version created Decenber 11, 1989 by AUTCSI M

(c) Mke Sayers and The Regents of The University of M chigan, 1989.
Al rights reserved.

This programsimulates the 4-bar |inkage by nunerically integrating
the 4 ordinary differential equations that describe the kinenatics
and dynam cs of the system The 4-bar |inkage is conposed of 3
bodi es and has 1 degree of freedom

Each derivative evaluation requires 141 multiply/divides, 81
add/ subtracts, and 6 function/subroutine calls.

A parent=N 1 DOF: Q1)
B, parent=A 1 DOF: Q2)
C parent=N 1 DCOF: Q3)

Ceneral i zed Coor di nat es:

Q1): Rotation of Arelative to the inertial reference about axis
#3. (rad)

Q2): Rotation of Brelative to A about axis #3. (rad)

Q3): Rotation of Crelative to the inertial reference about axis
#3. (rad)

| ndependent Speeds:

U1): Abs. rot. of AL axis 3. (rad/s)

Nonhol onom ¢ Constrai nts:

Rot. of Brelative to A axis 3.: -U1*(1 -L1*(S2) -(L1 -L5)
(A (AN*A2)**2 -A2)*(1)*H2)) + A2)*(A2)*1) +
A1)*¥2))*(3))*(S(2)*(AD*A3) + K1)*K3)) + A2)
“(A3)*Y(1) -AD*3)))/ (L1 -L5 -(L1 -L5)*(H(2)*(q1)*qA3) +
S(D)*(3)) + q2)*(qA3)*H1) -A1)*(3)))**2))/L4)

Abs. rot. of C axis 3.: LI*UL1)*(3)*(Q1)*q2)**2
-q2)*S(1)*¥(2)) + A2)*(q2)*(1) + q1)*2))*(3))/ (L1
-L5 - (L1 -L5)*(S(2)* (A *q3) + §1)*¥(3)) + A2
“(A3)*1) -AD*Y(3)))**2)

O00O0

O000000000000000000000000000O000

268

Acti ve Forces:

FORCEM 1): strut

Program Secti ons:

MAIN -- Control flow of programand performnunerical integration

BLOCK DATA -- initialize variables in COMN bl ocks
DFEN (T, Q @, U W) -- conpute @ and UP given T, Q and U
ECHO (IFILE, Q U -- create output file with echo of input
par anet er s
INTNR(X, ALPHA, BETA, Q -- conpute ALPHA and BETA coeficients for
MEWT

INPUT (Q U -- read paraneters and initial conditions
Function LENSTR (STRING -- count characters in left-justified
string

LUDOVP(A, N, NP, INDX, D) -- deconpose matrix into LUD form[1]
LUBKSB(A, N, NP, INDX, B) -- solve simltaneous equations [1]
MEW(NTRI AL, X, N TOLX, TOLF, Q -- solve for initial conditions [1]
Function NCRVA(A) -- Nornalize angl e

Function CPNFI L(PROWPT, STAT, IUNT) -- let user open file
CPNQUT(I FILE) -- create output file and wite header
QUTPUT(IFILE, T, Q @, U W) -- wite variables at tine T
PREQWP -- pre-conpute constants used in simulation

TI MDAT(TI MEDT) -- get time and date from conputer

[1] Press et. al., Numerical Recipes, The Art of Scientific
Conputi ng. Canbridge Press, 1986.

IMPLIA T NONE

CHARACTER*80 | NFI LE, TITLE

REAL NCRMA, PARS, STEP, STEP2, STCPT, T, Y, YM YP
| NTEGER I, TECHO [IFILE [ILOCPL, ILOCP2, |PRNT2, |SECL,
& | SEC2, NOOCRD, NLOCP, NPARS, NSPEED, NTOr

PARAMETER (NOOORD = 3, NSPEED = 1, IFILE = 1, NTOT = 4)
DIMENSICN Y(NTOT), YMNTOT), YP(NTOT)

PARAMETER (NPARS = 14)

DIMENSION PARS(NPARS)

COWON /INPARS/ PARS, TITLE, |NFILE

SAVE /| NPARS/

EQU VALENCE (PARS(13), STEP), (PARS(14), STCPT)

WRI TE(*, '(5A)")

& ' 4-Bar linkage sinulation program'’

WRI TE(*, '(5A)")

&' Version created Decenber 11, 1989 by AUTCSI M
WRITE(*, '(5A)")

&I L}

Read input data

CALL I NPUT(Y, Y(NOOCRD + 1))
| PRNT2 = PARS(4)

269

C Compute constants in common bl ock / PROW/ before starting.
© CALL PREQW

8 conpute initial values of dependent coordinates.

© CALL MNEWI(20, Y(2), 2, 1.E-06, 1.E06, Y)

g Ootion to echo data to output file

© CALL ECHO(I FILE, Y, Y(NOOORD + 1))

g Set up output file with sinulated tinme histories

© CALL CPNQUT (I FILE)

o CALL TIME (1 SEC1)

C Start by evaluating derivatives and printing variables at t=0
C

T=0.

CALL DFEQN(T, Y, YP, Y(NOOCRD + 1), YP(NOOCRD + 1))

CALL QUTPUT(IFILE, T, Y, YP, Y(NOOCRD + 1), YP(NCOORD + 1))

Integration | oop. Continue until printout tine reaches final tine.
Use two eval uations of the derivatives to integrate over the step.

OO0

NLOCP = STCPT / STEP / IPRNT2 + 1
STEP2 = STEP / 2.
DO 60 |LOOPL = 1, NLOCP
DO 50 |LOOP2 = 1, |PRNT2
DO 10 | = 1, NTOT
YM1) = Y(1) + STEP2 * YP(I)
10 CONTI NUE
CALL DIFEQN (T + STEP2, YM YP, YMNOOCRD + 1),
& YP(NOOORD + 1))

DO20 | =1, NTOT
Y(1) = Y(I) + STEP * YP(I)
20 CONTI NLE

T =T+ STEP
CALL DFEQN (T, Y, YP, Y(NOOORD + 1), YP(NOOCRD + 1))
50 OONTI NUE
CALL QUTPUT (IFILE, T, Y, YP, Y(NOOCRD + 1), YP(NOOORD + 1))
IF (T .GE STCPT) GO TO 70
60 CONTI NUE
70 CONTI NUE

CALL TIME (I SEC2)

End of integration loop. Print final status of run

o000 O

WRTE (*, *) ' Termnation at time =, T, ' sec.'

WR TE (*,*) ' Conputation efficiency: ', (ISEC - ISECL) / T,
& ' sec/sim sec'

WRITE (*,*) ' '

270

CLCSE(| FI LE)
PAUSE ' Done'
END
C
BLOCK DATA
C
CHARACTER*80 | NFI LE, TITLE
REAL PARS
| NTEGER NPARS
C
PARAMETER (NPARS = 14)
DI MENS| ON PARS(NPARS)
COWON /I NPARS PARS, TITLE, |NFILE
SAVE /1 NPARS
C
DATA PARS /1.0, 10.0, 100.0, 1.0, 10000.0, 0.5, 0.1, 0.2,
& 0.3, 0.1, 0.3, 0.5, 0.005, 1.0/
DATA INFILE /' '/
DATA TITLE /'Default paraneter val ues'/
END
C
SUBROUTINE DIFEQN(T, Q @, U WP
C
C This subroutine defines the equations of nmotion for the 4-bar
C linkage, which includes 1 degree of freedom
C
C -->T real tine
C -->Q real array of 3 generalized coordinates
C <- Preal array of derivitives of Q
C -->U real array of 1 generalized speed
C <- Wreal array of derivative of U
C
C Each derivative evaluation requires 141 nultiply/divides, 81
C add/subtracts, and 6 function/subroutine calls.
C
C (c) Mke Sayers and The Regents of The University of M chigan, 1989.
C Al rights reserved.
C
IMPLIA T NONE
CHARACTER*80 | NFI LE, TITLE
REAL Bl 33, BM C D DEGREES, FORCEM CEES, IPRNT, K
& L1, L2, L3, L4, L5, L6, L7, PARS, PC Q @, S
& STEP, STOPT, T, U WP, Z
| NTEGER NOOCRD, NPARS, NSPEED
C
PARAMETER (NCOORD = 3, NSPEED = 1)
D MENSI ON Q NCOORD), QP(NOOORD), U(NSPEED), UP(NSPEED)
D MENS| ON q3), FCRCEM1), S(3), Z(71)
COWON /DWARS C FCRCEM S, Z
SAVE / DYVARS
C
PARAMETER (NPARS = 14)
DI MENS| ON PARS(NPARS)
COWON /I NPARS PARS, TITLE, |NFILE
SAVE /1 NPARS/
C

EQU VALENCE (PARS(1), BI33), (PARS(2), BV, (PARS(3), D),

o000

& (PARS(4), IPRINT), (PARS(5), K, (PARS(6), L1),
& (PARS(7), L2), (PARS(8), L3), (PARS(9), L4),
& (PARS(10), L5), (PARS(11), L6), (PARS(12), L7),
& (PARS(13), STEP), (PARS(14), STCPT)
DI MENSI ON PQ(30)
COWON / PROWP/ PC
SAVE | PRCWP/
PARAMETER (CGEES = 9. 80665)
(1) = SINQ1))
2) = SINQ?2))
(3) = SINQ?3))
q1) = 0¥(Q1))
q2) = 0¥(Q2))
qa3) = 0B(Q3))
Ki nemati cal equations
Z(1) = L5*3(3)
Z(2) = q3)*Y(1)
Z(3) = q1)*(3)
Z2(4) = (42) -2(3))
Z(5) = Z(4)*¥2)
Z(6) = q1)*q3)
Z(7) = J(1)*¥(3)
Z(8) = (Z(6) + (7))
Z(9) = 2(8)*q2)
Z(10) = (Z(5) -Z(9) + 3))
Z(11) = L4*Z(10)
Z(12) = L1*Z(4)
Z(13) = (Z(1) -Z(11) + Z(12))
Z(14) = L5*3)
Z(15) = Z(8)*Y(2)
Z(16) = Z(4)*q2)
Z(17) = (Z(15) + Z(16) + S(3))
Z(18) = L4*Z(17)
Z(19) = L1*Z(8)
Z(20) = (Z(14) + Z(18) -2(19))
Z(21) = Z(13)/Z(20)
Z(22) = (-Q3) + Z(21))
Q3) =-2Z(22)
Z(23) = L1*2)
Z(24) = q1)*q2)
Z(25) = ¥(1)*¥(2)
Z(26) = (Z(24) -2Z(25))
Z(27) = L5*Z(26)
Z(28) = q2)*¥(1)
Z2(29) = q1)*¥(2)
Z(30) = (Z(28) + Z(29))
Z(31) = L4*Z(30)
Z(32) = (-Z(5) + Z(9))
Z(33) = PQ(1)*Z(32)
Z(34) = (Z(23) -Z(27) -Z(31) -2Z(33))
Z(35) = L4*Z(26)
Z(36) = L5*Z(30)
Z(37) = L1*S(2)

271

OO0

272

Z(38) = (Z(15) + Z(16))
Z(39) = PQ(1)*Z(38)
Z(40) = (Z(35) -2z(36) + Z(37) -2Z(39))
Z(41) = Z(34)/Z(40)
Q2) =(Q2) + Z(41))
QR(1) = U1
Z(42) =-(Z(25) -d1)*q2))*q2)
Z(43) = (Z(42)*q(3) + Z(30)*(2)*(3))
Z(44) = PQ(1)*(1 -2(38)**2)
Z(45) = Z(43)/Z(44)
Z(46) = (-PQ1)*Z(38)*Z(45) + ¥(2))
Z(47) = (1 -PU2)*Z(46))
Q@(2) = -U1)*Z(47)
@Q@(3) = L1*U(1)*Z(45)
define expression for strut
Z(48) = L1*C(1)
Z(49) = L1*9(1)
Z(50) = (PQ(21) -PQ(19)*Z(26) + PQ(20)*Z(30) -L2*Z(37) -L6*Z(48)
& -L7*Z(49) -PQ(15)*(1) -Pq(16)*(1) -PQ17)*¥(2))
Z(51) = L7*Z(30)
Z(52) = L6*Z(26)
Z(53) = 1.0/ SCRT(Z(50))
FORCEM 1) = -(-PQ25) + K*SQRT(Z(50)) + W1)*Z(53)
& *(-PO(27)*Z(46) *(Z(23) -Z(51) -2(52)) -PQ28)*C(1) +
& PQ(29)*((2) + PA(30)*(1)))
Dynam cal equations
Z(54) = (Z(37) -L3*(1 -2(47)))
Z(55) = CGEES*(1)
Z(56) = (-L1*U1)**2 + GEES*S(1))
Z(57) = Z(53)*FORCEM 1)
Z(58) = L7*Z(57)
Z(59) = L6*Z(57)
Z(60) = L1*Z(57)
Z(61) = (Q(1) -Q(3))
Z(62) = (((«6) + Z(7))*Z(61) + 2(8)*Q(2))*qA2) -((Z(2)
& -Z(3))*Z(61) + Z(4)*XP(2))*(2))
Z(63) = (Q(1) + Q(2))
Z(64) = U)*(Q@(2)*A2) -(2.0%Z(43)*Z(62)*2(39)**2 + Z(44)
& *(PQ(1)*Z(43)*Z(62) -Z(38)*((PQ(22)*Z(29)*P(2)
& -PQ(1)*Z(30)*QX(3))*q2)*q(3) + PA1)*((3)
& *(Z(28)*2(63)*q2) + (Z(24)*QX1) -2(25)*Q(2))*¥(2)) +
& (Z(42)*QP(3) -(Z(24) -Z(25))*7(63)*q(2) +
& Z(30)*QA(2)*$(2))*$(3)))))/ Z(44) **2)
Z(65) = BMrZ(54)
Z(66) = BMrZ(23)

Ro Ro Ro Ro Ro Ro Ro
%
E

(-Z(46)*(PO(23)*Z(64) + PQ(24)*(Z(23) -Z(51)
-7(52))*Z(53) *FORCEM 1)) + Z(54) *(- Z(30) *Z(58)
-2(26)*Z(59) + Z(60)*((2)) -Z(65)*(- P 8)*Z(64) +
Z(56)*Q(2) + Z(55)*S(2)) + Z(23)*(L2*Z(57) -Z(26)*Z(58)
+ Z(30)*Z(59) -Z(60)*S(2)) + Z(66)*(PX9)
*(U(1)*Z(46))**2 -Z(55)*Q(2) +

2(56)*S(2)))/ (PQ(23)*Z(46) **2 + Z(54)*Z(65) +
2(23)*Z(66))

273

RETURN
END

SUBROUTI NE ECH(I FILE, Q U

O00000000 O

This subroutine pronpts the user for the nane of an optional
file for the 4-bar linkage. If a file is selected, all

of the

echo

parameter values and initial conditions are witten to confirmthat

the i ntended val ues were used in the sinulation.

(c) Mke Sayers and The Regents of The University of M chigan, 1989.
Al rights reserved.

IMPLIA T NONE

CHARACTERr 24 Tl MEDT

CHARACTER*80 | NFI LE, CPNFIL, TITLE

REAL Bl 33, BM D DEGREES, CEES, IPRINT, K L1, L2, L3,

& L4, L5, L6, L7, PARS, Q STEP, STCPT, T, U

| NTEGER | FILE, NOOORD, NPARS, NSPEED

PARAMETER (NPARS = 14)
DIMENSION PARS(NPARS)

COWON /INPARS/ PARS, TITLE, |NFILE
SAVE /| NPARS/

EQU VALENCE (PARS(1), BI33), (PAR(2), BV, (PAR(3), D),
& (PARS(4), IPRNT), (PARS(5), K), (PARS(6), L1),
& (PARS(7), L2), (PARS(8), L3), (PARS(9), L4),

& (PARS(10), L5), (PARS(11), L6), (PARS(12), L7),
& (PARS(13), STEP), (PARS(14), STCPT)

PARAMETER (NOOORD = 3, NSPEED = 1)
DIMENSION Q(NCOCRD), U(NSPEED)
PARAMETER (GEES = 9. 80665)

IF (CPNFIL(" Nane of (optional) file to echo the input data',
& "CPTAJT, IFILE) .EQ ' ') RETURN

CALL TI MDAT(TI MEDT)

WR TE(IFILE, '(A)') 'PARSFILE

WR TE(I FILE, '(5A)")

& '"Echo file created by:'

WR TE(I FILE, '(5A)")

& '4-Bar |inkage sinulation program'
WRITE(IFILE, '(5A)")

& '"Version created Decenber 11, 1989 by AUTCSl M

WR TE(I FILE, ' (5A)")
Pt
WR TE(IFILE, '(AT8,A') 'TITLE, TITLE

WRTE(IFILE, '(/AA') "* Input File: ', INFILE
WR TE(IFILE, '(A A') '* Run was nade ', TIMEDT

WR TE(IFILE, ' (/A/)') '* PARAMVETER VALUES

WR TE(I FILE, ' (A T8,Gl3.6,T24,5A)") 'BI33', BI33,

& 'nmonent of inertia of B (kg-n2)'

WR TE(I FILE, ' (A T8, Gl3.6,T24,5A)') 'BM, BM
& 'nmass of B (kg)'

WRTE(IFILE, '(A T8,Gl3.6,T24,5A)') 'D, D

274

& 'coefficient intermin strut (Nsec/rad/m’

VWR TE(| FI LE,

"(A T8, Gl3.6,T24,5A)') 'IPRINT', |PRNT,

& 'nunber of time steps between output printing (counts)'

WR TE(| FI LE,
& 'stiffness
WR TE(| FI LE,
& ' coordi nat e
WR TE(| FI LE,
& 'coordi nate
WR TE(| FI LE,
& 'coordi nate
WR TE(| FI LE,
& 'coordi nate
WR TE(| FI LE,
& 'coordi nate
WR TE(| FI LE,
& 'coordi nate
WR TE(| FI LE,
& 'coordi nate
WR TE(| FI LE,
& 'simul ation
WR TE(| FI LE,
& 'simulation
WR TE(| FI LE,
WR TE(| FI LE,

& 'Rotation of Arelative to the inertial reference about axis

&' #3. (rad)
WR TE(| FI LE,

'"(AT8,Gl3.6,T24,5A) ') 'K, K
coefficient intermin strut (Nm'

"(A T8,Gl3.6,T24,5A) ') 'L1', L1,

of attachment point for Bindir 1 (m'
"(A T8,Gl3.6,T24,5A) ') 'L2', L2,

of strut pt 1indir 2 (n’

"(A T8,Gl3.6,T24,5A) ') 'L3', L3,

of center of mass of Bindir 2 (m'
"(A T8, Gl3.6,T24,5A)') 'L4', L4,

of b-point indir 2 (m'

‘(A T8,Gl13.6,T24,5A) ") 'L5', L5,

of attachment point for Cindir 1 (n'
"(A T8,Gl3.6,T24,5A)') 'L6', L6,

of strut pt 2indir 1 ('

"(A T8,Gl3.6,T24,5A) ') 'L7", L7,

of strut pt 2indir 2 (N’

"(A T8,Gl3.6,T24,5A)') 'STEP, STEP,
time step (sec)’

"(A T8, Gl3.6,T24,5A)') ' STCPT', STOPT,
stop time (sec)’

"(/A)") "* INTIAL CONDI TI ONS

"(A T8, GI3.6, T24, 5A)') 'Q1)’', Q1),

"(A T8, GI3.6, T24, 5A)') 'Q2)', Q2)),

& '"Rotation of Brelative to A about axis #3. (rad)’

WRTE(IFILE, '(A T8, G3.6, T24, 5A)') 'Q3)', Q3),
& 'Rotation of Crelative to the inertial reference about axis'
&' #3. (rad)’
WRITE(IFILE, '(A T8, GI3.6, T24, 5A)') 'U1)', U1),
& "Abs. rot. of A axis 3. (rad/s)’
WRITE(IFILE, '(/A)') 'END
CLCSE(| FI LE)
RETURN
END
C
SUBROUTI NE | N TNR(X, ALPHA, BETA, Q
C
C This subroutine conputes coefficients for a Newton-Raphson iteration
C needed to establish the initial values of 2 conputed coordinates in
C the 4-bar |inkage.
C
C (c) Mke Sayers and The Regents of The Wniversity of M chigan, 1989.
C Al rights reserved.
C
IMPLI AT NONE
REAL ALPHA, BETA, BI33, BM D DEGREES, GEES, IPRINT, K
& L1, L2, L3, L4, L5, L6, L7, PARS, PC Q STEP,
& STCPT, T, X
| NTEGER NPARS
CHARACTER*80 | NFI LE, TITLE
C
DI MENSI ON PC(30)
GCOMWON / PROWP/ PC

275

SAVE | PROVP/

PARAMETER (NPARS = 14)

DIMENSION PARS(NPARS)

COWON /INPARS/ PARS, TITLE, |NFILE

SAVE /| NPARS/

EQU VALENCE (PARS(1), BI33), (PAR(2), BV, (PAR(3), D),

& (PARS(4), IPRNT), (PARS(5), K), (PARS(6), L1),
& (PARS(7), L2), (PARS(8), L3), (PARS(9), L4),

& (PARS(10), L5), (PARS(11), L6), (PAR(12), L7),
& (PARS(13), STEP), (PARS(14), STCPT)

PARAMETER (GEES = 9. 80665)

DIMENSION X(2), Q*), BETA(*), ALPHA(2, 2)

BETA(1) = (-L1*QOS(X(1)) + L4*(CO(X(1))*SINQ1)) +

& O05(Q(1))*SIN(X(1))) + L5*(CO8(Q(1))*CCB(X(1))

& -SINCQ(L))*SINCX(1))) + (L1 -L5)*(-SIN(X(1))

& *(OOB(X(2))*SINQ1)) -CB(Q1))*SINX(2))) + CB(X(1))
& *(005(Q(1))*CB(X(2)) + SINQ1))*SIN(X(2)))))
ALPHA(L, 1) = -(-L5*(OO5(X(1))*SIN(Q(1)) + CB(Q1))*SIN(X(1))) +
& L4*(05(Q1)) *CO8(X(1)) -SINQ1))*SINCX(1))) +

& LI*SIN(X(1)) -(L1 -L5)*(SINCX(1))*(O05(Q1))*CB(X(2)) +
& SINQ(1))*SIN(X(2))) + GOB(X(1))*(CB(X(2))*SINQ1))
& -005(Q(1))*SIN(X(2)))))

ALPHA(L,2) = - (L1 -L5)*(OO8(X(1))*(CO8(X(2))*SI N(Q(1))

& -O05(Q(1))*SINCX(2))) + SINCX(1))*(O05(Q1))*Q0s(X(2)) +
& SINCQ(1))*SIN(X(2))))

BETA(2) = -(L5*SIN(X(2)) -L4*(CB(X(2)) + SIN(X(1))

& *(OOB(X(2))*SINQ1)) -CB(Q1))*SINX(2))) -C8(X(1))
& *(O05(Q1))*CB(X(2)) + SINQ1))*SIN(X(2)))) + L1

& *(O0B(X(2))*SINQ1)) -C(Q1))*SINX(2))))

ALPHA(2, 1) = -L4*(SIN(X(1))*(CB(Q1))*CO(X(2)) +

& SINQ(1))*SIN(X(2))) + OB(X(1))*(CB(X(2))*SINQ1))
& -005(Q(1))*SIN(X(2))))

ALPHA(2,2) = (L5*Q08(X(2)) + L4*(SIN(X(2)) + SIN(X(1))

& *(O0B(Q1))*aB(X(2)) + SINQ1))*SINX(2))) + CO8(X(1))
& *(OB(X(2))*SINQ1)) -C8(Q1))*SINX(2)))) -L1

& *(005(Q(1))*CCB(X(2)) + SINQ1))*SINX(2))))

RETURN

END

SUBROUTI NE | NPUT(Q U)

O0000000Q O

Thi s subroutine pronpts the user for the name of an optional
parameter file for the 4-bar linkage. If a file is selected,
pararet er val ues are read to override the default val ues.

(c) Mke Sayers and The Regents of The University of M chigan, 1989.
Al rights reserved.

IMPLIAT NONE

LG4 CAL ISIT

CHARACTER*80 BUFFER, EGHI L, INFILE OPNFIL, QUEUE, TITLE
CHARACTER*8 CHARB, NAMES, QC, UC

REAL Bl 33, BM D, DEGREES, GEES, IPRINT, K L1, L2, L3,
& L4, L5, L6, L7, PARS, PSCALE, Q QNT, QBCALE

oXoXe

O000000000O0

276

& STEP, STCPT, T, U UNT, USCALE
| NTEGER IFILE 1LOOP, |QUELUE, LENSTR LSTRNG MAXQ NGOOCORD,
& NPARS, NQUELE, NSPEED

Ro Ro Ro Ro

PARAMETER (NPARS = 14)
DIMENSION PARS(NPARS)

COWN /INPARS/ PARS, TITLE, |NFILE
SAVE /| NPARS/

EQU VALENCE (PARS(1), BI33), (PARS(2), BM, (PARX(3), D),
(PARS(4), IPRNT), (PARS(5), K), (PARS(6), L1),
(PARS(7), L2), (PARS(8), L3), (PARS(9), L4),
(PARS(10), L5), (PARS(11), L6), (PAR(12), L7),
(PARS(13), STEP), (PARS(14), STCPT)

PARAMETER (GEES = 9. 80665)

PARAMETER ~ (NOOCRD = 3, NSPEED = 1, MAXQ = 20, |FILE = 1)
DIMENSION NAMES(NPARS), Q NOOCRD), QO(NOOORD), Q N T(NOOCRD)

& QUEUE(MAXQ), QBCALE(NCOCRD), U(NSPEED), UQ(NSPEED),
& U N T(NSPEED), USCALE(NSPEED)

DATA QN T /NOOORD0./, UNT /NSPEED+0. /

DATA x/'q1)’', 'Q2)', 'Q3)'/

DATA uc /' y1)'/

DATA QSCALE /1, 1, U

DATA USCALE / 1/

DATA NAMES /'BI33', 'BM, 'D, 'IPRINT, 'K, 'L1', 'L2,
& 'L3', 'L4', 'L5', 'L6', 'L7', 'STEP, ' STCPT'/

NQUELE = 0

| QUELE = 0

pen file with parameter values and initial conditions

5 INFILE = OPNFIL (' Narme of (optional) file with parameter val ues',
& "CPTIN, IFILE
6 IF (INFILE .NE. '") THEN

READ(I FILE, '(A)') CHARB
IF (CHAR8 .EQ 'END') QO TO 100
IF (CHAR8 .NE. ' PARSHI LE) THEN
CLCBE(| FI LE)
WRTE (*, "(A') ' Eror--File did not begin with "PARSH LE"'
IF (IQUEEUE .EQ 0) THEN
& TO 5
ELSE
@0 TO 100
END | F
END | F

Read line fromfile. CHARB is the keyword, checked for:

Eoooooo

is

TI TLE keyword,

par amet er keyword (from NAMES array),

initial value of generalized coordinate (keyword from QC array),
initial value of generalized speed (keyword from UC array),
(possi bly) keyword for other input subroutine, or

END keywor d.

other lines are ignored. Aso, all lines are ignored after END
found, and any line with a'*" incolum 1 is ignored.

OO0

OO0

C

10

277

READ(| FILE, ' (A8, A80)', END=100, ERR=100) CHARB, BUFFER
|F (CHARB .EQ 'TITLE) THEN
TI TLE = BUFFER

@ TO 10

ELSE | F (CHARS .EQ 'END) THEN
@0 TO 100

ELSE |F (CHARB(1:1) .EQ '*') THEN
@ TO 10

ELSE IF (CHAR8 . EQ 'PARSFILE) THEN
| NQU RE (FI LEEBUFFER, EXI ST=I SIT)
IF (1SIT) THEN
NQUELE = NQUELE + 1
QELE (NQUEUE) = BUFFER
ELSE
LSTRNG = LENSTR (BUFFER)
WITE (*,"(AAA'") "Brror--PARSFILE "', BUFFER(: LSTR\G,
""not found (skipped)."
END I F
Q0 TO 10
END I F

Check for nanes of paraneters

20

DO 20 ILOCP = 1, NPARS
|F (CHARS . EQ NAMES(ILOCP)) THEN
READ(BUFFER, ' (GL3.0)') PARS(|LOP)
@ TO 10
END | F
CONTI NUE

Check for nanes of generalized coordinates (initial conditions)

30

DO 30 ILOCP = 1, NOOORD

|F (CHARB .EQ QU(ILOCP)) THEN
READ(BUFFER ' (GL3.0)') Q N T(I1LOCP)
@ TO 10

END | F

CONTI NUE

Check for names of generalized speeds (initial conditions)

40

DO 40 |LOOP = 1, NSPEED
|F (CHARS .EQ UQ(ILOCP)) THEN
READ(BUFFER ' (Gl3.0)') U N T(ILOP)
@0 TO 10
END | F
CONTI NUE

G0 TO 10

END | F

Qose this file and process other PARS files that were referenced.

100 CLCSE (I FI LE)
IF (1 QUEUE .LT. NQUEUE) THEN

| QUELE
I NFI LE

IQUELE + 1
QELE (1 QEE)

278

CPEN (I FI LE, STATUS=' LD, FILE=INFILE)
WRTE (*, '(AA') ' Reading fromPARSFILE ', |NFILE

A TO 6
END I F
C
C Set initial conditions
C

DO 110 1 LOCP = 1, NOOCRD
110 1LOOP) = QN T(1LOP) / CQBCALE(I LOCP)

DO 120 | LOCP = 1, NSPEED
120 UILOOP) = UNT(ILOOP) / USCALE(I LOOP)

Convert units as needed.

OO0

RETURN
END

FUNCTI CN LENSTR (STR NG

count characters in left-justified string. M Sayers, 8-9-87

o0 O

CHARACTER* (*) STR NG

N = LEN (STR N

DO10L=N 1, -1
IF (STRNGL:L) .NE ' ') THEN
LENSTR = L
RETURN

END I F

10 OONTI NUE

LENSTR = 1

RETURN

END

SUBROUTI NE LUDCVP(A, N, NP, | NDX, D)

This subroutine is fromNunerical Recipes. It deconposes a square
matrix Ainto LU form

OO0 O

PARAVETER (NVBX=100, Tl NY=1. OE- 20)
DI MENSI ON A(NP, NP), | NDX(N) , W(NVAX)
D=1.

DO 11 J=1,N
IF (ABS(A(I,J)).GlI. AANAX) AANMAX=ABS(A(I, J))
11 OONTI NUE
IF (AAVAX EQ0.) PAUSE 'Singular matrix.'
W(1)=1./ AANAX
12 GONTI NUE
DO 19 J=1,N
IF (J.GT.1) THEN
DO 14 1=1,J-1
SUMEA(T, J)
IF (1.GT. 1) THEN
DO 13 K=1,1-1

279

SUMESUM A1, K) * A(K, J)
13 CONTI NUE
A(l, J) =SUM
ENDI F
14 CONTI NUE
ENDI F
AAVAX=0.
DO 16 =J,N
SUMEA(1, J)
| F (J.Gl. 1) THEN
DO 15 K=1, J-1
SUMESUM A1, K) * A(K, J)
15 CONTI NUE
A(l, J) =SUM
ENDI F
DUMEW(|) * ABS(SUV)
| F (DUM GE AAMAX) THEN
| NAX=]
AANEX=DUM
ENDI F
16 CONTI NUE
IF (J.NE | MAX) THEN
DO 17 K=1, N
DUMEA(| MEX, K)
A(1 MAX, K) =A(J, K)
A(J, K) =DUM
17 CONTI NUE
D=-D
W(I MAX) =W(J)
ENDI F
| NDX(J) = MaX
| F(J. NE. N) THEN
| F(A(J, J). EQO0.)A(J, J)=TINY
DUMEL. / A(J, J)
DO 18 1=J+1, N
A, J)=A(1, J)* DM
18 CONTI NUE
ENDI F
19 OONTINUE

I F(ACN N . EQ 0.) ACN N) =TI NY

RETURN
END
C
SUBRCUTI NE LUBKSB(A, N, NP, | NDX, B)
C
C This subroutine is fromMNurrerical Recipes. It solves a set of

C sinul taneous |inear equations by back-substitution after an LU
C deconposition. It is used here for performng a New on- Raphson
C solution for nonlinear equations.
C
DI MENSI ON A(NP, NP), | NDX(N), B(N)
I1=0
DO 12 1=1,N
LL=I NDX(1)
SUMEB(LL)
B(LL)=B(1)
IF (I'l.NE 0) THEN

280

DO 11 J=I1,1-1
SUMESUM A1, J) *B(J)
11 CONTI NUE
ELSE I F (SUMNE 0.) THEN
IE
ENDI F
B(1)=SUM
12 CONTINUE
DO 14 1=N1,-1
SUMEB(1)
| F(I.LT. N) THEN
DO 13 J=I +1, N
SUMESUM A1, J) *B(J)

13 CONTI NUE
END F
B(1)=SWM A(I, 1)
14 OONTINUE
RETURN
END
C
SUBROUTI NE M\BWI(NTR! AL, X, N, TOLX, TOLF, Q
C

C This subroutine is fromMNurerical Recipes, nodified to take the
C addi tional argunent Q needed by user function I N TNR

PARAMETER (NP=10)
DI MENSI ON X(*), ALPHA(NP, NP) , BETA(NP) , | NDX(NP), X *)
IF (N.GI. NP) THEN
WR TE(*,*) ' Qops! Dinension NP in MEW is too small. Change '
WR TE(*,*) ' to', N ' and reconpile.’
PAUSE
STCP
END | F
DO 13 K=1, NTR AL
CALL I N TNR(X, ALPHA, BETA, Q
ERRF=0.
DO 11 I=1,N
ERRF=ERRF+ABS(BETA(1))
11 CONTI NUE
| F(ERRF. LE TOLF) RETURN
CALL LUDOMP(ALPHA, N, N | NDX, D)
CALL LUBKSB(ALPHA, N, N | NDX, BETA)
=0.
DO 12 I=1,N
ERRX=ERRX+ABS(BETA(1))
X(1)=X(1)+BETA()
12 CONTI NUE
| F(ERRX. LE. TOLX) RETURN
13 CONTI NLUE
RETURN
END

FUNCTI ON' NCRVA(A)

OO0 O

nornal i ze angl e

REAL A, NCRVA, PI

281

PARAVETER (Pl =3. 141592653589793)
IF (A.GE PlI) THEN
NORVA = A - Pl
ELSE IF (A .LE -Pl) THEN
NORVA = A + Pl

ELSE
NCRVA = A
END I F
RETURN
END
C
FUNCTI CN CPNFI L (PROMPT, STAT, |FILE)
C
C This function tries to get a file name fromthe user and open the
C file.
C
C --> PROWT string Message to pronpt user
C --> STAT string Status of file ("NEW = nandat ory out put,
C "ap = nandatory i nput,
C "CPTIN' = optional input,
C "CPTOQJT" = optional output)
C -->I1FILE integer Fortran I/Ounit for file
C <- CPNFIL string nane of file opened or " " if no file selected
C
C M Sayers January 30, 1989
C
LOd CAL ISIT
CHARACTER* (*) PROWMPT, STAT, CPNFIL
CHARACTER*3 STAT2
| NTEGER I FILE, L, LENSTR
cC
C Set Fortran STATUS type
Cc
|F (STAT .EQ 'NEW .CR STAT .EQ 'CPTQUT") THEN
STAT2 = ' NEW
ELSE
STAT2 = ' ALD
END I F
Cc

C Ask user for file nanme, and check for no response (bl ank |ine)
C
100 WRTE(*, "(A A A)') ' ', PROWT, ': '
READ(*, '(A)') CPNFIL
IF (CPNFIL .EQ ' ') THEN
IF (STAT .EQ 'CPTIN .COR STAT .EQ 'CPTQUT') THEN
RETURN
ELSE I F (STAT .EQ 'NEW) THEN
WRTE (*," (A') ' Qutput file is required!"
@O TO 100
ELSE
WRTE (*,"(A') ' Input file is required!
@O TO 100
END I F
END I F
C
C Deal with existance of file (or |ack thereof)
Cc

OO0

282

I RE (FILE=CPNFI L, EXIST=ISIT)

IF ((.NOT. ISIT) .AND. (STAT2 .EQ 'Q.D)) THEN
L = LENSTR(CPNFI L)
WTE (*, "(A A A'") " File", CPNFIL(:L),

& '" does not exist. Try again.'
@O TO 100

ELSE IF (ISIT . AND. STAT2 .EQ 'NEW) THEN
CPEN (I FILE, FILE=CPNFIL)
CLCSE (I FILE, STATUS=' DELETE)

END I F

pen file and wite blank |ine on screen
CPEN(I FI LE, STATUS=STAT2, FILE=CPNFIL)
WRITE (*,"(A') '
RETURN
END

SUBROUTI NE CPNOUT(| FI LE)

O000000000000Q O

O0o0

This subroutine pronpts the user for the nane of a file set that
will be created to store time histories of the 7 output variabl es
conput ed by the 4-bar |inkage simlation program

Atext file is created and opened, and labeling information is
witten to facilitate post-processing of the data. Then, the text
file is closed and a corresponding binary file is created and opened
to store the nurerical values of the output variabl es.

(c) Mke Sayers and The Regents of The University of M chigan, 1989.
Al rights reserved.

IMPLIA T NONE

CHARACTER*80 FNOUT, |NFILE, CPNFIL, TITLE

LG4 CAL ISIT

REAL Bl 33, BM D DEGREES, GEES, IPRINT, K L1, L2, L3,
& L4, L5, L6, L7, PARS, STEP, STCPT, T

| NTEGER IFILE 1LOCP, |PRNT2, LENSTR LSTRNG MAXBUF,

& NBYTES, NCHAN, NCOCORD, NPARS, NRECS, NSAWP, NSCAN
& NSPEED, NUWKEY, NVARS

CHARACTER*32 (ENNAM LONG\NM R GBOD
CHARACTER* 24 TI MEDT
CHARACTER*8 CHARB, SHORTN, UN TSN

PARAMETER (NPARS = 14)

DIMENSION PARS(NPARS)

COWON /INPARS/ PARS, TITLE, |NFILE
SAVE /| NPARS/

EQU VALENCE (PARS(13), STEP), (PARS(14), STCPT)

PARAVETER (NVARS = 7, NUMKEY = 1)
DIMENSION LONGNM NVARS), GENNAM NVARS), R GBOD(NVARS)
& SHCRTN(NVARS) , UNI TSN NVARS)

Pronpt user to provide nane of output file. File is opened and
attached to Fortran unit |FILE

283

FNOUT = CPNFI L(' Name of (required) file for tine history outputs',
& "NEW, |FILE

NCHAN = 0

| PRNT2 = PARS(4)

NCHAN = NCHAN + 1

LONG\M (NCHAN) = "strut force'
SHORTN (NCHAN) = 'F

CENNAM (NCHAN) = ' For ce'

UNL TSN (NCHAN) = 'N

R GBMD (NCHAN) = 'B
NCHAN = NCHAN + 1

LONG\M (NCHAN) = ' X coordi nate of B*'
SHORTN (NCHAN) = 'B* X

CENNAM (NCHAN) = ' Transl ati on'

UNL TSN (NCHAN) = 'm

R GBMD (NCHAN) = 'B
NCHAN = NCHAN + 1

LONG\M (NCHAN) = 'Y coordi nate of B*'
SHORTN (NCHAN) = 'B* Y

CGENNAM (NCHAN) = ' Transl ati on'

UNL TSN (NCHAN) = 'm

R G (NCHAN) = 'B
NCHAN = NCHAN + 1

LONG\NM (NCHAN) = "Rot. of Arel. to N axis #3
SHORTN (NCHAN) = 'Q'1)'

CENNAM (NCHAN) = ' Rotati on'

UNLTSN (NCHAN) = 'rad'

R GO (NCHAN) ="' A
NCHAN = NCHAN + 1

LONGNM (NCHAN) = "Rot. of Brel. to A axis #3
SHORTN (NCHAN) = 'Q 2)'

CENNAM (NCHAN) = ' Rotati on'

UNLTSN (NCHAN) = 'rad'

R GBMD (NCHAN) = 'B
NCHAN = NCHAN + 1

LONGNM (NCHAN) = "Rot. of Crel. to N axis #3'
SHORTN (NCHAN) = 'Q3)'

CENNAM (NCHAN) = ' Rotati on'

UNI TSN (NCHAN) = 'rad'

R GBMD (NCHAN) = 'C
NCHAN = NCHAN + 1

LONG\M (NCHAN) = "angle of Brel. to N
SHORTN (NCHAN) = ' B-angl €'

CENNAM (NCHAN) = ' Rotation Angl e'
UNI TSN (NCHAN) = 'rad'

R GBMD (NCHAN) = 'B

Wite Header Info for ERD file

O00000

OO0

C
C
C

C

284

Set paraneters needed to wite header for ERD format file

NUWEY = 1 for 32-bit floating-point binary
NSAMP = nunber of sanples

NRECS = nunber of "records" in output file
NBYTES = nunber of bytes/record

NSAMP = STCPT / STEP / IPRNT2 + 1
NBYTES = 4 * NCHAN
NRECS = NSAWP

Wite standard ERD fil e headi ng.

WR TE(I FILE, ' (A)') ' ERDFI LEV2. 00'

WR TE(| FILE, 100) NOHAN, NSAWP, NRECS, NBYTES, NUMKEY, STEP*|PRNT2
WR TE(IFILE, '(AA') 'TITLE ', TITLE

WR TE(I FI LE, 110) ' SHORTNAM, (SHCRTN(ILQOOP), |LOCP=1, NCHAN)

WR TE(I FILE, 120) 'LONGNAME , (LONGNMILOOP), |LOCP=1, NCHAN)

WR TE(I FILE, 110) 'UNITSNAM, (UNITSN(ILOOP), |LOCP=1, NCHAN)

WR TE(I FILE, 120) ' GENNAME ', (GENNAMILOOP), |LOCP=1, NCHAN)

WR TE(1 FILE, 120) 'R @ BODY', (R GBOD(ILOOP), |LOOP=1, NCOHAN)

WR TE(IFILE, '(A)') 'XLABEL Tine'

WR TE(IFILE, '(A)') "XUNTS sec'

IF (INFILE .EQ ' ') THEN
WRTE(IFILE, '(A)') "HSTORY No input file (used defaults)'
ELSE
WRITE(IFILE, "(A A') 'HSTCRY Input parameter file was ',
& I NFI LE
END IF
CALL TI MDAT(TI MEDT)
WRITE(IFILE, '(AA")
& 'H STCRY Data generated with 4-bar |inkage at '
& TI MEDT
WRITE(IFILE, '(A') 'END

Qose (text) header and create binary file.

CLOSE(| FI LE)
LSTRNG = LENSTR(FNOUT)
FNCUT = FNOUT (:LSTRNG // '.BIN
| NQUI RE(FI LEEFNCUT, EXI ST=1SI T)
IF (1SIT) THEN
CPEN (1 FILE, FI LE=FNOUT)
OLOSE (I FILE, STATUS=' DELETE)
END | F

CPEN(I FI LE, FI LE=FNQUT, STATUS=' NEW, ACCESS=' SEQUENTIAL',
& FCRVE' UNFCRVATTED)

100 FORVAT (5(16,',"'), GL3. 6)
110 FORMAT (A8, 7A8)
120 FORVAT (A8, 7A32)
RETURN
END

SUBROUTI NE QUTPUT(IFILE, T, Q @, U, WP

O00000000O0O00000

Cc
Cc
Cc

--> |FILE integer Fortran

285

i/o unit for output

-->T real time

-->Q real array of 3 generalized coordinates
--> P real array of derivitives of Q

--> U real array of 1 generalized speed

--> WP real array of derivatives of U

This subroutine wites the

val ues of the 7 output variabl es conputed

by the 4-bar linkage sinulation programinto an output file, using

the values at tine T.

(c) Mke Sayers and The Regents of The University of M chigan, 1989.
Al rights reserved.
IMPLIA T NONE
CHARACTER*80 | NFILE, TITLE
REAL BI33, BM C D DEGREES, FORCEM GCEES, IPRINT, K
& L1, L2, L3, L4, L5, L6, L7, QUTBUF, PARS, PC Q @,
& S, STERP, STCPT, T, U W, Z
| NTECER | FILE, 1LOCP, NOOORD, NPARS, NSPEED, NVARS
PARAMETER (NOOCRD = 3, NSPEED = 1, NVARS = 7)
DI MENSI ON Q NOOCRD), QP(NCOCRD), WNSPEED), UP(NSPEED),
& QUTBUR(NVARS)
DI MENSI ON PQ(30)
CaOWEN / PROWP/ PC
SAVE | PROVP/
D MENSI ON Qq3), FCRCEM1), $(3), Z(71)
COWEN /DYWARS C FCRCEM S, Z
SAVE / DYVARS
PARAMETER (NPARS = 14)
D MENSI ON PARS(NPARS)
COWEN /INPARS PARS, TITLE, |NFILE
SAVE /1 NPARS/
EQU VALENCE (PARS(1), BI33), (PARS(2), BV, (PARY(3), D,
& (PARS(4), IPRNT), (PARS(5), K, (PARS(6), L1),
& (PARS(7), L2), (PARY(8), L3), (PARS(9), L4),
& (PARS(10), L5), (PARS(11), L6), (PARS(12), L7),
& (PARS(13), STEP), (PARS(14), STCPT)
PARAVETER (CGEES = 9. 80665)
Z(67) = (Q1) + Q2))
Z(68) = L3*Z(26)
Z(69) = (Z(49) + Z(68))
Z(70) = L3*Z(30)

Z(71) = (Z(48) -Z(70))

fill

OUTBUF(1)
QUTBUF(2)
QUTBUF(3)
CUTBUF(4)
QUTBUF(5)

buf fer with output variabl es.

- FCRCEM 1)
Z(71)

Z(69)

Q1)

q2)

QUTBUF(6) = Q(3)

286

QUTBUF(7) = Z(67)
C
C The following line wites to an unformatted binary file
C

WR TE (1 FILE) (QUTBUF(ILODP), |LOCP=1, NVARS)

C
G-The next 3 lines are for the Macintosh
C
IF(T .EQ 0.) WRTE (*, "(/AT7TXA') ' Progress:',"'sec
CALL TOOLBX (Z 89409000', 0, -11)
WRTE (*, "(F6.2)') T
RETURN
END
C
SUBROUTI NE PREOWP
C
C This subroutine defines all constants that can be pre-conputed for
C the 4-bar linkage. The constants are put into the COMMIN bl ock
C /PREQW/
C
C (c) Mke Sayers and The Regents of The Wniversity of M chigan, 1989.
C Al rights reserved.
C

IMPLIAT NONE
CHARACTER*80 | NFI LE, TITLE

REAL BI33, BV D DEGREES, GEES, IPRNT, K, L1, L2, L3,
& L4, L5, L6, L7, PARS, PC, STEP, STCPT
| NTEGER NPARS
C
DIMENSION PQ(30)
COWDN /| PROVP/ PC
SAVE / PROVP/
C
PARAMETER (NPARS = 14)
DIMENSION PARS(NPARS)
COWON /INPARS/ PARS, TITLE, |NFILE
SAVE /| NPARS/
C
EQU VALENCE (PARS(1), BI33), (PARS(2), BM, (PARX(3), D),
& (PARS(4), IPRNT), (PARS(5), K), (PARS(6), L1),
& (PARS(7), L2), (PARS(8), L3), (PARS(9), L4),
& (PARS(10), L5), (PARS(11), L6), (PAR(12), L7),
& (PARS(13), STEP), (PARS(14), STCPT)
PARAMETER (GEES = 9. 80665)
C
PQ(1) = (L1 -L5)
PQ(2) = L1/L4
PQ(3) = SQRT((L1 -L6)**2 + (L2 -L7)**2)
PQ(4) = 1.0/L4
PQ(5) = DrL1
PQ(6) = (L2 -L3)
PQ(7) = L1*BI33/L4
PQ(8) = L1*L3/L4
PQ(9) = L3*PQ(2)**2
PQ(10) = L6**2
PQ(11) = L2*L6
PQ(12) = L2**2

287

PQ(13) = L2*L7
PQ(14) = L1**2

PQ(15) = L1*L6

PQ(16) = L1*L7

PQ(17) = L1*L2

PQ(18) = L7**2

PQ(19) = 2. 0*PQ(13)
PO(20) = 2. 0*PQ(11)
PQ(21) = (PQ(10) + PQ(12) + P 14) + PO 18))
PQ(22) = 2.0*PQ(1)

PQ(23) = PQ(2)*PQ(7)
PQ(24) = P 2)*PJ6)
PQ(25) = K*PQ(3)

PQ(26) = L2*P((4)

PQ(27) = PQ(5)*P(26)
PQ(28) = L7*PQ(5)

PQ(29) = L2*PQ(5)

PQ(30) = L6*PQ(5)

RETURN

END

khkkhkkkhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkhhkhhkhhkhhkhhkhhhhhhhhhhhhhhhhhhhhhhhdhhdhkdkkdkkdkdkx*x*%

SUBRQUTI NE TI MDAT (TI MEDT)

hhkkhhkkhhkkhhkkhhkhhkhhhhhhhhhhhhhhhhkhhkhhkhhhhhhhhhhhhhhhhhdhhdddddddrdrdrdrdx

Get date and tinme. On the Mac, this requires the TI ME and DATE
subroutines from Absoft.

*

by M Sayers, 1986.

<-- TIMEDT char*24 string containing tine & date.

O000000

CHARACTER: 24 Tl MEDT

CHARACTER* 36 MONTHS

| NTEGER*4 M | DAY, |YEAR | SEC

| NTEGER*2 YEAR MONTH, DAY, HOUR MN SEC 1100
MONTHS = ' JanFebMar Apr MayJunJul AugSepCct NovDec'

G -The following 4 lines are for the | BMPC (using M crosoft
G-tine and date functions)

* CALL GETDAT (YEAR MONTH DAY)

* CALL GETTIM (IHOUR, MN, SEC 1100)

* WR TE (TI MEDT, 100) IHOR MN, MONTHS (MONTHF3-2: MONTH:3),
* & DAY, YEAR

G-get time for MIS version
C CALL TIME(22, 0, TIMEDT)

G-The following 5 lines are for the Apple Mac
G -(using Absoft tine & date functions)

CALL DATE (M |DAY, |YEAR

CALL TIME (I SEQ

WR TE (TI MEDT, 100)

& | SEC/ 3600, MDD (I SEC, 3600) / 60, MONTHS (M 3-2: M3),
& | DAY, 1900 + | YEAR

100 FORVAT (12,':',12.2," on"',A3,13,",",15)
RETURN

END

O000000

OO0

288

APPENDIX D — SPACECRAFT #1 EQUATIONS

This appendix contains the equations of motion for the spacecraft described in Section
9.4. These are the full, nonlinear equations, extracted from the subroutines DIFEQN and
PRECMP. Definitions of state variables and parameters are found in Section 9.4.

The computations performed “in the loop” are the following:

Each derivative eval uation requires 773 mul tiply/divides, 628
add/ subtracts, and 18 function/subroutine calls.

(c) Mke Sayers and The Regents of The University of M chigan, 1989.

Al rights reserved.

S(6) = SINQ6))
(5) = SINQ5))
S(4) = SINQ4))
7) = SINQ7))
(8) = SINQ8))
(9) = SINQ9))
S(10) = SINNQ 10
q6) = Q0¥ Q6))
q’5) = Q¥(Q5))
q4) = Q(Q4))
q7) = Q7))
q8) = Q¥ Q8))
q9) = 0¥Q9))
q10) = Co5(Q 10

Ki nemati cal equations

(PQ(2)*U5) + U1))
(PA(2)*U(4) -U2))

Z(1)
Z(2)

~
~

~
~—

@(1) = (q9)*(2(1)*A6) + 2(2)*(6)) + U3)*(5))

Z(3) = (4)*(5)

@(2) = -(A2)*(A6)*qA4) -Z(3)*6)) -Z(1)*(Z(3)*q6) +
& q4)*(6)) + U3)*A5)*S(4))

(3)
&

Q(4)
Q(5)
Q(6)
@(7) = U
Q(8) = U
Q(9) = U
Q(10) = W10

coc

6
)
)
)

© 00~

(U(3)*A(5)*q4) + Z(1)*(-q4)*q6)*(5) + (6)*(4))
-Z(2)*(q4)*S(6)*(5) + (6)*(4)))

4)*Qq6) -U5)*¥6))/q5)

5)*Q6) + U4)*(6))

) -QP(4)*S(5))

OO0 000 000 000 000 000 000 000 000

289

External subroutines and extra variabl es
CALL OMX(T, CLKCVD, CAMOMVD)
define expression for boomtorque Z
FORCEM 1) = (KB*Q9) + BB*U9))
define expression for boomtorque X
FORCEM 2) = (KB*Q10) + BB*U(10))
define expression for torque fromclock notor
FORCEM 3) = (KOLOOK* (CLKOMD - Q7)) -BOLOCK*U(7))
define expression for torque from canera notor
FORCEM 4) = (KOLOCK*(CAMCMD - Q(8)) -BOLOXK*U(8))
define expression for thruster torque #1
FORCEM 5) = LTTI*THRUST(T, 1, (Q4) + GrRO‘FU4)))
define expression for thruster torque #2
FCRCEM 6) = LTT2*THRUST(T, 2, (Q5) + GRO‘'UD5)))
define expression for thruster torque #3
FORCEM 7) = LTT3*THRUST(T, 3, (Q6) + GYRO'U6)))

Dynam cal equati ons

Z(4) = (UWe6) +U7))

Z(5) = (UAH*q7) + U5)*7))
Z(6) = (U5)*A7) -U4)*¥7))

Z(7) = (Z(6)*qA'8) -2(4)*X8))

Z(8) = (Z(4)*(8) + Z(6)*(8))
Z(9) = ¥(7)*(8)

Z(10) = A8)*Y(7)

Z(11) = q7)*¥(8)

Z(12) = A7)*q8)

Z(13) = (U8) Z(5))

Z(14) = (U6) + WU9)

Z(15) = (U5)*q9) -U4)*(9))
Z(16) = (Z(14)*Q(10) -Z(15)*3(10))
Z(17) = (Z(15)*C10) + Z(14)*S(10))
Z(18) = §(9)*$(10)

Z(19) = (10)*(9)

Z(20) = (9)*(10)

Z(21) = (9)*(10)

Z(22) = (UY10) + U4)*Q9) + U5)*¥(9))
Z(23) = PQ3)*X(7)

Z(24) = Pq3) q7)

Z(25) = (L5 -L3*(8))

290

Z(26) = (Z(25)*Q7) + Z(24)*¥(8))

Z(27) = (L6 + L3*(8))

2(28) = (Z(27)*Q7) + Z(24)*(8))

Z(29) = (L5*Z(9) + L6*Z(10) + Z(23))

Z(30) = (Z(25)*(7) + Z(23)*Y(8))

Z(31) = (Z(23)*8) + Z(27)*(7))

7(32) = (L5*Z(11) + L6*Z(12) + Z(24))

2(33) = (L3 -L5*Q(8) + L6*(8))

Z(34) = PQ(2)*Y(9)

Z(35) = PQ(2)*9)

Z(36) = L7*S(9)

Z(37) = (Z(35)*Q10) + L7*S(10))

2(38) = (L8*Q(9) + L7*Q(10) -Z(35)*S(10))
2(39) = (L8*Z(18) -Z(34))

7(40) = (L8*S(9) -2Z(34)*S(10))

Z(41) = Z(34)*Q(10)

Z(42) = (L8*Z(20) -Z(35))

Z(43) = Z(36)*S(10)

Z(44) = 7(36)*(10)

Z(45) = L8*((10)

2(46) = (Z(45) + L7*Q9))

Z(47) = U4 *U7)

Z(48) = U5)*U7)

Z(49) = Z(48)*(7)

Z(50) = Z(47)*(7)

Z(51) = (2(49) -2Z(50))

2(52) = (Z(47)*Q7) + Z(48)*(7))

Z(53) = (U8)*Z(8) + Z(52)*(8))

Z(54) = -(U8)*Z(7) -Z(52)*(8))

Z(55) = U4)*U9)

Z(56) = U5)*U9)

Z(57) = (Z(56)*9) -Z(55)*H(9))

Z(58) = (Z(55)*9) + Z(56)*(9))

Z(59) = -(U(10)*Z(17) -2Z(58)*S(10))

Z(60) = U6)*U4)

Z(61) = U5)*U6)

2(62) = U(4)**2

Z(63) = U(5)**2

2(64) = (2(62) + Z(63))

Z(65) = -(U6)*U2) -U5)*U3))

Z(66) = -(U4)*U3) -U6)*U1))

Z(67) = -(U5*U1) -U4)*U2))

7(68) = (PQ(3)*Z(60) -Z(65))

Z(69) = (PQ(3)*Z(61) -Z(66))

2(70) = Z(7)*Z(8)

Z(71) = Z(13)**2

Z(72) = -(-L3*(Z(4)*Z(6) + Z(49) -Z(50)) + PQ(3)*Z(64) + Z(67))
Z(73) = (L3*(Z(4)**2 + Z(5)**2) -Z(69)*Q(7) + Z(68)*(7))
Z(74) = (L5*(Z(51) + Z(70)) + L6*(Z(71) + Z(7)**2) -Z(72)*Q(8) +
& Z(73)*Y(8))

Z(75) = -(L6*(Z(51) -Z(70)) -L5*(Z(71) + Z(8)**2) + Z(73)*(8) +
& Z(72)*Y(8))

Z(76) = (L3*Z(5)*Z(6) -L6*(Z(8)*Z(13) + Z(53)) + L5*(Z(7)*Z(13)
& -Z(54)) + Z(68)*Q7) + Z(69)*(7))

Z(77) = (-L7*U5)*U4) + PO(2)*Z(60) + Z(65))
2(78) = (PQ(2)*Z(61) + L7*(Z(62) + UB)**2) + Z(66))
Z(79) = (A78)*9) -Z(77)*(9))

Z(80)
Z(81)
2(82)
Z(83)
Z(84)
Z(85)
Z(86)
2(87)
Z(88)
Z(89)
Z(90)
Z(91)
2(92)

Z(93)
7(94)
2(95)

7(96)
&

2(97)

7(98)

Z(99)

Z(100)
7(101)
7(102)
7(103)
2(104)
Z(105)
Z(106)
7(107)
7(108)
Z(109)
7(110)
Z(111)
Z(112)
Z(113)
Z(114)
Z(115)
Z(116)
Z(117)
Z(118)
Z(119)
2(120)
2(121)
2(122)
2(123)
Z(124)
Z(125)
2(126)
7(127)
7(128)
Z(129)
Z(130)
Z(131)
7(132)
7(133)

291

(L7*Z(61) + PO(2)*Z(64) -Z(67))

2(17)*Z(22)

2(16)*Z(17)

(L8*(Z(16)**2 + Z(22)**2) + Z(79)*Q(10) -Z(80)*S(10))

(L8*(Z(57) + Z(82)) + Z(80)*Q(10) + Z(79)*S(10))
(L8*(Z(59) -Z(81)) + Z(77)*Q9) + Z(78)*(9))
Bl 13* U 5)

Bl 12* U 5)

DI 23*Z(7)

D 13*Z(13)

Dl 12%Z(7)

D 13*Z(8)
(D 12*7(51) + DI22*Z(53) -Di23*Z(54) + Z(13)*(Z(88) +
2(89)) + Z(8)*(PQ(7)*Z(13) + Z(90) -Z(91)))
D 23*Z(8)

Dl 12+ Z(13)
(-Di11*Z(51) -D 12*Z(53) + D 13*Z(54) + Z(7)*(- D 33*Z(8)
+ Z(88) + Z(89)) + Z(8)*(D22*Z(7) -Z(93) + Z(94)))
(DI 13*Z(51) + DI 23*7(53) -Di33*Z(54) + Z(7)*(PQ8)*Z(13)
+ 2(90) -Z(91)) + Z(13)*(Z(93) -2(94)))
DM Z(29)

DM Z(28)

DM Z(26)

Dl 13*Z(9)

D 12*Z(10)

D 11* 7)

DMt Z(32)

DM Z(31)

DMt Z(30)

(DI 23*Z(11) -Di22%Z(12) + DI 12*Y(7))
(DI33*Z(11) -DI23*Z(12) + DI13*Y(7))

Dl 13*Z(11)

Dl 12*Z(12)

Dl 11*(7)

(Z(108) -Z(109) + Z(110))

DMt Z(33)

(DI 33*((8) + DI 23*S(8))

(DI 23*Q(8) + DI 22*S(8))

(DI 13*Q8) + D 12*S(8))

FI 2% (U(10) *Z(16) -Z(58)*Q(10))

(FI 1*Z(59) - PQ(11)*Z(81))

(FI 1*Z(57) + PQ(11)*Z(82))

FM Z(39)

FM Z(38)

FM Z(37)

FI 1* O 9)

FM Z(42)

FM Z(41)

FM Z(40)

FI 1*S(9)

FI 2+ Z(21)

FI 1* Z(20)

FM Z(46)

FM Z(44)

FM Z(43)

FI 2+ (10)

FI 1+ 10)

292

Z(134) = FMZ(45)

Z(135) = -(-PQ(1)*Z(65) + DM (Z(9)*Z(74) -Z(10)*Z(75) +
& 2(76)*Q(7)) + FM(Z(19)*Z(83) + Z(18)*Z(84)
& -Z(85)*(9)))

Z(136) = (PQ(1)*Z(66) -DVF(-Z(11)*Z(74) + Z(12)*Z(75) +
& 2(76)*S(7)) + FM(Z(21)*Z(83) + Z(20)*Z(84) +
& Z(85)*Y(9)))

2(137) = (PQ(1)*Z(67) + DM (Z(74)*Q(8) + Z(75)*S(8)) -FM
(Z(84)((10) -Z(83)*(10)))

Z(138) = ((PQ4)*U5) + BI23*U6))*U6) + A*(U5)*Z(4) -Z(48))
-BI23*Z(63) + U(4)*(Bl12*U6) -Z(86)) -Z(10)*Z(92) +
2(9)*Z(96) + Z(76)*Z(97) + Z(75)*Z(98) -Z(74)*Z(99) +
Z(19)*Z(116) -Z(18)*Z(117) -Z(85)*Z(119) -Z(84)*Z(120)
+ Z(83)*Z(121) + FCRCEM5) + Z(95)*((7) -2Z(118)*Q(9)

- FCRCEM 1) *(Z(18) *Q(10) - Z(19)*S(10)))

2(139) = -(-Z(10)*Z(98) -Z(9)*Z(99) -Z(18)*Z(120) + Z(19)*Z(121)

R0

Ro Ro Ro Ro Ro

& +2(97)*q7) + 2(119)*Q9))

Z(140) = (Z(12)*Z(98) + Z(11)*Z(99) + Z(20)*Z(120) -2Z(21)*Z(121)
& + Z(97)*(7) + Z(119)*S(9))

Z(141) = (-Z(99)*Q8) + Z(120)*Q(10) + Z(98)*S(8) + Z(121)*S(10))
2(142) = ((BI23*U5) + Bl 13*U(4) + BI33*U(6))*U(4) -O *(U 4)*Z(4)
& -Z(47)) -UB)*(PQ5)*U4) + BI13*U6) + Z(87)) +

& Z(12)*7(92) -Z(11)*Z(96) -Z(76)*Z(103) + Z(75)*Z(104)
& -Z(74)*Z(105) -Z(21)*Z(116) + Z(20)*Z(117) +

& Z(85)*Z(123) + Z(83)*Z(124) -Z(84)*Z(125) + FCRCEM6) +
& 2(95)*(7) -Z(118)*(9) + FORCEM 1)*(Z(20)* ((10)

& -2(21)*S(10)))

Z(143) = (Z(10)*Z(104) + Z(9)*Z(105) -Z(19)*Z(124) + Z(18)*Z(125)
+ 2(103)*Q(7) + Z(123)*Q9))

Z(144) = -(-2(12)*Z(104) -Z(11)*Z(105) + Z(21)*Z(124)

-Z(20)*Z(125) + Z(103)*S(7) + Z(123)*S(9))

Z(145) = (-Z(105)*Q(8) + Z(125)*((10) + Z(104)*S(8) +

Z(124) *(10))

Z(146) = (Bl 12 -Z(29)*Z(103) + Z(28)*Z(104) + Z(26)*Z(105) +

Ro

Ro

R0

& Z(10)*Z(106) -2Z(9)*Z(107) -Z(39)*Z(123) + Z(37)*Z(124)
& + Z(38)*Z(125) -Z(19)*Z(127) -Z(18)*Z(128) +

& Z(111)*Q7) + Z(126)*Q(9))

2(147) = Z(76)*Z(112)

Z(148) = 7(96)*Q8)

Z(149) = 7(117)*(10)

Z(150) = Z(92)*S(8)

Z(151) = Zz(116)*$(10)

Z(152) = z(112)*Q(7)

Z(153) = (Z(19)*Z(130) + Z(18)*Z(131) + Z(152) + Z(129)*Q9))
2(154) = Z(112)*(7)

Z(155) = (-Z(21)*Z(130) -Z(20)*Z(131) + Z(154) + Z(129)*S(9))
Z(156) = (Z(131)*Q(10) -Z(130)*S(10))

2(157) = 7(29)*Z(112)

Z(158) = Z(9)*Z(113)

Z(159) = Z(10)*Z(114)

7(160) = Z(19)*Z(132)

Z(161) = z(18)*Z(133)

7(162) = z(115)*(7)

7(163) = (Bl 13 + Z(39)*Z(129) + Z(37)*Z(130) -Z(38)*Z(131) +
& Z(157) -Z(158) + Z(159) -Z(160) + Z(161) + Z(162))
Z(164) = Z(32)*Z(112)

Z(165) = Z(11)*Z(113)

Z(166)
2(167)
Z(168)
Z7(169)
Z(170)
&
2(171)
2(172)
2(173)
Z(174)
Z(175)
Z(176)
2(177)
2(178)
2(179)
Z(180)
Z(181)
7(182)
7(183)
7(184)
7(185)
Z(186)
Z7(187)
Z(188)
7(189)
Z(190)
7(191)
7(192)
Z(193)
7(194)
7(195)
Z(196)
2(197)
7(198)
7(199)
Z(200)
Z(201)
Z(202)
7(203)
Z(204)
Z(205)
Z(206)
Z(207)
7(208)
Z7(209)
Z(210)
Z(211)
Z(212)
Z(213)
Z(214)
Z(215)
Z(216)
7(217)
Z(218)
Z(219)

Z(12)*Z(114)
Z(21)*2(132)
2(20) *Z(133)
Z(115)*(7)

(Bl 23 -Z(42)*Z(129) + Z(41)*Z(130)

293

-Z(40)*Z(131) -2Z(164)

+ 7(165) -2Z(166) + Z(167) -Z(168) + Z(169))

7(33)*Z(112)
Z(113)*Q(8)
7(133)*Q 10)
Z(114)*<(8)
7(132) *S(10)

(Z(147) -Z(148) -Z(150) + FCRCEM 3))

-(Z(157) -Z(158) + Z(159) + Z(162))

-(-2(164) + Z(165) -Z(166) + Z(169))
(Z(171) + Z(172) + Z(174))
(PO(9)*Z(74) -PO(10)*Z(75) -Z(95) + FORCEM 4))

(PQ9)*Z(9) + P10)*Z(10))
(PQ9)*Z(11) + PQ(10)*Z(12))

-(PQ9)*8) -
- (PX(9) *Z(26)
- (PO(9) *Z(30)
(Z(85)*Z(134)
Z(134)*(9)
Z(134)*(9)
(Z(39) *Z(134)
(Z(42)*Z(134)
(Z(46) *Z(134)
(Z(45) *Z(134)
(PQA(12)*Z(84)
PQ(12) *Z(18)
PQ(12) *Z(20)
PQ(12) *(10)
(PQ(12)*Z(38)
(PQ(12)*Z(40)
PQ(12) *Z(43)
PQ(18) * Z(196)
PQ(18) *Z(183)
PQ(18) *Z(141)
PQ(18) * Z(145)
PQ(18) * Z(156)
2(187)/ Z(192)
7(188)/ Z(192)
7(189)/ Z(192)
7(190)/ Z(192)
2(191)/ Z(192)
2(152)/ Z(179)
Z(154) / Z(179)
Z(115)/ Z(179)
2(177) 1 Z(179)
2(178)/ Z(179)

PO(10) * X(8))

+ PO(10)*Z(28) -Z(100) + Z(101) + Z(102))
+ PO(10)*Z(31) + 2(108) -Z(109) + Z(110))
+ 7(149) + Z(151) + FORCEM 1))

-Z(160) + Z(161))
-7(167) + z(168))
+ Z(173) + Z(175))
+ 7(173) + Z(175))
+ 7(118) + FORCEM2))

+ 7(122))
+ 7(126))

(PQ(17) -Z(196)*Z(200))

2(194) / Z(215)
Z(195)/ Z(215)
7(196) *Z(201) /

(Z(197) -2Z(196)*Z(202))/Z(215)
2(220) = (Z(198) -Z(196)*Z(203))/ Z(215)
2(221) = (2(199) -Z(196)*Z(204))/Z(215)

Z(215)

2(222)

7(223)

2(224)

Z(225)
&

Z(226)
&

2(227)
7(228)
7(229)

Ro

Z(230)

Ro

Z(231)

Ro

7(232)

Ro

Z(233)

Ro

Z(234)
Z(235)
Z(236)
7(237)

Ro

Z(238)

R

Z(239)

Ro

Z(240)

Ro

Z(241)
2(242)
Z(243)

Ro

Z(244)

Ro

Z(245)

Ro Ro Ro Ro Ro Ro Ro

Z(246)

Ro Ro

Z(247)

Ro Ro

Z(248)

Z(249)

Z(250)
&

Z(251)
&

Z(252)

294

(PQ(13) -Z(187)*Z(205) -Z(152)*Z(210) -Z(194)*Z(216))

-(Z(187)*Z(206) + Z(152)*Z(211) -Z(194)*Z(217))/ Z(222)

(Z(181) + Z(152)*Z(212) + Z(194)*Z(218))/ Z(222)

(-2(139) -Zz(187)*Z(207) + Z(152)*Z(213) +

7(194) *Z(219))/ Z(222)

= (Z(143) -Z(187)*Z(208) -Z(152)*Z(214)
-Z(194) *Z(220))/ Z(222)

= (-2(152) + Z(153) -2Z(187)*Z(209) -Z(194)*Z(221))/Z(222)

= -(Z(188)*Z(205) + Z(154)*Z(210) -Z(195)*Z(216))

= (PQ(13) -Z(188)*Z(206) -Z(154)*Z(211) -Z(195)*Z(217)
-Z(223)*Z(228))

= (Z(182) -Z(154)*Z(212) + Z(195)*Z(218) +
Z(224)*7(228)) Z(229)

= (Z(140) -Z(188)*Z(207) + Z(154)*Z(213) -Z(195)*Z(219)
-Z(225)*Z(228)) | Z(229)

= (-Z(144) -7(188)*Z(208) -Z(154)*Z(214) + Z(195)*Z(220)
-7(226)*Z(228))/ Z(229)

= (-Z(154) + Z(155) -Z(188)*Z(209) + Z(195)*Z(221)

-Z(227)*Z(228))/ Z(229)

Z(183) * Z(200)

(Z(181) + Z(115)*Z(210) + Z(216)*Z(234))

(2(182) -Z(115)*Z(211) + Z(217)*Z(234) + Z(223)*Z(235))

(PO(16) -Z(183)*Z(201) -2Z(115)*Z(212) -Z(218)*Z(234)

-Z(224)*Z(235) - Z(230)*Z(236))

= (-2(184) -7(183)*Z(202) + Z(115)*Z(213) + Z(219)*Z(234)
+ Z(225)*Z(235) -Z(231)*Z(236))/Z(237)

= (-Z(185) -Z(183)*Z(203) + Z(115)*Z(214) + Z(220)*Z(234)

-7(226)*7(235) + Z(232)*Z(236))/ Z(237)

(Z(183)*Z(204) -Z(221)*Z(234) + Z(227)*Z(235)

-7(233)*Z(236))/ Z(237)

(Z(197) " -Z(141) *Z(200))

(-Z(139) -2Z(189)*Z(205) + Z(177)*Z(210) + Z(216)*Z(241))

(Z(140) -Z(189)*Z(206) + Z(177)*Z(211) -Z(217)*Z(241)

- Z(223)*Z(242))

= (-2(184) -Z(141)*Z(201) + Z(177)*Z(212) + Z(218)*Z(241)
+ Z(224)*Z(242) -Z(230)*Z(243))

= (PQ(14) + FI1*Z(18)**2 + FI2¢Z(19)**2 + Z(29)*Z(97) +
Z(28)*Z(98) + Z(26)*Z(99) + Z(39)*Z(119) + Z(38)*Z(120)
+ Z(37)*Z(121) -2Z(141)*Z(202) - Z(189)*Z(207)
-Z(177)*Z(213) -2Z(219)*Z(241) - Z(225)*Z(242)
-7(231)*7(243) -7(238)*Z(244) + (-Z(100) + Z(101) +
2(102))*Q(7) -Z(9)*(-D33*Z(9) + D 23*Z(10) +
D13 7)) + Z(10)*(-Di23*Z(9) + DI 22*Z(10) +
D12 7)) + Z(122)*(9))

= (Z(146) -Z(141)*Z(203) + Z(189)*Z(208) -Z(177)*Z(214)
-Z(220)*Z(241) + Z(226)*Z(242) + Z(232)*Z(243)
-Z(239) *Z(244)) | Z(245)

= (Z(163) + Z(177) + Z(141)*Z(204) -Z(189)*Z(209) +

2(221)*Z(241) -Z(227)*Z(242) -Z(233)*Z(243)

- Z(240) * Z(244)) | Z(245)

(Z(198) - Z(145) * Z(200))

(Z(143) -Z(190)*Z(205) -Z(178)*Z(210) -Z(216)*Z(248))

(-Z(144) -Z(190)*Z(206) -Z(178)*Z(211) + Z(217)*Z(248)

-Z(223) *Z7(249))

= (-Z(185) -Z(145)*Z(201) + Z(178)*Z(212) + Z(218)*Z(248)
-Z(224)*Z(249) + Z(230)*Z(250))

= (Z(146) -Z(145)*Z(202) + Z(190)*Z(207) -Z(178)*Z(213)

295

-Z(219)*Z(248) + Z(225)*Z(249) + Z(231)*Z(250)

-Z(238) *Z(251))

Z(253) = (PQ(15) + Z(32)*Z(103) + Z(31)*Z(104) + Z(30)*Z(105)
-7(12)*Z(106) + Z(11)*Z(107) + Z(42)*Z(123) +
Z(41)*Z(124) + Z(40)*Z(125) + Z(21)*Z(127) +
Z(20)*Z(128) -Z(145)*Z(203) -Z(190)*Z(208)
-Z(178)*Z(214) -Z(220)*Z(248) - Z(226)*Z(249)
-7(232)*Z(250) -Z(239)*Z(251) -Z(246)*Z(252) +
Z(111)*S(7) + Z(126)*S(9))

Z(254) = (Z(170) + Z(178) + Z(145)*Z(204) + Z(190)*Z(209) +
2(221)*Z(248) + Z(227)*Z(249) + Z(233)*Z(250)
-Z(240)*Z(251) -Z(247)*Z(252))/ Z(253)

Z(255) = (Z(199) -Z(156)*Z(200))

Z(256) = (Z(153) -Z(191)*Z(205) -Z(179)*Z(210) -Z(216)*Z(255))
Z(257) = (Z(155) -Z(191)*Z(206) -Z(179)*Z(211) + Z(217)*Z(255)

- Z(223) *Z(256))

Z(258) = (Z(115) + Z(156)*Z(201) -Z(179)*Z(212) -Z(218)*Z(255) +
Z(224)*Z(256) -Z(230)*Z(257))

Z(259) = (Z(163) + Z(156)*Z(202) -Z(191)*Z(207) + Z(179)*Z(213) +
Z(219)*Z(255) -Z(225)*Z(256) -Z(231)*Z(257)

-7(238) *Z(258))

2(260) = (Z(170) + Z(156)*Z(203) + Z(191)*Z(208) + Z(179)*Z(214)

Ro RoRo R0 RoRoRoRoRo R0 Ro

Ro

Ro Ro

& + Z(220)*Z(255) + Z(226)*Z(256) + Z(232)*Z(257)
& -Z(239)*Z(258) - Z(246) * Z(259))

Z(261) = Z(137)*Z(200)

7(262) = (Z(193) + Z(261))

7(263) = Z(186)*Z(205)

Z(264) = Z(176)*Z(210)

Z(265) = Z(216)*Z(262)

Z(266) = (Z(135) -Z(263) + Z(264) + Z(265))

Z(267) = Z(186)*Z(206)

7(268) = Z(176)*Z(211)

2(269) = Z(217)*Z(262)

Z(270) = Z(223)*Z(266)

Z(271) = (Z(136) -Z(267) + Z(268) -Z(269) -Z(270))
Z(272) = Z(137)*Z(201)

Z(273) = Z(176)*Z(212)

Z(274) = Z(218)*Z(262)

Z(275) = Z(224)*Z(266)

Z(276) = Z(230)*Z(271)

2(277) = (Z(180) + Z(272) + Z(273) + Z(274) + Z(275) -Z(276))
Z(278) = Z(137)*Z(202)

Z(279) = Z(186)*Z(207)

Z(280) = Z(176)*Z(213)

Z(281) = Z(219)*Z(262)

7(282) = Z(225)*Z(266)

Z(283) = Z(231)*Z(271)

Z(284) = Z(238)*Z(277)

Z(285) = (Z(138) -Z(278) + Z(279) + Z(280) + Z(281) + Z(282) +
& 7(283) + 7(284))

7(286) = Z(137)*Z(203)

Z(287) = Z(186)*Z(208)

Z(288) = Z(176)*Z(214)

Z(289) = Z(220)*Z(262)

Z(290) = Z(226)*Z(266)

Z(291) = Z(232)*Z(271)

2(292) = Z(239)*Z(277)

Z(293)
7(294)

Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro

Z(295)

R0

Z(296)

Ro

Z(297)

Ro

Z(298)

Ro Ro

Z(299)

Ro Ro

Z(300)

Ro Ro

UP(6)
UP(5)
UP(4)
UP(8)
UP(2)
(1)

UP(10)

UP(7)
&

UP(9)
&

UP(3)
&

296

= Z(246) *Z(285)

= (-BI12*Z(62) -U6)* (Bl 23*U(4) -Z(86)) + U(5)*(PQ(6)*4)
+ Z(87)) -2(85)*Z(129) + Z(83)*Z(130) + Z(84)*Z(131) +
Z(147) -Z(148) -7(149) -Z(150) -Z(151) -Z(176) +
Z(137)*Z(204) + Z(186)*Z(209) -Z(221)*Z(262) +
2(227)*Z(266) + Z(233)*Z(271) + Z(240)*Z(277)
-Z(247)*Z(285) -Z(254)*(Z(142) -Z(286) -Z(287) + Z(288)
+ Z(289) -Z(290) -Z(291) + Z(292) -Z(293)) +
FORCEM 7))/ (BI 33 + Z(46)*Z(129) + Z(44)*Z(130) +
Z(43)*7(131) + Z(171) + Z(172) + Z(173) + Z(174) +
Z(175) -Z(179) -Z(156)*Z(204) -Z(191)*Z(209)
-Z(221)*Z(255) -Z(227)*Z(256) - Z(233)*Z(257)
-Z(240)*Z(258) -Z(247)*Z(259) -Z(254)*Z(260))

= (Z(142) -Z(286) -Z(287) + Z(288) + Z(289) -Z(290)
-Z(291) + Z(292) -Z(293) -2Z(260)*Z(294))/Z(253)

= (Z(138) -Z(278) + Z(279) + Z(280) + Z(281) + Z(282) +

+ - -

Z(283) + Z(284) -Z(259)*Z(294) -Z(252)*Z(295))/ Z(245)

= (Z(180) + Z(272) + Z(273) + Z(274) + Z(275) -Z(276) +
Z(258)*Z(294) + Z(251)*Z(295) + Z(244)*Z(296))/Z(237)

= (-2(136) + Z(267) -Z(268) + Z(269) + Z(270)
-Z(257)*Z(294) + Z(250)*Z(295) -Z(243)*Z(296) +
7(236) *Z(297))/ Z(229)

= - (Z(135) -Z(263) + Z(264) + Z(265) + Z(256)*Z(294)
-Z(249)*Z(295) + Z(242)*Z(296) + Z(235)*Z(297) +
7(228)*Z(298))/ Z(222)

= (Z(193) + Z(261) -Z(255)*Z(294) + Z(248)*Z(295) +
2(241)*Z(296) + Z(234)*Z(297) + Z(195)*Z(298)
-Z(194)*Z(299)) / Z(215)

Z(294)

Z(295)

Z(296)

2(297)

7(298)

Z(299)

= -7(300)

(Z(176) -Z(179)*Z(294) + Z(178)*Z(295) + Z(177)*Z(296) +

Z(115)*Z(297) - Z(154)*Z(298) -Z(152)*Z(299))/ Z(179)
(-Z(186) -2Z(191)*Z(294) + Z(190)*Z(295) - Z(189) * Z(296)
-7(188)*Z(298) -Z(187)*Z(299))/Z(192)

-PQ(18) *(Z(137) + Z(156)*Z(294) - Z(145)*Z(295)
-7(141)*Z(296) + Z(183)*Z(297) + Z(196)*Z(300))

297

The above equations refer to precomputed constants, defined as follows:

PQ(1) = (BM+ QV)

PQ(2) = (L1 -L2)*COM (BM + QV)

PQ(3) = (L1 -(L1 -L2)*OM (BM + QW)

PO(4) = (OM(L1 -L2 -(L1 -L2)*CM (BM + QV))**2 + BMWr((L1
& -L2)*QV) **2/ (BM + QM) **2 + Bl 22 - Bl 33)

PQ(5) = (OM(L1 -L2 -(L1 -L2)*OM (BM + QV))**2 + BWr((L1
& -L2)*QV) **2/ (BM + QM) **2 + Bl 11)

PQ(6) = (Bl 11 - Bl 22)

PQ(7) = (D11 -Di 33)

PQ(8) = (D11 -Di22)

PQ(9) = L5*DM

PQ(10) = L6*DM

PQ(11) = (FI1 -FI2)

PQ(12) = L8*FM

PQ(13) = (BM+ CM+ DM+ FV

PQ(14) = (A + BWF((L1 -L2)*CV)**2/(BM+ CM)**2 + QW (L1 -L2 -(L1
& -L2)*QV (BM + QV)) **2 + Bl 11)

PQ(15) = (A + BW((L1 -L2)*OW)**2/(BM + O **2 + W (L1 -L2 - (L1
& -L2)*QV (BM + Q)) **2 + Bl 22)

PQ(16) = ((L5**2 + L6**2)*DM + DI 11)
PQ(17) = (FML8**2 + FI1)

PQ(18) = 1.0/ PQ(13)

RETURN

END

298

APPENDIX E— MANIPULATOR EQUATIONS

This appendix contains the equations of motion for the “ Stanford Arm” manipulator

described in Section 9.6.

O00000000000000000000000000000000000000O0000O0O0

Stanford arm si mul ati on program
Version created Decenber 22, 1989 by AUTCSI M

(c) Mke Sayers and The Regents of The University of M chigan, 1989.
Al rights reserved.

This programsimul ates the stanford armby nunerically integrating
the 12 ordinary differential equations that describe the kinematics
and dynam cs of the system The stanford armis conposed of 6 bodies
and has 6 degrees of freedom

Each derivative eval uation requires 378 nultiply/divides, 268
add/ subtracts, and 8 function/subroutine calls.

Bodi es

A parent=N 1 DOF: Q1)
B, parent=A 1 DOF: Q2)
C parent=B; 1 DOF: Q3)
D, parent=C 1 DOF: Q4)
E parent=D, 1 DCOF: Q5)
F; parent=E 1 DCOF: Q6)

Ceneral i zed Coordi nat es:

Q1): Rotation of Arelative to the inertial reference about axis
#2. (rad)

Q2): Rotation of Brelative to A about axis #1. (rad)

Q3): Translation of Q0 relative to the center of mass of B al ong
[b2]. (m

Q4): Rotation of Drelative to C about axis #2. (rad)

Q5): Rotation of Erelative to D about axis #1. (rad)

Q6): Rotation of Frelative to E about axis #2. (rad)

I ndependent Speeds:

U1): Abs. rot. of AL axis 2. (rad/s)

U2): Rot. of Brelative to A axis 1. (rad/s)

U 3): Trans. speed of Q0 relative to center of mass of B al ong
[b2]. (ms)

U4): Rot. of Drelative to C axis 2. (rad/s)

U5): Rot. of Erelative to D, axis 1. (rad/s)

U6): Rot. of Frelative to E axis 2. (rad/s)

O0000000000

o000

OO0 000

OO0 oXoXe

OO0

299

Acti ve Forces:

FORCEM 6): (negative) force applied to C
Active Morents:

FORCEM 1): torque applied to A
FORCEM 2): (negative) torque applied to B
FORCEM 3) : (negative) torque applied to D
FORCEM 4): (negative) torque applied to E
FORCEM 5): torque applied to F

The computations that are performed “in the loop” are the following:

(2) = SINQ2))
S(4) = SINQ4))
(5) = SINQ5))
S(6) = SINQ6))
q2) = ayQ2))
q4) = aB(Q4))
g5) = ay(Q5))
qe6) = ay(Q6))
Ki nemati cal equations
(1) = U1
P(2) = U2
QP(3) = U3
P(4) = U4
Q(5) = U5)
Q(6) = U6)

define expression for torque applied to A

FORGEM 1) = (PQ(56) -KI*Q1) -K2*QX(1))

define expression for torque applied to B

Z(1) = q5)*Y(2)
FORCEM 2) = - (PO(49) -K3*Q2) -K4*QP(2) -(PQ(55) +
& PQ(54)*Q3))*(2) -PA53)*(Z(1) + A2)*A4)*¥(9)))

define expression for torque applied to D

Z(2) = (4)*¥(5)
FORGEM 3) = -(PQ48) -K5*Q4) -K6*Q(4) + PO5)*Z(2)*¥(2))

define expression for torque applied to E

Z(3) = q2)*Y(5)
FCROEM 4) = - (PQ(47) -K7*Q5) -K8*QP(5) - PQ(5)*(Z(3) +
& Z(1)*q4)))

define expression for torque applied to F

OO0 o000

300

FCROEM5) = (PQ(46) -K9*Q6) -K10*QP(6))

define expression for force applied to C

FORGEM 6) = -(PQ(45) -K11*Q(3) -K12*Q(3) + PA7)*(2))

Dynam cal equations

Z(4) = U1)*¥(2)

Z2(5) = U1)*q?2)

Z(6) = -(Z(4)*q4) -U2)*(4))
A7) = (U2)*q4) + Z(4)*(4))
Z2(8) = X(2)*X(4)

2(9) = q4)*¥2)

Z(10) = (UW4) + Z(5))

Z(11) = (2(6)*(5) -Z(10)*X(5))

Z(12) = (Z(10)*(5) + Z(6)*¥(5))
Z(13) = (Z(3) + 2(9)*(q5))

Z(14) = (q2)*q5) -Z(9)*¥(9))
Z(15) = (5)*$(4)

Z(16) = (U5) + (7))

Z(17) (Z(11)*Qq6) + Z(16)*S(6))
Z(18) = (£(16)*((6) -Z(11)*X(6))
Z(19) = (Z(13)*(6) -Z(8)*(6))
Z(20) = (Z(8)*q6) + Z(13)*(6))
Z(21) = (Z(15)*6) + O 4)*(6))
Z(22) = (Q4)*Q6) -2(15)*(6))
Z(23) = $(5)*(6)

Z(24) = (A6)*(3)

Z(25) (W6) + 2(12))

Z(26) = (PQ9) + Q3))

Z(27) Z(26)*S(2)

Z(28) L1*S(2)

Z(29) L1*Q(2

Z(30) = -(Z(27) -PA9)*S(2))
Z(31) = (PQ9) -Z7(26))

Z(32) = z(31)*(4)

2(33) = -(-L2*Z(8) + Z(29)*Qq4) + Z(30)*S(4))
Z(34) = -(Z(28)*A5) -Z(33)*(5))

Z(35) = (L2*Z(9) + PQ(10)*Z(13) -Z(30)*Q(4) + Z(29)*S(4))
Z(36) = (PQ(10)*Z(8) + Z(33)*Q5) + Z(28)*S(5))
Z(37) = (-Z(32) + L2*((4))*S(5)

Z(38) = (q4)*(PA10) + L2*((5)) -Z(32)*(5))
Z(39) = (PQ(10)*Z(15) + (L2 -Z(31))*S(4))

Z(40) = PQ(10)*S(5)

Z(41) = U2)*Z(5)

Z(42) = U2)*Z(4)

Z(43) = -(WU4)*z(7) -Z(41)*4))

Z(44) = (U4)*Z(6) -2(41)*S(4))

2(45) = (U5)*Z(12) + Z(43)*Q(5) -Z(42)*3(5))
Z(46) = -(-U5)*Z(11) + Z(42)*Q5) + Z(43)*S(5))
Z(47) = Z(4)*Z(5)

Z(48) = 2.0%Z(41)

Z(49) = Z(4)**2

Z(50) = (Z(49) + U2)**2)

Z(51) = (-2Z(26)*Z(50) + GEES*((2))
Z(52) = (2.0%U(3)*Z(4) + Z(26)*Z(48) -L1*(Z(49) + Z(5)**2))

Z(53)
Z(54)
Z(55)
Z(56)
Z(57)
Z(58)
Z(59)
Z(60)
Z(61)
2(62)
Z(63)
Z(64)
&
Z(65)
Z(66)
2(67)
Z(68)
Z(69)
Z(70)
2(71)
2(72)
2(73)
2(74)
Z(75)
Z(76)
2(77)
2(78)
2(79)
Z(80)
Z(81)
2(82)
7(83)
Z(84)
Z(85)
Z(86)
Z(87)
Z(88)
&
Z(89)
&

Z(90)
Z(91)
7(92)
7(93)
2(94)
Z(95)
Z(96)
2(97)
Z(98)
Z(99)

301

(-2.0U(2)*U(3) + Z(26)*Z(47) + GEES*S(2))
Z(6)*Z(10)

Z(7)*2(10)

(PX(9)*2(48) -Z(52))

(-PQ(9)*Z(47) + Z(53))

Z(12) *Z(16)

Z(11)*Z(12)

(-L2*(Z(B)**2 + Z(7)**2) + PQ9)*Z(50) + Z(51))
(L2*(Z(44) -Z(54)) + Z(57)*Q(4) + Z(56)*(4))
(-PQ(10)*(Z(11)**2 + Z(16)**2) + Z(60)*Q(5) -Z(61)*(5))
(PQ(10)*(Z(44) -2(59)) + Z(61)*Q5) + Z(60)*(5))
(L2*(Z(43) + Z(55)) + PQ(10)*(Z(45) + Z(58)) -Z(56)*Q 4)
+ Z(57)*(4))

PQ(2) * Z(29)

PQ(2) *Z(28)

PQ(2) * Z(27)

PQ(2) * Z(26)

(DB*Z(43) + PQ(19)*Z(55))

-(PQ(21)*Z(6)*Z(7) -D2*Z(42))

D2*(2)

b3* S(4)

(PO(23)*Z(45) + PQ(22)*Z(58))

(PO(26)*Z(44) + PQ(25)*Z(59))

PQ(3) * Z(36)

PQ(3) * Z(35)

PQ(3) * Z(34)

PQ(26) * Z(8)

PQ(3) *Z(39)

PQ(3) * Z(38)

PQ(3) *Z(37)

PQ(26) *((4)

PQ(23) *Z(15)

PQ(3) * X(5)

PQ(3)*(5)

PQ(3) * Z(40)

PQ(23) * §(5)

(PO(27)*Z(18)*Z(25) + F3*(-U6)*Z(18) + Z(45)*C(6) +
Z(44)*3(6)))

(PO(28) *Z(17)*Z(25) + F1*(W(6)*Z(17) + Z(44)*C(6)
- Z(45)*¥(6)))

(PO(29)*Z(17)*Z(18) + F2*Z(46))

F2*Z(14)

F1*Z(22)

F3*Z(21)

F2*Z(2)

F2*(5)

F3*Z(24)

F1*Z(23)

F3*S(6)

F1*(6)

Z(100) = (D1*Z(44) + PQ(20)*Z(54) + Z(74))
Z(101) = - (PO(24)*Z(11)*Z(16) + E2*Z(46) + Z(90))
2(102) = (-Z(53)*Z(65) + Z(51)*Z(66) -Z(52)*Z(67) -Z(9)*Z(69)

Ro Ro Ro Ro

-Z(13)*Z(73) + Z(63)*Z(75) -Z(64)*Z(76) -Z(62)*Z(77)
-7(19)*7(88) + z(20)*Z(89) + Z(8)*Z(100) + Z(14)*Z(101)
+ FORCEM 1) + Z(28)*FCRCEM6) + (PQ(40)*Z(42) +
Z(70))*q2) -(P(43)*Z(41) + PQ(44)*FORCEM6))*(2))

302

Z(103) = (Z(82) + DI*C(4))

7(104) = (E2*Z(2) + Z(94))

Z(105) = (-Z(29)*Z(68) -Z(9)*Z(72) -Z(35)*Z(79) + Z(36)*Z(80) +
& Z(34)*7(81) -Z(13)*Z(83) + 2(20)*Z(92) -Z(19)*Z(93) +
& 7(8)*Z(103) + Z(14)*Z(104))

2(106) = (PQ(2)*Z(51) + Z(63)*Z(84) + Z(62)*Z(85) + FCRCEM6))
Z(107) = (Z(66) + Z(36)*Z(84) -Z(34)*Z(85))

2(108) = (Z(38)*Z(84) -Z(37)*Z(85))

Z(109) = (-Z(70) + Z(64)*Z(86) + Z(24)*Z(88) -Z(23)*Z(89) +

& FORCEM 3) -Z(101)*(5) + Z(73)*S(5))

Z(110) = (Z(95) + E2*((5))

Z(111) = (Z(71) + Z(35)*Z(86) + Z(13)*Z(87) + Z(19)*Z(96) +
& 7(20)*Z(97) + Z(14)*Z(110))

Z(112) = (-Z(39)*Z(86) -Z(15)*Z(87) -Z(21)*Z(96) + Z(22)*Z(97) +
& Z(2)*Z(110))

Z(113) = (-PO(4)*Z(63) -Z(74) + FORCEM4) -Z(89)*{(6)

& -Z(88)*S(6))

Z(114) = (PQ4)*Z(36) + Z(78) -Z(19)*Z(98) + Z(20)*Z(99))
Z(115) = (PQ(4)*Z(38) + Z(82) + Z(21)*Z(98) + Z(22)*Z(99))
Z(116) = P(4)*Y(5)

Z(117) = -(Z2(24)*Z(98) -Z(23)*Z(99))

Z(118) = (-Z(90) + FORCEM5))

Z(119) = PQ(33)*Z(116)

Z(120) = PQ(33)*Z(107)

Z(121) = PQ(33)*Z(108)

2(122) = PQ(34)*Z(95)

2(123) = PQ(34)*Z(91)

Z(124) = PQ(34)*Z(94)

Z(125) = (D2 + Z(40)*Z(86) + Z(24)*Z(96) + Z(23)*Z(97)

& -Z(95)*Z(122) + Z(110)*Q5) + Z(87)*(5))

Z(126) = Z(117)/Z(125)

2(127) = (Z(111) -2Z(95)*Z(123))/Z(125)

2(128) = (Z(112) -Z(95)*Z(124))/Z(125)

2(129) = (PQ(32) -Z(116)*Z(119) -Z(117)*Z(126) + Z(99)*Q(6) +

& Z(98) *3(6))

Z(130) = (Z(114) -2Z(116)*Z(120) -Z(117)*Z(127))/Z(129)

Z(131) = (Z(115) -Z(116)*Z(121) -Z(117)*Z(128))/Z(129)

2(132) = (Z(111) -Zz(91)*Z(122))

7(133) = (Z(114) -Z(107)*Z(119) -Z(126)*Z(132))

Z(134) = (PQ(30) + DB*Z(9)**2 + PQ(23)*Z(13)**2 + F3*Z(19)**2 +
& F1*Z(20)**2 + Z(29)*Z(65) + Z(28)*Z(66) + Z(27)*Z(67) +
& 2(36)*Z(75) + Z(35)*2(76) + Z(34)*Z(77) + Z(8)*(DL*Z(8)
& + Z(78)) + Z(14)*(E2*Z(14) + Z(91)) -Z(107)*Z(120)

& -Z(91)*Z(123) -2Z(127)*Z(132) -2Z(130)*Z(133) + (Z(71) +
& PQ(36)*((2))*q(2) + PQ(37)*Y(2)**2)

Z(135) = (Z(105) -2Z(107)*Z(121) -Z(91)*Z(124) -Z(128)*Z(132)

& -Z(131)*Z(133))/ Z(134)

Z(136) = (Z(112) -2Z(94)*Z(122))

7(137) = (Z(115) -Z(108)*Z(119) -Z(126)*Z(136))

Z(138) = (Z(105) -Z(108)*Z(120) -Z(94)*Z(123) -Z(127)*Z(136)

& -Z(130) *Z(137))

Z(139) = Z(118)*Z(122)

Z(140) = (Z(109) + Z(139))

Z(141) = Z(106)*Z(119)

Z(142) = Z(126)*Z(140)

7(143) = (Z(113) + Z(141) -Z(142))

7(144) = Z(106)*Z(120)

303

Z(145) = Z(118)*Z(123)

Z(146) = Z(127)*Z(140)

7(147) = Z(130)*Z(143)

7(148) = (PQ35)*Z(47) -Z(53)*Z(68) -Z(15)*Z(73) -Z(64)*Z(79)
-7(63)*Z(80) + Z(62)*Z(81) -Z(21)*Z(88) -2Z(22)*Z(89)
-Z(2)*Z(101) + Z(106)*Z(121) + Z(118)*Z(124)
-7(128)*Z(140) -2Z(131)*Z(143) + Z(135)*(Z(102) -2Z(144)
-Z(145) + Z(146) + Z(147)) + FORCEM 2) -Z(100)*Q(4)
-Z(69)*S(4))/ (PQ(31) + Z(26)*Z(68) + Z(39)*Z(79) +
Z(38)*Z(80) + Z(37)*Z(81) + Z(15)*Z(83) + Z(22)*Z(92) +
Z(21)*Z(93) + Z(2)*Z(104) -Z(108)*Z(121) -Z(94)*Z(124)
-7(128)*7(136) -2Z(131)*Z(137) -Z(135)*Z(138) +
Z(103)*Q4) + Z(72)*S(4))

Z(149) = (Z(102) -Z(144) -Z(145) + Z(146) + Z(147) +
7(138)*Z(148))/ Z(134)

Z(150) = (Z(113) + Z(141) -Z(142) -Z(137)*Z(148) +

7(133) *Z(149))/ Z(129)

Z(151) = (Z(109) + Z(139) -Z(136)*Z(148) + Z(132)*Z(149)

Ro Ro Ro Ro Ro Ro Ro Ro Ro
1

R0

Ro

& -Z(117)*Z(150)) / Z(125)

UP(2) = -Z(148)

UP(1) = Z(149)

UP(5) = -Z(150)

UP(4) = -Z(151)

UP(6) = PO(34)*(Z(118) + Z(94)*Z(148) -Z(91)*Z(149) +

& Z(95) *Z(151))

UP(3) = -PQ(33)*(Z(106) + Z(108)*Z(148) -Z(107)*Z(149) +
& Z(116) *Z(150))

The above equations refer to constants that can be precomputed, and are define below.

PQ(1) = L5*MD

PQ2) = (M + M)

PQ(3) = (ME + M)

PQ(4) = (L6*ME + L3*MF)

PQ(5)
PO(6)
PA(7)
PO(8)

(L6*ME + L3*MF) * CEES
(MC+ MD+ ME + M)
(MC + MD + ME + MF)*CGEES
L1*MB/ (MA + MB)

PQ(9) = L5*MY (MC + MD)
PQ10) = (L6*ME + L3*MF)/ (ME + MF)

PO(11) = L1*(1 -M¥ (MA + MB))

PQ(12) = (Bl - B2)

PQ(13) = (B2 -B3)

PQ(14) = (Bl -B3)

PQ(15) = (CL -C2 + MD*(L5*(1 -MY (MC + MD)))**2 + MC

& *(L5*MD) **2/ (MC + MD) **2)

PO(16) = (C3 + MD*(L5*(1 -MY (MC + MD)))**2 + MC*(L5*NMD)**2/ (MC +
& D) ** 2)

PQ(17) = (2 -C3 -M*(L5*(1 -MY (MC + MD)))**2 - M*(L5*MD) **2/ (MC
& + MD)**2)

PQ(18) = (Cl -&3)

PQ(19) = (D1 -D2)

PQ(20) = (D2 -DB)

PQ(21) = (D1 -DB)

PQ(22) = (ELl -E2 + M (L3 - (L6*ME + L3*MP)/ (ME + MP))**2 + ME*(L6
& -(L6*ME + L3*MP)/ (ME + MF))**2)

PQ(23) = (E3 + MF*(L3 - (L6*ME + L3*MP)/ (ME + MP))**2 + ME*(L6

304

& -(L6

PQ(24) = (EL1 -

PQ(25) = (E2 - E3 -MF*(L3 - (L6*ME + L3*MP)/ (ME + MF))**2 - ME*(L6

& -(L6*ME + L3*MP)/ (ME + MF))**2)

PQ(26) = (EL + MP*(L3 - (L6*ME + L3*MP)/ (ME + MF))**2 + ME*(L6
-(L6*ME + L3*MP)/ (ME + MF))**2)

PQ(27) = (F1 -F2)

PQ(28) = (F2 -F3)

PQ(29) = (F1 -F3)

PQ(30) = (A2 + MB*(L1*(1 -M¥/ (MA + MB)))**2 + (2.0*MA + MB)

*(L1*MB) **2/ (MA + MB)**2)

PQ(31) = (BL + CL + MC*(L5*MD)**2/ (MC + MD)**2 + MD*(L5*(1

+ L3*MP)/ (ME + MF))**2)

Ro

& MY (MC + MD)))**2)
PQ(32) = (EL + ME*(L6 - (L6*ME + L3*MF)/ (ME + MF))**2 + M~ (L3
& -(L6*ME + L3*MF)/ (ME + MP))**2 + (L6*ME + L3*MF)**2/ (ME
& + MF))

PQ(33) = 1.0/ PQ(6)

PQ(34) = 1.0/ F2

PQ(35) = (PQ(13) + PO(17))
PQ(36) = (B2 +)

PQ(37) = (B3 + P(16))

PQ(38) = (B2 + PO 14))

PQ(39) = (& + Pq'18))

PQ(40) = (PQ(38) + P((39))
PQ(41) = (B3 + P(12))

PQ(42) = (PQ(15) + P 16))
PQ(43) = (PQ(41) + PO 42))
PQ(44) = (PO 8) + P(11))
PQ(45) = K11*CDI SP

PQ(46) = K9* FROT

PQ(47) = K7*EROT

PQ(48) = K5* DROT

PQ(49) = K3*BROT

PQ(50) = L2*PQ(3)

PQ(51) = (PQ2) + P(3))
PQ(52) = (PQ1) + PQ(50))
PQ(53) = GEES*P((4)

PQ(54) = GEES*PQ(51)

PQ(55) = GEES*PQ(52)

PQ(56) = K1* AROT

REFERENCES

305

N o o & »w

10.

11.

12.

13.

14.

306

“Laboratory Testing Machines and Procedures for Measuring the Steady State Force
and Moment Properties of Passenger Car Tires.” Society of Automotive Engineers,
Inc., Handbook Supplement HS 210, (Recommended Practice SAE J1106), 1975.

“Users Manual for TREETOPS: A Control System Simulation for Structures with a
Tree Topology.” Honeywell (Space and Strategic Avionics Division), 784-19441,
1984.

“ADAMS Applications Manual.” Mechanical Dynamics, Inc, MDI 2001-00, 1987.
Common Lisp: The Reference. 1988, Addison-Wesley.

“SD/FAST User’'s Manual.” Symbolic Dynamics, Inc, Mountain View, CA, 1988.
“Allegro Common Lisp for the Macintosh.” Apple Computer, Inc., 1989.

Abelson, H. and G.J. Sussman. Structure and Interpretation of Computer Programs.
The MIT Electrical Engineering and Computer Science Series. 1985, The MIT Press,
McGraw-Hill Book Co. New Y ork.

Addli, H. and Y.J. Paek. “Computer-aided Analysis of Structures in Interlisp
Environment.” Computers & Structures 23(3), 1986, pp. 393-407.

Amirouche, F.M.L. and S.K. Ider. “Determination of constraint forces in multibody
systems dynamics using Kane's equations.” Journal de Mecanique Theorique et
Appliquee 7(1), 1988, pp. 3-20.

Amirouche, F.M.L., T. Jaand S.K. Ider. “Recursive householder transformation
for complex dynamical systems with constraints.” Journal of Applied Mechanics,
Transactions ASME 55(3), 1988, pp. 729-734.

Antoun, R.J., P.B. Hackert, M.C. O'Leary and A. Sitchin, “Vehicle Dynamic
Handling Computer Simulation: Model Development, Correlation, And Application
Using Adams.” International Congress and Exposition - Society of Automotive
Engineers, Detroit, MI, SAE, paper 860574, 1986.

Ausiello, G. and F.M. Giovanni, “On the Design of Algebraic Data Structures with
the Approach of Abstract Data Types.” EUROCAL ' 79 European Computer Algebra
Conference, Ed. E. W. Ng. Lecture Notesin Computer Science. Marseille, France,
Springer-Verlag, 1979.

Bae, D.-S,, R.S. Hwang and E.J. Haug. “A Recursive Formulation for Real-Time
Dynamic Simulation.” Advances in Design Automation, ASME DE 14(September),
1988, pp. 499-508.

Baumgarte, J. “ Stabilization of Constraints and Integrals of Motion in Dynamical
Systems.” Computer Methods in Applied Mech. and Eng. 1, 1972, pp. 1-16.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

307

Benerjee, A.K. “Comment On 'Relationship Between Kane's Equation And The
Gibbs-Appell Equations.” Journal of Guidance, Control, and Dynamics 10(6),
1987, pp. 596-597.

Bianchi, G. and W. Schiehlen. Dynamics of Multibody Systems. IUTAM/IFToOMM
Symposium Udine/Italy 1985. 1986, Springer-Verlag. Berlin.

Caviness, B.F., “Computer Algebra: Past and Future.” EUROCAL ’85 European
Computer Algebra Conference vol 1: invited lectures, Ed. B. Buchberger. Lecture
Notes in Computer Science. Linz, Austria, Springer-Verlag, 1985.

Chace, M.A. “Methods and Experience in Computer Aided Design of Large-
Displacement Mechanical Systems.” Computer Aided Analysis and Optimization of
Mechanical System Dynamics. E. G. Haug ed., 1984, Springer-Verlag, Heidelberg.
233-259.

Chang, C.O. and P.E. Nikravesh. “An Adaptive Constraint Violation Stabilization
method for dynamic Anaysis of Mechanicad Systems.” ASME Journal of
Mechanisms, Transmissions, and Automation in Design 107(December), 1985, pp.
488-498.

Char, B.W., K.O. Geddes, W.M. Gentleman and G.H. Gonnet, “The Design of
MAPLE: A Compact, Portable, and Powerful Computer Algebra System.”
EUROCAL ' 83 European Computer Algebra Conference, Ed. J. A. van Hulzen.
Lecture Notesin Computer Science. London, England, Springer-Verlag, 1983.

Crespo da Silva, M.R.M. and D.H. Hodges. “Role Of Computerized Symbolic
Manipulation In Rotorcraft Dynamics Anaysis.” Computers & Mathematics with
Applications 12a(1), 1986, pp. 161-172.

Desloge, E.A. “A Comparison of Kane's Equations of Motion And The Gibbs-
Appell Equations of Motion.” American Journal of Physics 54(May), 1986.

Desloge, E.A. “Reationship Between Kane's Equation And The Gibbs-Appell
Equations.” Journal of Guidance, Control, and Dynamics 10(Jan-Feb), 1987, pp.
120-122.

Duffek, W., C. Fuehrer, W. Schwarz and O. Wallrapp, “Analysis and Simulation of
Rail and Road V ehicles with the Program MEDYNA.” Proceedings, 9th |1AVSD
Symposium, dynamics of Vehicles on Roads and Tracks, Linkoping, 1985.

Featherstone, R. Robot Dynamics Algorithms. The Kluwer International Seriesin
Engineering and Computer Science. Robotics: Vision, Manipulation, and Sensors.
1987, Kluwer Academic Publishers. Boston.

Frisch, H.P., “A Vector-Dyadic Development of the Equations of Motion for N-
coupled Rigid Bodies and Point Masses.” Goddard Space Flight Center, D-7767,
1974.

Frisch, H.P., “A digital computer program for the dynamic interaction simulation of
controls and structures.” NASA, Tech memo 80546, 1979.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

308

Ge, Z.,-M. and Y .-H. Cheng. “ Extended Kane's Equations for Nonholonomic Mass
System.” ASME Journal of Applied Mechanics 49(June), 1982, pp. 429-431.

Gear, C.W. Numerical Initial Value Problemsin Ordinary Differential Equations.
1971, Prentice-Hall. Englewood Cliffs, N.J.

Gear, C.W. *“Differential-Algebraic Equations.” Computer Aided Analysis and
Optimization of Mechanical System Dynamics. E. G. Haug ed., 1984, Springer-
Verlag, Heidelberg. 323-334.

Gilmore, B.J. and R.J. Cipra, “Simulation of Planar Dynamic Mechanical Systems
with Changing Topologies. Part 1 — Characterization and Prediction of the
Kinematic Constraint Changes.” ASME Design Technology Copnverences — The
Design Automation Conference, Ed. S. S. Rao. Boston, ASME, 1987.

Gilmore, B.J. and R.J. Cipra, “Simulation of Planar Dynamic Mechanical Systems
with Changing Topologies: Part 2 — Implementation Strategy and Simulation Results
for Example Dynamic Systems.” ASME Design Technology Copnverences — The
Design Automation Conference, Ed. S. S. Rao. Boston, ASME, 1987.

Golnaraghi, M., W. Keith and F.C. Moon. “Stability Analysis of a Robotic
Mechanism Using Computer Algebra.” Applications of Computer Algebra. R.
Pavelle ed., 1984, Kluwer Academic Publishers, Boston. 281-292.

Gomez, C., J.P. Quadrat and A. Sulem. “Computer Algebra as a Tool for Solving
Optima Control Problems.” Applications of Computer Algebra. R. Pavelle ed.,
1984, Kluwer Academic Publishers, Boston. 241-261.

Greenwood, D.T. Principles of Dynamics. Second. 1988, Prentice-Hall, Inc.
Englewood Cliffs.

Hackert, P.B., M.C. O'Leary and A. Sitchin, “Dynamic Simulation Of Light Truck
Handling Maneuvers Using Adams.” Symposium on Smulation and Control of
Ground Vehicles and Transportation Systems. (Presented at the Winter Annual
Meeting of the American Society of Mechanical Engineers.), Anaheim, CA, ASME
(DSC v 2), 1986.

Hamming, R.W. Numerical Methods for Engineers and Scientists. 1962, McGraw
Hill. New Y ork.

Haug, E.G. Computer Aided Analysis and Optimization of Mechanical System
Dynamics. NATO ASI Series, Vol. F9. 1984, Springer-Verlag. Heidelberg.

Haug, E.G. “Elements and Methods of Computational Dynamics.” Computer Aided
Analysis and Optimization of Mechanical System Dynamics. E. G. Haug ed., 1984,
Springer-Verlag, Heidelberg. 3-40.

Hirschberg, W. and D. Schramm. “ Application of NEWEUL in Robot Dynamics.”
Journal of Symbolic Computation (7), 1989, pp. 199-204.

Howe, R.M., “Dynamics of Real-Time Digital Simulation: course notes.” Applied
Dynamics International, Ann Arbor, 1986.

42.

45,

46.

47.

48.

49.

50.

o1

92.

53.

55.

56.

57.

309

Howe, R.M. and A. Nwankpa. “ Some Improved Methods for Real-Time Integration
of State Variable Derivatives wit Discontinuities.” , 1988.

Hsu, S., “An Improved Method for Modeling Constrained Rigid Body Systems.”
PhD thesis, University of Mighigan, 1986.

Hussain, M.A. and B. Noble. “Application of Macsyma to Kinematics and
Mechanical Systems.” Applications of Computer Algebra. R. Pavelle ed., 1984,
Kluwer Academic Publishers, Boston. 262-280.

Hussain, M.A. and B. Noble. “Application of symbolic Computation to the Analysis
of Mechanicad systems, Including Robot Arms.” Computer Aided Analysis and
Optimization of Mechanical System Dynamics. E. G. Haug ed., 1984, Springer-
Verlag, Heidelberg. 283-306.

Huston, R.L., *“Useful Procedures in Multibody Dynamics.” Dynamics of
Multibody Systems, IUTAM/IFToMM Symposium, Ed. G. Bianchi and W.
Schiehlen. Udine, Italy, Springer-Verlag, 1985.

Huston, R.L. and C. Passerello. “On Multi-Rigid-Body System Dynamics.”
Computers and Structures 10, 1979, pp. 439-446.

Huston, R.L. and C.E. Passerello. “On the Dynamics of Chain Systems.” Automatic
Control Division of the American Society of Mechanical Engineers, 1974.

Huston, R.L. and C.E. Passerello. “Multibody Structural Dynamics Including
Trand ation Between the Bodies.” Computers and Structures 12, 1980, pp. 713-720.

Huston, R.L., C.E. Passerello and M.W. Harlow. “Dynamics of Multirigid-Body
Systems.” ASME Journal of Applied Mechanics 45(December), 1978, pp. 889-894.

Ider, S.K. and F.M.L. Amirouche. “Coordinate reduction in the dynamics of
constrained multibody systems - a new approach.” Journal of Applied Mechanics,
Transactions ASVIE 55(4), 1988, pp. 899-904.

Jaschinski, A., W. Kortuem and O. Wallrapp. “ Simulation of ground vehicles with
the multibody program MEDYNA.” | 1986.

Kamman, JW. and R.L. Huston. “Constrained Multibody System Dynamics, an
Automated Approach.” Computers and Sructures 18(6), 1984, pp. 999-1003.

Kamman, JW. and R.L. Huston. “Dynamics Of Constrained Multibody Systems.”
Journal of Applied Mechanics, Transactions ASME 51(4), 1984, pp. 899-903.

Kane, T.R. and D.A. Levinson. “Formulation of Equations of Motion for Complex
Spacecraft.” Journal of Guidance and Control 3(2), 1980, pp. 99-112.

Kane, T.R. and D.A. Levinson. “Multibody dynamics.” Journal of Applied
Mechanics, Transactions ASME 50(4b), 1983, pp. 1071-1078.

Kane, T.R. and D.A. Levinson. “The Use of Kane's Dynamica Equations in
Robotics.” International Journal of Robotics Research 2(3), 1983, pp. 3-21.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

310

Kane, T.R. and D.A. Levinson. Dynamics, theory and applications. McGraw-Hill
Seriesin Mechanical Engineering. 1985, McGraw-Hill Book Company.

Keat, J.E. “Comment on "Relationship Between Kane's Equations and the Gibbs-
Appell Equations”.” Journal of Guidance, Control, and Dynamics 10(6), 1987, pp.
594-595.

Kessler, R.R. LISP, Objects and Symbolic Programming. 1988, Scott, Foresman
and Co. Glenview, Illinois.

Kim, S.S. and M.J. Vanderploeg. “QR Decomposition for State Space
Representation of Constrained Mechanica Dynamic Systems.” ASME Journal of
Mechanisms, Transmission, and Automation in Design 108(June), 1986, pp. 183-
188.

Kortuem, W., “Simulation of the dynamics of high speed ground transportation
vehicleswith MEDY NA - potentials and case studies.” International Conference on
Maglev and Linear Drives, LasVegas, NV, USA, IEEE, 1987.

Kortuem, W. and W. Schiehlen. “General Purpose Vehicle System Dynamics
Software Based on Multibody Formalism.” Vehicle System Dynamics 14(4-6), 1985,
pp. 229-263.

Kreuzer, E. and O. Schiehlen, “Generation of Symbolic Equations of Motion for
Complex Spacecraft Using Formalism NEWEUL.” AIAA Astrodynamics Specialist
Conference, 1983.

Kreuzer, E.J., “Dynamic Analysis of Mechanisms Using Symbolica Equation
Manipulation.” Proceedings, 5th World Congress on Theory of Machines and
Mechanisms, Montreal, 1979.

Kreuzer, E.J. and W.O. Schiehlen. “Computerized Generation Of Symbolic
Equations Of Motion For Spacecraft.” Journal of Guidance, Control, and Dynamics
8(2), 1985, pp. 284-287.

Krishnaswami, P. and M.A. Bhatti. “ Symbolic Computing in Optima Design of
Dynamic Systems.” The American Society of Mechanical Engineers, 1985, pp. 1-6.

Kurdila, A. and M. Kamat, “Concurrent nullspace methods for multibody systems.”
Paralldl and Distributed Processing in Sructural Engineering, Proceedings.
Presented in Conjunction with the ASCE National Convention., Nashville, TN,
USA, ASCE, 1988.

Levinson, D. “The Derivation of Equations of Motion of Multiple-Rigid-Body
Systems Using Symbolic Manipulation.” AlAA paper No. 76-816 , 1976.

Levinson, D. “Comment on "Relationship Between Kane's Equations and the Gibbs-
Appell Equations’.” Journal of Guidance, Control, and Dynamics 10(6), 1987, pp.
593.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

311

Liang, C.G. and G.M. Lance. “A Differentiable Null Space Method for Constrained
Dynamic Analysis.” ASME Journal of Mechanisms, Transmissions, and Automation
in Design 109(September), 1987, pp. 405-411.

Lilov, L. and V. Chirikov. “On the Dynamics Equations of Systems of
Interconnected Bodies.” Journal of Applied Mathematic and Mechanics 45, 1981, pp.
383-390.

Lin, L.-C. and Y. King. “Lagrange-Euler-assumed modes approach to modeling
flexible robotic manipulators.” Chung-kuo Kung Ch'eng Hsueh K'an/Journal of the
Chinese Institute of Engineers 11(4), 1988, pp. 335-347.

Lips, K.W.;.S., R. P., “Obstacles to high fidelity multibody dynamics simulation.”
Proceedings of the 1988 American Control Conference., Atlanta, GA, USA, IEEE,
1988.

Liu, Y. “Screw-matrix method in dynamics of multibody systems.” Acta Mechanica
Snica/Lixue Xuebao 4(2), 1988, pp. 165-174.

Loos, H. and G. Doedlbacher, “Mathematica 'Prototype’ Of The Vehicle To
Describe Vehicle Handling Behavior.” Dynamics of Vehicles on Roads and on
Tracks, Proceedings of 9th IAVSD Symposium., Linkoping, Swed, Swets North
America, 1986.

Magnus, K. Dynamics of Multibody Systems. IUTAM/IFTOMM Symposium
Munich/Germany 1977. 1978, Springer-Verlag. Berlin.

Mani, N.K. and E.J. Haug. “Application of Singular Vaue Decomposition for
Analysis of Mechanicd System Dynamics.” ASME Journal of Mechanisms,
Transmissions, and Automation in Design 107(March), 1985, pp. 82-87.

McConville, J.B. and J.C. Angell, “Dynamic Simulation Of A Moving Vehicle
Subject To Transient Steering Inputs Using The Adams Computer Program.” Design
Engineering Technology Conference, Cambridge, MA, ASME (84-DET-2), 1984.

Mclnnis, J.B. and W.H. EIMaraghy, “Automated bond graph construction and
analysis for multibody system dynamics.” Proceedings of the 1989 ASME
International Computersin Engineering Conference and Exposition, Anheim, CA,
USA, 19809.

Month, L.A. and R.H. Rand, “Stability Of A Rigid Body With An Oscillating
Paticle An Application Of Macsyma.” 1985 Joint ASME/ASCE Applied
Mechanics, Fluids Engineering and Bioengineering Conference., Albuquerque,
NM, ASME (85-APM-28), 1985.

Nielan, P. and T. Kane, “Symbolic Generation of Efficient Simulation/Control
Routines for Multibody Systems.” Dynamics of Multibody Systems,
IUTAM/IFToMM Symposium, Ed. G. Bianchi and W. Schiehlen. Udine, Italy,
Springer-Verlag, 1985.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94,

95.

96.

312

Nielan, P.E., “Efficient Computer Simulation of Motions of Multibody Systems.”
PhD thesis, Stanford University, 1986.

Nikravesh, P.E. “Some Methods for Dynamic Analysis of Constrained Mechanical
Systems. A Survey.” Computer Aided Analysis and Optimization of Mechanical
System Dynamics. E. G. Haug ed., 1984, Springer-Verlag, Heidelberg. 353-367.

Nikravesh, P.E. and E.J. Haug. “ Generalized Coordinate Partitioning for Analysis of
Mechanicd Systems with Nonholonomic Constraints” ASME Journal of
Mechanisms, Transmissions, and Automation in Design 105(September), 1983, pp.
379-384.

Orlandea, N. and M.A. Chace, “Simulation Of A Vehicle Suspension With The
Adams Computer Program.” SAE, Detroit, SAE preprint 770053, 1977.

Orlandea, N., M.A. Chace and D.A. Calahan. “A Sparsity-Oriented Approach to the
Dynamic Analysis and Design of Mechanical Systems, Parts| and Il.” Journal of
Engineering for Industry 99(August), 1977, pp. 773-784.

Ormrod, M. and G. Andrews. “Advent: A Smulation Program for Constrained
Planar Kinematic and Dynamic Systems.” , 1986, pp. 1-9.

Park, K.C. and J.C. Chiou. “Stabilization of Computational Procedures for
Constrained Dynamical Systems.” Journal of Guidance and Control 11(4), 1988, pp.
365-370.

Park, T.W. and E.J. Haug. “A Hybrid Numerical Integration Method for Machine
Dynamics Simulation.” ASME Journal of Mechanism, Transmissions, and
Automation in Design 108(June), 1986, pp. 211-216.

Passerello, C.E. and R.L. Huston. “Another Look at Nonholonomic Systems.”
ASME Journal of Applied Mechanics 40(1), 1973, pp. 101-104.

Pavelle, R., “Macsyma: Capabilities and Applications to Problems in Engineering
and the Sciences.” EUROCAL ' 85 European Computer Algebra Conference, Ed. B.
Buchberger. Lecture Notesin Computer Science. Linz, Austria, Springer-Verlag,
1985.

Press, W.H., B.P. Flannery, S.A. Teukolsky and W.T. Vetterling. Numerical
Recipes. the Art of Scientific Computing. 1986, Cambridge University Press.

Rayna, G. REDUCE software for Algebraic Computation. Springer Series, Symbolic
Computation—Artificial Intilligence. 1987, Springer-Verlag. New Y ork.

Richard, M., R. Anderson and G. Andrews. “Generadized Vector-Network
Formulation for the Dynamic Simulation of Multibody Systems.” Journal of Dynamic
Systems, Measurement, and Control 108, 1986, pp. 322-329.

Roberson, R.E., “Constraint Stabilization for Rigid Bodies: an Extension of
Baumgarte’'s Method.” Dynamics of Multibody Systems, Ed. K. Magnus.
International Union of Theoretical and Applied Mechanics. Munich, Springer-
Verlag, 1977.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

313

Roberson, R.E. and Schwertassek. Dynamics of Multibody Systems. 1988,
Springer-Verlag. Berlin.

Rosenthal, D.E. “Comment On 'Relationship Between Kane's Equation And The
Gibbs-Appel Equations.” Journal of Guidance, Control, and Dynamics 10(6),
1987, pp. 595-596.

Rosenthal, D.E. “Triangularization of equations of motion for robotic systems.”
Journal of Guidance, Control, and Dynamics 11(3), 1988, pp. 278-281.

Rosenthal, D.E. and M.A. Sherman, “Symbolic Multibody Equations viaKane's
Method.” AASAIAA Astrodynamics Specialist Conference, Lake Placid, 1983.

Rosenthal, D.E. and M.A. Sherman. “High Performance Multibody Simulations via
Symbolic Equation Manipulation and Kane's Method.” Journal of the Astronoutical
Sciances 34(3), 1986, pp. 223-239.

Sayers, M.W., “ERD Data-Processing Software Reference Manual, Version 2.00.”
University of Michigan Transportation Research Institute, UMTRI-87-2, 1987.

Sayers, M.W., “Automated Formulation of Efficient Vehicle Simulation Codes by
Symbolic Computation (AUTOSIM).” 11th IAVSD Symposium of Vehicles on
Roads and Tracks, Kingston, Ontario, 1989.

Sayers, M.W., “AUTOSIM: A Computer Language for Representing Multibody
Systemsin Symbolic Form to Automatically Formulate Efficient Simulation Codes.”
The Seventh Army Conference on Applied Mathematics and Computing, West Point,
New Y ork, 1989.

Sayers, M.W., “EP Users Manual, the ERD Plotter for the Macintosh.” University of
Michigan Transportation Research Institute, 1989.

Schaechter, D.B. and D.A. Levinson. “Interactive computerized symbolic dynamics
for the dynamicist.” Journal of the Astronautical Sciences 36(4), 1988, pp. 365-
388.

Schiehlen, W.O., “Dynamical analysis of suspension systems.” The Dynamics of
Vehicles on Roads and on Tracks. Proceedings. Amsterdam, Ed. A. Slibar and H.
Springer. Amsterdam, Swets and Zeitlinger, 1978.

Schiehlen, W.O. “Modeling of Complex Vehicle Systems” Vehicle System
Dynamics12(1-3), 1983, pp. 12-14.

Schiehlen, W.O. “Computer Generation of Equations of Motion.” Computer Aided
Analysis and Optimization of Mechanical System Dynamics. E. G. Haug ed., 1984,
Springer-Verlag, Heidelberg. 183-215.

Schiehlen, W.O. “Dynamics Of Complex Multibody Systems.” Solid Mechanics
Archives 9(2), 1984, pp. 159-195.

111

112.

113.

114.

115.

116.

117.

118.
119.

120.

121.

122.

314

Schiehlen, W.O. “Vehicle Dynamics Applications.” Computer Aided Analysis and
Optimization of Mechanical System Dynamics. E. G. Haug ed., 1984, Springer-
Verlag, Heidelberg. 217-231.

Schiehlen, W.O. and E.J. Kreuzer, “Symbolic Computerized Derivation of
Equations of Motion.” Dynamics of Multibody Systems, Ed. K. Magnus.
International Union of Theoretical and Applied Mechanics. Munich, Springer-
Verlag, 1977.

Schwertassek, R. and R.E. Roberson, “A Perspective on Computer-Oriented
Multibody Dynamica Formalisms and their Implementations” Dynamics of
Multibody Systems, IUTAM/IFToMM Symposium, Ed. G. Bianchi and W.
Schiehlen. Udine, Italy, Springer-Verlag, 1985.

Segdl, L. “Theoretical Prediction and Experimental Substantiation of the Response of
the Automobile to Steering Control.” Proceedings of the Institute of Mechanical
Engineers Automobile Division, 1957, pp. 310-330.

Sheth, P. and J. Uicker. “IMP (Integrated M echanicms Program), A Computer-aided
Design Analysis System for Mechanisms and Linkage.” Journal of Engineering for
Industry, 1972.

Singh, R.P., R.J. VanderVoort, C. Arduini, A. Festa, C. Maccone and D.
Sciacovelli, “DCAP: An automated analysis and design tool for strucutural control
of space structures.” Second ESA Workshop on Mechanical Technology for
Antennas - Proceedings of a Workshop held at ESTEC., Noordwijk, Netherlands,
European Space Agency, (Special Publication) ESA SP 261, 1986.

Singh, R.P., R.J. VanderVoort and P.W. Likins. “Dynamics Of Flexible Bodies In
Tree Topology - A Computer-Oriented Approach.” Journal of Guidance, Control,
and Dynamics 8(5), 1985, pp. 584-590.

Steele, G.L.J. Common Lisp: The Language. 1984, Digital Press.

Stoer, J. and R. Bulirsch. Introduction to Numerical Analysis. 1980, Springer-
Verlag. New York.

Striberski, A., P.S. Fancher, C.C. MacAdam and M.W. Sayers, “On Nonlinear
Oscillationsin Road Trains at High Forward Speeds.” 11th IAVSD Symposium of
Vehicles on Roads and Tracks, Kingston, Ontario, 1989.

Trom, J.D., JL. Lopez and M.J. Vanderploeg. “Modeling a Mid-Size Passenger Car
Using a Multibody Dynamics Program.” ASME Journal of Mechanisms,
Transmissions, and Automation in Design 109(December), 1987, pp. 518-523.

Tzou, H.S., “Multibody nonlinear dynamics and controls of joint dominated
flexible structures.” Symposium on Robotics Presented at the Winter Annual
Meeting of the American Society of Mechanical Engineers, Chicago, IL, USA,
ASME, 1988.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

315

van Hulzen, JA. and J. Calmet. “Computer Algebra Systems.” Computer Algebra
Symbolic and Algebraic Computation. B. Buchberger, G. E. Collins, R. Loos and
R. Albrecht ed., 1982, Springer-Verlag, Wien. 221-243.

Walker, M.W. and D.E. Orin. “Efficient Dynamic Computer Simulation of Robotic
Mechanisms.” Journal of Dynamic Systems Measurement and Control 104(3), 1982,
pp. 205-211.

Wampler, C.W., “Computer Methods in Manipulator Kinematics, Dynamics, and
Control: A Comparative Study.” PhD thesis, Stanford, 1985.

Wang, J.T. and R.L. Huston. “Computational methods in constrained multibody
dynamics: matrix formalisms.” Computers and Sructures 29(2), 1988, pp. 331-338.

Wang, P.S., “Taking Advantage of Symmetry in the Automatic Generation of
Numerical Programs for Finite Element Anaysis” EUROCAL ’'85 European
Computer Algebra Conference Vol 2: Research Contributions, Ed. B. F. Caviness.
Lecture Notesin Computer Science. Linz, Austria, Springer-Verlag, 1985.

Wehage, R. and A. Shabana. “ Application of Generalized Newton-Euler Equations
and Recursive Projection Methods to Dynamics of Deformable Multibody Systems.”
Submitted to the ASME Journal of Mechanisms, Transmissions, and Automation in
Design, 1989, pp. 1-23.

Wehage, R.A., “Application of Matrix Partitioning and Recursive Projection to
Order n Solution of Constrained Equations of Motion.” 20th Biennial ASME
Mechanisms Conference, Orlando, FLA, 1988.

Wehage, R.A., “Symbolic Factors of Linear System Coefficient Matrices for Tree-
Structured Systems and their Efficient Solution.” Seventh Army Conference on on
Applied Mathematics and Computing, West Point, New Y ork, 1989.

Wehage, R.A. and E.J. Haug. “Dynamic Analysis of Mechanicad Systems with
Intermittent Motion.” ASME Journal of Mechanical Design 104(October), 1982, pp.
778-784.

Wehage, R.A. and E.J. Haug. “Generalized Coordinate Partitioning for Dimension
Reduction in Analysis of Constrained Dynamic Systems.” ASME Journal of
Mechanical Design 104(January), 1982, pp. 247-255.

Winkler, C.B. and M. Hagan. “A Test Facility for the Measurement of Heavy
Vehicle Suspension Parameters.” Transactions of Society of Automotive Engineers
(SAE) 89(paper 80096), 1980.

Wittenburg, J. Dynamics of Systems of Rigid Bodies. 1977, B.G. Teubner.
Stuttgart.

Wittenburg, J., “Dynamics of Multibody Systems.” Proceedings, XVth
IUTAM/ICTAM Congress, Toronto, 1980.

136.

137.

138.
139.

316

Wittenburg, J. “Analytical Methods in Mechanica System Dynamics.” Computer
Aided Analysis and Optimization of Mechanical System Dynamics. E. G. Haug ed.,
1984, Springer-Verlag, Heidelberg. 89-127.

Wittenburg, J. and U. Wolz, “MESA VERDE: A Symbolic Program for Nonlinear
Articulated-Rigid-Body Dynamics.” Proceedings of the 10th Design Engineering
division Conference on Mechanical Vibration and Noise, Cincinati, 1985.

Wolfram, S. Mathematica™. 1988, Adison-Wesley Publishing Company.

Wooff, C. and D. Hodgkinson. muMATH: A microcomputer algebra system. 1987,
Academic Press. London.

