
Mechanical Simulation CarSim
755 Phoenix Drive, Ann Arbor MI, 48108, USA

Phone: 734 668-2930 • Fax: 734 668-2877 • Email: info@carsim.com carsim.com

 1 / 9 June 2023

CarSim 2023.1 New Features
VS Solver Architecture .. 1

Import Arrays for Connecting to External Software .. 1
Timeline for Starting a Simulation .. 2
Timeline for Each Timestep... 2
VS Commands ... 2

VS Math Models .. 3
Conventional Steering System ... 3
Hydrostatic Steering System .. 3
Terramechanics Models ... 4
Hybrid/Electric Vehicles .. 4
PID Controllers .. 5

VS Browser: Graphical User Interface (GUI) .. 5
CarSim Steering Screens ... 5
Support of New Import Option .. 5
CarMaker Converter .. 5

VS Software Development Kit (SDK) ... 5
Support for Multiple Wrappers .. 6
VS API Changes .. 6
Examples .. 7

Documentation ... 7
Database ... 8

This document lists notable new features in CarSim 2023.1.

VS Solver Architecture

Import Arrays for Connecting to External Software

VS Solvers may be run under the control of wrapper programs in simulation environments that

combine external model components with the VS Math Model, exchanging information using

arrays of import and export variables. The variables used to create the Import and Export arrays are

defined before the simulation starts, using the IMPORT and EXPORT VS Commands. The IMPORT

command identifies the import variable that will be added to the Import array and specifies a mode

for usage within the VS Math Model.

In prior versions, three modes were available for variables associated with the Import array: ADD,

MULTIPLY, and REPLACE. The mode could only be specified prior to the start of the simulation

using the IMPORT command. After the run started, it could not be changed.

The mode of an Import variable may now be changed during the simulation using a new VS

Command SET_IMPORT_MODE. In addition, a new mode AVAILABLE has been added. This

mode indicates that the variable is in the Import array but is not currently being used by the VS

http://www.carsim.com/

 2 / 9

Math Model. The intent is that the action of setting up the Import array has been separated from

the actions of using the import variables, to allow complicated scenarios to be simulated in which

external controller or model components are enabled and disabled for different time sections within

the simulation.

Timeline for Starting a Simulation

A Simulation is started by reading input files that define the layout of the model and values for

parameters in the model, and then initializing the model. At a certain point, the model is “locked”

in the sense that the number of ordinary differential equations (ODEs) is set. In recent versions,

that point occurred at the end of the process of reading input files. When running under external

control via the VS API, this step is performed by the API function vs_setdef_and_read.

The locking of the model now takes place slightly later, in the step performed by the API function

vs_initialize. This allows custom wrapper programs to extend the model via API functions

after input Parsfiles have been read, but before the model is initialized. For example, this change

allows a wrapper to install the speed controller in support of other options used by the wrapper.

Timeline for Each Timestep

Starting with version 2023.0, the calculations done each timestep have been reorganized to perform

model calculations in four specific stages each timestep:

1. State: the model state (position and speed state variables) is known, and information about

the environment is updated.

2. Control: built-in driver controls are applied.

3. Kinematics: variables are calculated that depend on position and velocity information.

4. Dynamics: variables are calculated using the remaining equations in the model, including

forces, moments, accelerations, and outputs that depend on these variables.

The re-ordering of internal calculations continued for the current release, such that all driver

controls are now done in the Control stage, and more environmental information is available in the

State stage. There are slight differences in the newer versions because lags in the controllers were

eliminated.

VS Commands

Several new commands were added.

PID Controllers

PID controllers can now be used in runs via the VS Command PID_CONTROLLER(). These

controllers can be used with any symbolic math model variable to control the dynamic systems

present in CarSim. The controller will calculate the error between the input variable and a setpoint,

and then output a control signal according to the size of that error, as well as its integral and

derivative. See the example run Driver Model > DLC, Constant Target Speed w/ PID and Help >

Reference Manuals > VS Commands for more information.

 3 / 9

Numerical Differentiation

Certain built-in variables in VS Math Models can be modified on the fly by the user via IMPORT

statements. In certain cases, it is possible to “unlink” certain variables when using the IMPORT …

REPLACE command to overwrite the value calculated by the VS Solver. For example, the steering

wheel angle STEER_SW is calculated by integrating the calculated steering wheel angular velocity

StrAV_SW. If the steering wheel angle is replaced via an import statement, the steering wheel

angular velocity is still calculated internally and no longer reflects the actual steering wheel velocity

used in the solver, which is the derivative of the custom variable supplied by the user.

To remedy this, a new VS math command was added in 2023.1: DIFFERENTIATE(). When used

with an EQ_... command, this new command takes in a symbolic variable and numerically

calculates its derivative with a backwards-looking finite difference scheme, using up to 5 time

steps.

Note Calculating the derivative of discontinuous signals can produce extremely

large instantaneous velocities. It’s recommended to use MAX() and

MIN() to filter out these very large values.

Modes for Import variables

The mode of an import variables may now be changed during the simulation using a new VS

Command SET_IMPORT_MODE, typically using a VS Event. A new AVAILABLE mode can be

set for import variables to add variables to the array shared with external software such as Simulink,

without using the variable within the math model. The mode can later be changed as needed using

SET_IMPORT_MODE.

Safe divide

A new function SAFE_DIV is available for user-defined expressions to avoid divide-by-zero

issues.

VS Math Models

Conventional Steering System

The conventional steering system is now an optional component, installed with the math model

keyword INSTALL_STEERING. When this keyword is not supplied, the steering degree of

freedom of each axle, if present, is locked out, and no steering gear or column exist. As such, while

driver controls will calculate a requested steering angle, this will have no effect. All the usual

steering system options, including the ability to import various subsystems, remain present if the

steering system is installed, with no changes in behavior or simulation results. The new option to

not have the steering system defined supports vehicles which do not require a conventional,

automotive steering system.

Hydrostatic Steering System

Off-highway vehicles may steer with concepts like differential steering (skid-steer) or steering by

articulation (actuated hitch between vehicle halves). These are often hydraulically actuated given

 4 / 9

the forces involved. To suit these types of vehicles/steering concepts, a new steering system model

is included for 2023.1, referred to as the hydrostatic steering system. Within this system are two

available types:

• Hydrostatic drive, using the differential steering concept, activated by the VS Command

INSTALL_STEERING_HYDRO 0. Each side of the vehicle has a pump-controlled rotary

actuator, allowing the thrust on each side to be controlled independently. This system is

also used to drive the vehicle forwards and backwards.

• Hydrostatic articulation, using the steering by articulation concept, activated by VS

Command INSTALL_STEERING_HYDRO 1. The hitch articulation angle is controlled

by a valve-controlled linear actuator which generates a hitch moment.

For more information on the new model, refer to Help > Steering > Hydrostatic Systems.

Terramechanics Models

VS Terramechanics: Rigid Wheel (TMRW) is now available for use on Linux and with various

real-time platforms. For more information, refer to Help > Tires > Terramechanics Models.

A longitudinal contact patch dimension was added to VS Terramechanics: Rigid Wheel (TMRW).

The normal contact region samples a few points along the width of the tire. Enabling a longitudinal

dimension adds points along the circumference of the tire. This can help smooth the effects of rapid

terrain variations. For more information, refer to Help > Tires > Terramechanics Models.

Hybrid/Electric Vehicles

The efficiency values of electric motors and generators used in hybrid and electric vehicles can

now be imported and set directly via the import variables IMP_EFF_MOTOR and

IMP_EFF_GNRTR, respectively.

A simulation involving an electric or hybrid vehicle can now be automatically terminated by setting

the SOC_STOP parameter. When the vehicle’s state of charge (battery level) drops below this

value, the run terminates with a message written to the log file. This value should be a fraction of

total battery capacity, and thus should be set between 0 and 1.

The previous versions did not provide import variables that allow an external model of the electrical

system or battery. This version adds new import variables for the battery SOC (State of Charge),

charging and discharging efficiencies and three other import variables which may need to import

from the external model so users can implement their own battery model in an external tool (e.g.

Simulink.)

The new import variables for the hybrid/electric powertrain are summarized in Table 1.

 5 / 9

Table 1. Import variables added for the hybrid/electric powertrain

Keyword Description

IMP_EFF_MOTOR Electric motor efficiency

IMP_EFF_GNRTR Electric generator efficiency

IMP_SOC_BTTRY Battery state of charge

IMP_PW_BTTRY_CHRG Battery charge limit

IMP_PW_BTTRY_DIS Battery discharge limit

IMP_VOC_BTTRY Battery open-circuit voltage

IMP_V_BTTRY Battery output voltage

IMP_A_BTTRY Battery output current

PID Controllers

PID controllers can now be used to control various inputs to the vehicle. These controllers compute

a control signal proportional to the error between two signals, the integral of that error, and the

derivative of that error. See the example runs in * PID Controllers for more information.

VS Browser: Graphical User Interface (GUI)

CarSim Steering Screens

The Steering and Steering: Virtual Steering Axis screens have been updated to automatically set

the new VS Command INSTALL_STEERING. This ensures that the steering system is defined

prior to attempting to set any of its options or data.

Support of New Import Option
The I/O Channels Import screen now supports the selection of the AVAILABLE mode for import

variables specified on the screen.

CarMaker Converter

A tool called CarMaker Converter is available to read CarMaker datasets and convert them to

CarSim properties, setting values in a CarSim database using COM automation with the Browser.

VS Software Development Kit (SDK)

The VS API has been refined to support more interactions between wrapper programs and VS Math

Models. In the 2023.0 and 2023.1 versions, the calculations done each timestep have been

reorganized to perform model calculations in four specific stages each timestep:

1. State: the model state (position and speed state variables) is known, and information about

the environment is updated.

2. Control: built-in driver controls are applied.

3. Kinematics: variables are calculated that depend on position and velocity information.

 6 / 9

4. Dynamics: variables are calculated using the remaining equations in the model, including

forces, moments, accelerations, and outputs that depend on these variables.

Support for Multiple Wrappers

The four stages of the calculations can each be associated with a separate wrapper program, with

the possibility of supporting up to four wrappers that can work closely with the VS Math Model.

Support for multiple wrappers requires the following:

1. The wrappers must run in a sequence matching the stages of the VS Math Model equations.

2. The wrappers must each link to the same VS Solver library such that there is a single VS

Math Model running.

3. The wrappers and VS Solver must all run on the same CPU core.

This capability is now supported for Simulink users with the inclusions of four VS S-Functions,

each associated with a different stage.

VS API Changes

Defining Import and Output variables

Import and output variables are defined in a VS Solver with API functions such as

vs_define_imp and vs_define_out. These create an internal symbolic structure with an

attached number (double), units, description, and other properties. New API functions

vs_define_imp_where and vs_define_out_where were added for version 2023.0 to

include information about where the import is used, or the output is calculated. In the current

version (2023.1) all import and output variables in the VS Math Model have the stage identified.

This information is obtained from machined-generated documents provided in simple text or csv

spreadsheet format, viewed by screens in the VS Browser that are used to select import or output

variables.

Calling the vs_statement API function
The vs_statement API function allows a wrapper program to apply VS Commands

programmatically, rather than by reading from an input Parsfile.

As noted earlier, the locking of the VS Math Model now takes place a little bit later in the startup,

such that API function calls can be made after vs_setdef_and_read but before

vs_initialize. This allows more state variables to be added, including ODEs.

Callback locations

The VS Solver has several functions to install callback functions that can be deployed in multiple

points in the simulation timeline. The main one for calculations is the calc callback, installed with

the API function vs_install_calc_functions. There are now 12 locations each time step

where callback functions can be applied, including the four stages that now exist each timestep.

 7 / 9

Examples

A new SDK example was added to show how the speed controller can be installed

programmatically. This was not possible in past versions, because the controller installed an ODE

state variable needed for integral control. With the re-ordering of the simulation setup, this step can

occur after the input files have been read but before the model initialization is performed.

Documentation

The following Help documents were added:

1. Steering > Hydrostatic Systems

2. Technical Memos > CarMaker Converter

The following Guides and Tutorials were updated:

3. Running a VS Math Model in Simulink

The following Reference Manuals have been updated:

4. VS Browser (GUI and Database)

5. VS COM Interface

6. VS Commands

7. VS Commands Summary

8. VS Math Models

The following documents in the Help menu have been updated:

9. Controls > Driver Controls

10. Controls > Electronic Stability Controller

11. Controls > Trailer Backing Controller

12. Model Extensions and RT > External Models and RT Systems

13. Model Extensions and RT > Import and Export Variables

14. Run Control Screen (Home)

15. Steering > Steering Systems

16. Suspension Systems

17. Tires > Tire Models

18. Tires > Terramechanics Models

19. Tools > Running with Parallel Solvers

20. Vehicles

The following Technical Memos have been updated:

 8 / 9

21. Example: Extending a Model with VS Commands and the API

22. Example: Multiple Ports in Simulink for Sensors

23. Numerical Integration in VS Math Models

24. Unreal Engine Live Animation of a CarSim or TruckSim Solver in Simulink

25. VS Support for Multiple S-Functions

26. VS Solver CLI Wrapper

27. vs_sf VS Connect Server

The following Real-Time and DS System documents have been updated:

28. dSPACE RT Guide

The following SDK documents have been updated:

29. The VehicleSim API

Database

Hydrostatic Steering Systems

Two new example vehicles demonstrate the hydrostatic steering systems: the skid-steer loader

makes use of the hydrostatic drive system, while the articulated farm tractor uses the hydrostatic

articulation system. Both vehicles include examples of open and closed loop controls; the closed

loop controllers are implemented using the new, built-in PID_CONTROLLER VS Command.

Batch Iteration

A new example uses a matlab script and Simulink model to iterate a run-time variable

[SPEED_TARGET_CONSTANT], for a batch of runs.

Change Import Mode

Three new examples demonstrate Handoff steering from Manual control to the Driver Model. In

the first example, the steering wheel angle is overwritten with the import variable

IMP_STEER_SW in replace mode. An Event series is used to switch this mode to 'Add' in order

to handoff to the Driver Model. The second example also sets the steering mode to torque steer

during handoff to provide a smoother transition back to the driver model calculation. The third

example sets the steering mode to torque steer and implements the new, built-in

PID_CONTROLLER VS Command during handoff to provide a very smooth transition back to the

driver model calculation.

External Battery Model

An external electrical battery model is added. The solver in this version adds new import variables

for the battery SOC (State of Charge), charging and discharging efficiencies and three other import

variables. The new example utilizes those new import variables and specifies the electrical system

and battery in Simulink model.

 9 / 9

PID Controllers

A new model, Driver Model > DLC, Constant Target Speed w/ PID, was created to demonstrate

the use of the new generic PID controllers.

Parallel Solvers - Vehicle Hauling

Two new parallel solver examples demonstrate a lead unit hauling another fully modeled vehicle

on a flatbed trailer. The solvers calculating each vehicle are run in parallel through Simulink, having

the vehicle combination run through a DLC maneuver and a Bounce Test.

	VS Solver Architecture
	Import Arrays for Connecting to External Software
	Timeline for Starting a Simulation
	Timeline for Each Timestep
	VS Commands
	PID Controllers
	Numerical Differentiation
	Modes for Import variables
	Safe divide

	VS Math Models
	Conventional Steering System
	Hydrostatic Steering System
	Terramechanics Models
	Hybrid/Electric Vehicles
	PID Controllers

	VS Browser: Graphical User Interface (GUI)
	CarSim Steering Screens
	Support of New Import Option
	CarMaker Converter

	VS Software Development Kit (SDK)
	Support for Multiple Wrappers
	VS API Changes
	Defining Import and Output variables
	Calling the vs_statement API function
	Callback locations

	Examples

	Documentation
	Database
	Hydrostatic Steering Systems
	Batch Iteration
	Change Import Mode
	External Battery Model
	PID Controllers
	Parallel Solvers - Vehicle Hauling

