
 1 / 4

CarSim math models simulate the dynamic behavior of four-

wheeled vehicles, possibly towing a trailer. The VehicleSim®

(VS) Math Model architecture is used.

CarSim VS Math Models are built using dynamically linked

VS Solver library files, available for 13 operating systems:

Windows (32- and 64-bit), Linux, and real-time platforms

used for hardware-in-the loop. The models work well with

other software (Simulink, LabVIEW, FMI, ETAS ASCET,

EPIC Unreal, Custom programs, etc.) for automation or

extensions to the models.

A basic CarSim model runs more than 15 times faster than

real time on a typical Windows computer.

Multiple vehicles may be simulated simultaneously using a

single VS Math Model, or by running multiple VS Math

Models in parallel using external software such as Simulink.

Vehicle Math Models

Vehicle Configurations

• The basic CarSim multibody model has a rigid sprung

mass with two suspensions.

• A trailer may be added with up to three suspensions with

load-sharing effects. An optional license is needed.

• A single-axle lead unit can be combined with a trailer to

simulate an articulated vehicle.

• CarSim with frame twist includes frame rails to add

torsional compliance. An optional license is needed.

• CarSim with powertrain mounts to includes dynamic

engine movement. An optional license is needed.

Configurable Table Functions

• Potentially nonlinear relationships between variables are

defined with VS Configurable Functions that can be:

o Constants

o Linear coefficients

o Nonlinear tables with several interpolation methods

involving one or two independent variables

o User-defined symbolic formulas

• Configurable Functions include offset and gain transform

parameters for dependent and independent variables.

• There is no built-in limit to the length of tables.

VS Reference Paths

• A VS Path defines an S-L coordinate system (S = distance

along path, L = lateral distance from path).

• Each path is a sequence of segments, where each segment

may be straight, an arc, a clothoid, or an X-Y table.

• VS Paths are used for driver controls, locating traffic

vehicles, and defining 3D road properties.

• A VS Math Model supports up to 500 VS Paths.

Driver Controls

• Driver controls can be handled by built-in controllers, VS

Command equations, or imports from external software.

• The closed-loop driver model (DM) can steer to follow a

target path, which can be changed during the run.

• The DM controller handles forward and reverse speeds.

• Closed-loop Speed Controller (SC) for throttle and

braking based on target speed or acceleration, or path.

• SC path preview uses acceleration limits, curvature of the

target path, and 3D road geometry (banking, grade,

curvature).

• Gear shifting and clutch controls can be handled with shift

schedules and automatic throttle-clutch interactions.

• Closed-loop and open-loop controls can be combined to

simulate ADAS intervention systems.

• Steering wheel control can be by angle or torque.

• Open-loop braking can be pedal force or fluid pressure.

3D Road Geometry and Friction

• The 3D ground surface includes 3D geometry, friction,

and a tire rolling resistance coefficient.

• The 3D surface may be a set of VS Roads or VS Terrain.

• Up to 200 VS Roads may be built with components:

o VS Reference Path for S-L coordinate system.

o Configurable Functions for elevation and friction

using S-L coordinates and variable-width tables.

o Boundaries to connect adjacent VS Roads.

• VS Terrain provides a single mesh-type ground surface,

created with VS Scene Builder with several options:

o Create interactively by dragging 3D Tiles.

o Import datasets from OpenDRIVE format.

o Import 3D FBX files from other software.

• Road profiles “wander” to follow the vehicle tires,

providing high-frequency road roughness inputs. Road

profiles are measured routinely by some road agencies.

Wind and Aerodynamic Effects

• Six aerodynamic forces and moments are applied to the

sprung mass (both sprung masses if there is a trailer).

• These forces and moments are shaped by Configurable

Functions of aerodynamic slip, pitch, and ride height.

• Ambient wind speed and heading can be set with tables,

runtime equations, or imported from other software.

: Math Models

© Mechanical Simulation Corporation. Last revision December 2023. 2 / 4

Suspensions

• Suspensions can be generic/independent, solid axle,

independent with virtual steering axis, or twist beam.

o Wheel movement in a generic/independent

suspension depends on jounce on both sides.

o Wheel movement in a virtual steering axis suspension

depends on jounce and steering rack travel.

o Axle movement in a solid axle suspension depends

on axle jounce and roll

• Independent and solid-axle suspensions can be either

steered or non-steered.

• All suspensions have full nonlinear kinematical behavior

and can be asymmetric.

• Suspension springs and dampers are nonlinear. The

springs include hysteresis due to friction.

• All suspensions have lateral and longitudinal compliance;

every wheel has toe and camber compliance.

• All compliances can be represented with linear

coefficients or nonlinear configurable functions.

• Separate forces are included for jounce and rebound stops.

• Suspension roll moments include a nonlinear auxiliary

roll moment and linear coefficient roll damper.

Steering System

• The interactions between the suspension, steering, tire,

and ground are handled with a multibody model that uses

an inclined kingpin axis, or 2D kinematics tables in the

case of the virtual steering axis suspension.

• Use rack-and-pinion or recirculating ball.

• Steer angle of each road wheel is available as measured in

a K&C rig or as rotation about the kingpin axis.

• The steering system includes detailed options for manual

or dynamic power boost, including column assist.

• The steering system includes hysteresis, compliance,

inertia, and damping.

• Special equations are used for low-speed conditions to

simulate ground friction steer torque.

• Alternatively, steering can be provided by hydrostatic

control of articulation or by skid steer.

Brake System

• Brake control can be set with pedal force (with or without

boost) or master cylinder pressure.

• The control input pressure from the master cylinder is

proportioned for each wheel-end brake actuator.

• Brake torque is modeled as a nonlinear function of

actuator pressure and optional thermal effects.

• The brake system can use a built-in ABS controller or

connect with external programs such as Simulink.

• Special equations handle wheel lockup to obtain the

correct reaction torque and avoid numerical instability.

Tires

• CarSim includes several installed tire models:

o A fully nonlinear and asymmetric table-based model

o An extended model (more tables for camber effects)

o A terramechanics-based (soft soil) model (64-bit

Windows, single tires only)

o MF-Tyre from Siemens

• CarSim supports some external models (license required):

o MF-Swift from Siemens

o FTire from COSIN

o TameTire from Michelin

• User-defined tire models can connect with VS STI.

• External tire models can calculate forces at either the

ground contact point or the wheel center.

• Variable friction conditions are handled using similarity,

to maintain both linear and limit properties of the tire.

• Transient effects of rolling are included using relaxation

length, which can be constant or a nonlinear function of

vertical force and slip.

• Special equations are used at low speeds.

• Tire contact can be handled with one to four points.

• Dual tires are available for all wheels.

Powertrain

• CarSim supports FWD, RWD, and AWD.

• The powertrain can drive axles for either vehicle unit.

• The powertrain supports internal combustion (IC),

electric motor + battery, and hybrid (IC + electric motor

+ battery + planetary gear).

• The hybrid and EV powertrain models support battery

generation.

• Electrified axles are supported with either one or two

motors per axle.

• IC engine torque is defined with a 2D Configurable

Function based on RPM and throttle.

• The engine feeds torque to the transmission through either

a hydraulic torque converter or a mechanical clutch.

• The transmission converts torque and speed based on the

current gear selection, with spin inertias and efficiencies

that depend on the gear selection.

• Supports continuously variable transmissions (CVT).

• The transfer case unit and differential models are similar.

All have four model options: (1) always locked, (2)

viscous coupling, (3) coupling applied using a clutch

(controlled externally or with built-in logic), (4) yaw

 3 / 4

control differential system having two clutches. Torque

distribution is controlled left and right, or front and rear.

• The transfer case has a torque bias for non-locked options.

• Twin-clutch is an alternative to an axle differential.

• Torsional compliance of the driveline is included.

• Fuel consumption is defined with a 2D table.

• CarSim supports external models from GT Suite.

Sensors and Traffic

• The models include several kinds of virtual sensors that

detect various types of vehicle motion, including

acceleration, speed, and jerk.

• Up to 200 moving objects can be added that are updated

automatically to convert simple path-based commands

into full 3D geometry.

• Motion of an object can be constant, set by specifying

speed, controlled by acceleration (simple physics), set

with algebraic equations, or imported via import

variables.

• The objects can be recycled for extensive runs, to reappear

after they go out of view.

• Objects that move based on speed or acceleration support

off-tracking, for realistic low-speed traffic turns.

• Objects used to represent traffic vehicles support brake

lights and reverse lights.

• Objects may be rectangular, circular, segment (e.g.,

signs), or polygonal.

• Segment objects have a limited viewing angle, to mimic

signs and signals with limited visibility.

• Up to 99 ADAS range and detection sensors can be

included that detect the moving objects. An optional

license is needed for sensors (but not for objects).

• Each detection includes 24 variables that can be exported

to external controllers (e.g., ADAS conditions).

• Objects can block each other (occlusion). The sensor

detection variables respond only to the portion of the

object that is within the field of view.

• Detection sensors can be placed on the vehicle or moving

objects (to detect and simulate collisions).

• Objects may be attached to vehicle sprung masses to

support ADAS simulations with multiple vehicles or

provide details of collisions with pedestrians.

VS Math Model Input and Outputs

Input Data Files

• CarSim reads all input from text files that are normally

generated automatically by the Browser/GUI. These files

can also be made externally for advanced applications.

• Input files for CarSim follow a simple keyword-based

format called the Parsfile. CarSim can recognize

thousands of keywords when processing input files.

• Each input line can optionally specify alternate units for a

parameter.

• Values can be assigned directly to model parameters with

numbers, numerical expressions (e.g., 1/16), or symbolic

algebraic expressions involving other model variables.

• Parsfiles support the INCLUDE capability, allowing

advanced applications such as design of experiments

(DOE), sensitivity, and customized automation methods.

Output Variables

• CarSim generates from about 600 to thousands of built-in

output variables, depending on whether there is a trailer,

sensors, traffic vehicles, etc.

• A subset of the available outputs can be specified at run-

time, to control the size and organization of output files.

• Writing to file can be enabled and disabled during the run,

to save only interesting results from long simulations.

• CarSim provides a GUI for browsing the lists of available

variables, sorting by several categories.

• All variables are described in documentation files in both

text and spreadsheet format.

• Output files may be written in several binary forms (32-

bit and 64-bit) or CSV (text) spreadsheet format.

• Output variables are used for several purposes:

o Make plots that show vehicle behavior.

o Motion information for video visualization.

o Input to other post-processing software.

o Export to other software during the simulation.

VS Commands and Python
VS Solvers include the VS Command scripting language for

customizing the model and its operation. VS Commands are

supported in all versions, including real-time systems.

• VS Commands can add new equations at several

locations in the sequence of simulation calculations.

• VS Commands can add new parameters, output variables,

and state variables as needed to extend the model.

• VS Commands can add new differential equations.

• VS Commands can add new functions to simplify other

formulas or series of equations.

• VS Commands can define new units.

• VS Events monitor custom formulas to trigger the reading

of a new Parsfile to change values, modes, etc. This is

used to script complicated procedures.

• The Windows and Linux versions provide embedded

Python in support of full programming options.

© Mechanical Simulation Corporation. Last revision December 2023. 4 / 4

Working with Simulink
®
 and External Software

• The CarSim VS Math Model is made with functions from

a dynamic library file.

o The CarSim GUI runs VS Math Models directly.

o CarSim includes MATLAB/Simulink S-Functions.

o CarSim works with LabVIEW.

o CarSim can generate functional mockup units (FMU)

to run under the functional mockup interface (FMI).

• MATLAB, Visual Basic (VB), and other languages can

operate the Browser/GUI using Windows COM.

• CarSim has a LINEARIZE command to generate

linearized A, B, C, and D matrices for use in MATLAB.

• The VS SDK (software development kit) is available for

Windows and Linux. It includes numerous application

program interfaces (APIs):

o The VS Solver API is used to build and interact with

VS Math Models from C/C++ and languages that can

load a DLL file (Python, MATLAB, VB, etc.).

o The STI API helps connect external tire models.

o The Shared Camera Buffer API accesses 3D

information from VS Visualizer cameras.

o VS Output API helps read and write output VS files.

o VS Table API supports Configurable Functions.

o VS Terrain API works with VS Terrain files.

o VS Connect enables co-simulation between EPIC

Unreal and Simulink.

Import Variables

• Calculations from external models and measurements

from hardware-in-the-loop (HIL) can be imported into

CarSim. These include most forces and moments, fluid

pressures, controls, ground geometry at each tire, etc.

• VS Math Models can import values for hundreds of built-

in variables.

• Most of the import variables can be combined with native

internal variables with one of three modes:

1. replace the native variable,

2. add to the native variable, or

3. multiply with the native variable.

• CarSim provides a browser for activating import variables

from the lists of all those that are available.

• New import variables can be defined with VS Commands

to pass through data from other software. E.g., variables

from Simulink can be passed through to the animator.

Export Variables

• All variables available for writing to output files are also

available for export to Simulink or other external code.

• Variables are exported only if activated at runtime, as

needed to be compatible with the external model.

Working with the EPIC Unreal Engine

• The VehicleSim Dynamics plugin for Unreal Engine

includes the VS Solvers for CarSim and TruckSim,

allowing the vehicle models to operate within the Unreal

environment.

• The VS Connect library is used to connect an Epic Unreal

simulation with a simultaneous Simulink simulation,

where both are working with the CarSim VS Solver.

Multibody Model Specifications

State Variables and Degrees of Freedom
CarSim has ordinary differential equations (ODEs) for the

dynamics of multibody systems, including rigid bodies,

fluids, tires, controllers, and other dynamic parts. Additional

state variables are used to define the state of the model for

features such as friction, clutch slipping, controllers, etc.

• The number of ODEs and state variables depends on

many options available in the model. VS Math Models

can generate a list of all state variables for any given

simulation setup.

• A basic CarSim model has 81 ODEs and a total of 250

state variables.

Equation Form

• The equations of motion are derived from first principles

for 3D motions of multiple connected rigid bodies, using

Kane’s equations for the multibody dynamics and

constraints.

• The equations of motion are ODEs that are not stiff.

• The built-in VS library provides six methods for solving

the ODE’s (Adams-Bashforth, Adams-Moulton, Runge-

Kutta, and Euler methods).

• All methods run at a fixed time step and may be used for

real-time HIL applications.

• The algorithms work well with measured and sampled

data sources, even when there are discontinuities.

• The VS Solver libraries are compiled with extensive

optimizations for efficient use either alone or with other

software (e.g., Simulink, LabVIEW).

Initialization and Restarts

• CarSim supports many initialization options, from

automatic to detailed specification of any state variable.

• The complete state of the vehicle model is saved at the

end of each run, to support continuation of advanced

automation and optimization methods.

• The state of the model can be saved during a run and fully

restored during the run, in support of advanced

optimization methods and repetitive test sequences.

http://www.mathworks.com/products/connections/product_main.shtml?prod_id=114

	Vehicle Math Models
	Vehicle Configurations
	Configurable Table Functions
	VS Reference Paths
	Driver Controls
	3D Road Geometry and Friction
	Wind and Aerodynamic Effects
	Suspensions
	Steering System
	Brake System
	Tires
	Powertrain
	Sensors and Traffic

	VS Math Model Input and Outputs
	Input Data Files
	Output Variables
	VS Commands and Python
	Working with Simulink® and External Software
	Import Variables
	Export Variables
	Working with the EPIC Unreal Engine

	Multibody Model Specifications
	State Variables and Degrees of Freedom
	Equation Form
	Initialization and Restarts

