
 1 / 4

BikeSim math models represent the dynamic behavior of

two- and three-wheeled motorcycles. The VehicleSim® (VS)

Math Model architecture is used.

BikeSim VS Math Models are built using dynamically linked

VS Solver library files, available for 13 operating systems:

Windows (32- and 64-bit), Linux, and real-time platforms

used for hardware-in-the loop. The models work well with

other software (Simulink, LabVIEW, FMI, ETAS ASCET,

EPIC Unreal, Custom programs, etc.) for automation or

extensions to the models.

A basic BikeSim model runs more than 10 times faster than

real time on a typical Windows computer.

Multiple vehicles may be simulated simultaneously and

communicate with each other using external software.

Vehicle Math Models

Configurable Table Functions

• Potentially nonlinear relationships between variables are

defined with VS Configurable Functions that can be:

o Constants

o Linear coefficients

o Nonlinear tables with several interpolation methods

involving one or two independent variables

o User-defined formulas

• Configurable Functions include offset and gain transform

parameters for dependent and independent variables.

• There is no built-in limit to the length of tables.

VS Reference Paths

• A VS path defines an S-L coordinate system (S = distance

along path, L = lateral distance from path).

• Each path is a sequence of segments, where each segment

may be: straight, an arc, a clothoid, or an X-Y table.

• VS paths are used for rider controls, locating traffic

vehicles, and defining 3D road properties.

• A VS Math Model supports up to 500 VS Paths.

Rider Controls

• All rider controls can be handled by built-in controllers,

defined by equations added with VS Commands, or

imported from external software.

• The built-in rider model can steer to follow a target path,

which can be changed during the run.

• A Closed-Loop Lean Target (for the bike) can be

combined with a Rider Body lean angle.

• Steering can also be accomplished using open-loop rider

body control and open-loop handlebar torque.

• The rider model can control speed based on target speed

and acceleration limits, curvature of the target path, and

3D road geometry (banking, grade, curvature).

• Gear shifting and clutch controls can be handled with shift

schedules and automatic throttle-clutch interactions.

• Closed-loop and open-loop controls can be combined to

simulate intervention systems.

• Open-loop braking is represented as lever force (front and

rear).

3D Road Geometry and Friction

• The 3D ground surface includes 3D geometry, friction,

and a tire rolling resistance coefficient.

• The 3D surface may be a set of VS Roads or VS Terrain.

• Up to 200 VS Roads may be built with components:

o VS Reference Path for S-L coordinate system.

o Configurable Functions for elevation and friction

using S-L coordinates and variable-width tables.

o Boundaries to connect adjacent VS Roads.

• VS Terrain provides a single mesh-type ground surface,

created with VS Scene Builder with several options:

o Create interactively by dragging 3D Tiles.

o Import datasets from OpenDRIVE format.

o Import 3D FBX files from other software.

• Road profiles “wander” to follow the vehicle tires,

providing high-frequency road roughness inputs. Road

profiles are measured routinely by some road agencies.

Wind and Aerodynamic Effects

• Six aerodynamic forces and moments are applied to the

sprung mass.

• These forces and moments are shaped by Configurable

Functions of aerodynamic slip angle.

• Ambient wind speed and heading can be set with tables,

runtime equations, or imported from other software.

Suspensions

• The suspension models have full nonlinear kinematical

behavior.

• Front suspensions can be with or without compliance in

the longitudinal direction (bend) and roll (twist) relative

to the main frame.

• The front suspension can be many types: telescopic fork,

McPherson strut, double wishbone, springer, bottom link,

: Math Models

© Mechanical Simulation Corporation. Last revision December 2023. 2 / 4

etc. The detailed kinematic motion can represent anti-dive

geometry.

• Rear suspensions can be a swing arm with or without a

parallel link. The model specifies detailed kinematic

motion of the wheel hub to represent anti-jacking

geometry.

• The rear suspension can be with or without compliance in

the lateral direction (bend and steer) and roll (twist)

relative to the main frame.

• Each wheel moves vertically. Longitudinal movement

and dive angle of wheel hub are related to vertical position

by nonlinear tables.

• Suspension springs are nonlinear and include hysteresis

due to friction.

• Damper forces are nonlinear functions of stroke rate.

• Both the spring and damper use nonlinear lever ratios.

• Front lean-linkage suspension for the three-wheeled

motorcycles is included.

Steering System

• The interactions between the suspension, steering, tire,

and ground are handled with a detailed multibody model

with steering axis.

• The steering system geometry is parameterized by caster

angle, wheel axle height, fork length, and fork offset.

• The steering system includes mechanical limits and

damping.

• Caster angle can be fixed relative to the main frame or

variable with suspension stroke.

Brake System

• Master cylinder pressure is calculated by the lever/pedal

force input through the booster mechanism.

• Brake torque is calculated by actuator pressure and disc

data representing the area, effective radius, and pad

coefficient of friction.

• The brake system can involve external programs (e.g.,

Simulink) to provide advance control such as ABS, TCS,

and stability control.

• Special equations handle wheel lockup to obtain the

correct reaction torque and avoid numerical instability.

Tires

• BikeSim includes several tire models, along with a

program interface that supports external tire models, such

as MF-Tyre / MF-Swift from Siemens/TNO.

• BikeSim runs with MF-Swift from Siemens/TNO and

FTire from COSIN (extra licenses are required from

Siemens and COSIN, respectively, to use their models).

• External tire models can apply forces at either the ground

contact point or the wheel center.

• Different tire models can be applied to the front and rear

wheels.

• The original tire model uses the Magic Formula to

represent longitudinal force, lateral force, and aligning

moment as functions of slip, load, and camber. The shear

forces are applied at a single contact point which moves

around the tire circumference and laterally around the side

wall: this automatically defines overturning moment.

• An internal table look-up model uses fully nonlinear

asymmetric tables to represent lateral force, longitudinal

force, and aligning moment as functions of slip, load, and

camber.

• As part of the internal table look-up model, overturning

moment due to the tire contact kinematical effect can be

replaced with non-linear tables as functions of slip, load,

and camber.

• Variable friction conditions are handled using similarity,

allowing BikeSim to maintain both linear and limit

properties of the tire (for table look-up model).

• Transient effects of rolling are included using relaxation

length. Relaxation lengths can be constant or defined as

nonlinear functions of vertical force and slip.

• Special equations are used to maintain realistic tire

behavior at low speeds when the assumptions of a rolling

tire are not valid.

Powertrain

• BikeSim has detailed powertrain models for chain drive

and shaft drive. There is also a minimal model used for

speed control in which torque is applied directly to the

wheel(s).

• Engine torque is defined with a 2D table that relates

torque to throttle input and crankshaft angular velocity

(RPM).

• The engine feeds torque to the transmission through either

a mechanical clutch or a hydraulic torque converter with

a primary gear.

• The transmission converts torque and speed based on the

current gear selection, with spin inertias and efficiencies

that depend on the gear selection.

• Continuously variable transmissions (CVT) are

supported.

• The torque from the transmission goes to either a sprocket

and chain mechanism or a driveshaft.

• The chain has tensional stiffness and damping. The force

vectors for driving and engine braking affect the swing

arm motion.

• The driveshaft has torsional stiffness and damping.

• Fuel consumption is defined with a 2D table.

3 / 4

Sensors and Traffic

• The models include several kinds of virtual sensors that

detect various types of vehicle motion, including

acceleration, speed, and jerk.

• Up to 200 moving objects can be added that are updated

automatically to convert simple path-based commands

into full 3D geometry.

• Motion of an object can be constant, set by specifying

speed, controlled by acceleration (simple physics), set

with algebraic equations, or imported via import

variables.

• The objects can be recycled for extensive runs, to reappear

after they go out of view.

• Objects that move based on speed or acceleration support

off-tracking, for realistic low-speed traffic turns.

• Objects used to represent traffic vehicles support brake

lights and reverse lights.

• Objects may be rectangular, circular, segment (e.g.,

signs), or polygonal.

• Segment objects have a limited viewing angle, to mimic

signs and signals with limited visibility.

• Up to 99 ADAS range and detection sensors can be

included that detect the moving objects. An optional

license is needed for sensors (but not for objects).

• Each detection includes 24 variables that can be exported

to external controllers (e.g., ADAS).

• Objects can block each other (occlusion). The sensor

detection variables respond only to the portion of the

object that is within the field of view.

• Detection sensors can be placed on the vehicle or moving

objects (to detect and simulate collisions).

• Objects may be attached to vehicle sprung masses to

support ADAS simulations with multiple vehicles or

provide details of collisions with pedestrians.

VS Math Model Input and Outputs

Input Data Files

• BikeSim reads all input from text files that are normally

generated automatically by the Browser/GUI. These files

can also be made externally for advanced applications.

• Input files for BikeSim follow a simple keyword-based

format called the Parsfile. BikeSim can recognize

thousands of keywords when processing input files.

• Each input line can optionally specify alternate units for a

parameter.

• Values can be assigned directly to model parameters with

numbers, numerical expressions (e.g., 1/16), or symbolic

algebraic expressions involving other model variables.

• Parsfiles support the INCLUDE capability, allowing

advanced applications such as design of experiments

(DOE), sensitivity, and customized automation methods.

Output Variables

• BikeSim generates from about 400 to thousands of built-

in output variables, depending on whether there are

sensors, traffic vehicles, etc.

• A subset of the available outputs can be specified at run-

time, to control the size and organization of output files.

• Writing to file can be enabled and disabled during the run,

to save only interesting results from long simulations.

• BikeSim provides a GUI for browsing the lists of

available variables, sorting by several categories.

• All variables are described in documentation files in both

text and spreadsheet format.

• Output files may be written in several binary forms (32-

bit and 64-bit) or CSV (text) spreadsheet format.

• Output variables are used for several purposes:

o Make plots that show vehicle behavior.

o Motion information for video visualization.

o Input to other post-processing software.

o Export to other software during the simulation.

VS Commands and Python
VS Solvers include the VS Command scripting language for

customizing the model and its operation. VS Commands are

supported in all versions, including real-time systems.

• VS Commands can add new equations at several locations

in the sequence of simulation calculations.

• VS Commands can add new parameters, output variables,

and state variables as needed to extend the model.

• VS Commands can add new differential equations.

• VS Commands can add new functions to simplify other

formulas or series of equations.

• VS Commands can define new units.

• VS Events monitor custom formulas to trigger the reading

of a new Parsfile to change values, modes, etc. This is

used to script complicated procedures.

• The Windows and Linux versions provide embedded

Python in support of full programming options.

Working with Simulink
®
 and External Software

• The BikeSim VS Math Model is made with functions

from a dynamic library file.

o The BikeSim GUI runs VS Math Models directly.

o BikeSim includes MATLAB/Simulink S-Functions.

o BikeSim works with LabVIEW.

http://www.mathworks.com/products/connections/product_main.shtml?prod_id=114

© Mechanical Simulation Corporation. Last revision December 2023. 4 / 4

o BikeSim can generate functional mockup units

(FMU) to run under the functional mockup interface

(FMI).

• MATLAB, Visual Basic (VB), and other languages can

operate the Browser/GUI using Windows COM.

• BikeSim has a LINEARIZE command to generate

linearized A, B, C, and D matrices for use in MATLAB.

• The VS SDK (software development kit) is available for

Windows and Linux. It includes numerous application

program interfaces (APIs):

o The VS Solver API is used to run and interact with

the VS Solver from C/C++ and languages that can

load a DLL file (Python, MATLAB, VB, etc.).

o The STI API helps connect external tire models.

o The Shared Camera Buffer API accesses 3D

information from VS Visualizer cameras.

o VS Output API helps read and write output VS files.

o VS Table API helps interact with Configurable

Functions.

o VS Terrain API works with VS Terrain files.

Import Variables

• Calculations from external models and measurements

from hardware-in-the-loop (HIL) can be imported into

BikeSim. These include most forces and moments, fluid

pressures, controls, ground geometry under each tire, etc.

• The vehicle models can import values for hundreds of

built-in variables.

• Most of the import variables can be combined with native

internal variables with one of three modes:

1. replace the native variable,

2. add to the native variable, or

3. multiply with the native variable.

• BikeSim provides a browser for activating import

variables from the lists of all those that are available.

• New import variables can be defined with VS Commands

to pass through data from other software. E.g., variables

from Simulink can be passed through to the animator.

Export Variables

• All variables available for writing to output files are also

available for export to Simulink or other external code.

• Variables are exported only if activated at runtime, as

needed to be compatible with the external model.

Multibody Model Specifications

State Variables and Degrees of Freedom
BikeSim has ordinary differential equations (ODEs) for the

dynamics of multibody systems, including rigid bodies,

fluids, tires, controllers, and other dynamic parts. Additional

state variables are used to define the state of the model for

features such as friction, clutch slipping, controllers, etc.

• The number of ODEs and state variables depends on

many options available in the model. The VS Solver is

used to generate a list of all state variables for any given

simulation setup.

• The basic fixed-caster BikeSim model has 53 ODEs and

a total of 94 state variables.

Equation Form

• The equations of motion are derived from first principles

for 3D motions of multiple connected rigid bodies, using

Kane’s equations for the multibody dynamics and

constraints.

• The equations of motion are ODEs that are not stiff.

• The built-in VS library provides six methods for solving

the ODE’s (Adams-Bashforth, Adams-Moulton, Runge-

Kutta, and Euler methods).

• All methods run at a fixed time step and may be used for

real-time HIL applications.

• The algorithms work well with measured and sampled

data sources, even when there are discontinuities.

• The Solver libraries are compiled with extensive

optimizations for efficient use either alone or with other

software (e.g., Simulink, LabVIEW).

Initialization and Restarts

• BikeSim supports many initialization options, from

automatic to detailed specification of any state variable.

• The complete state of the vehicle model is saved at the

end of each run, to support continuation of advanced

automation and optimization methods.

• The state of the model can be saved during a run and fully

restored during the run, in support of advanced

optimization methods and repetitive test sequences.

	Vehicle Math Models
	Configurable Table Functions
	VS Reference Paths
	Rider Controls
	3D Road Geometry and Friction
	Wind and Aerodynamic Effects
	Suspensions
	Steering System
	Brake System
	Tires
	Powertrain
	Sensors and Traffic

	VS Math Model Input and Outputs
	Input Data Files
	Output Variables
	VS Commands and Python
	Working with Simulink® and External Software
	Import Variables
	Export Variables

	Multibody Model Specifications
	State Variables and Degrees of Freedom
	Equation Form
	Initialization and Restarts

